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Abstract

Relying on a latent factor model with time-varying dependence of systematic risk

and mispricing on firm and option characteristics, we reveal economically substan-

tial mispricing in the options market. The portfolio based on individual options

alphas related to characteristics earns an out-of-sample annualized Sharpe ratio

of 1.62 in call option returns and of 1.86 in put option returns. Commonly used

risk factors in the stock and options markets are incapable of explaining abnormal

returns of option alpha portfolios. We show that characteristics related to risk-

neutral moments and liquidity and their interactions largely contribute to option

mispricing and that many characteristics that contribute to systematic risk also

contribute to mispricing at times.
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1. Introduction

Options are not redundant assets. Since Black and Scholes (1973), a majority of the

literature in option pricing has focused on an approach that first specifies the full dynamics

of the underlying price and its instantaneous variance and then employs risk-neutral

valuation. However, such a parametric approach may suffer from model misspecification

and is incapable to explain empirically observed variation in option returns (Israelov and

Kelly, 2017). Investors may not hold options up to maturity and may be more interested

in risk factors that drive variation of option returns and in quantifying any mispricing if

there exists in the option holding period. However, this question is far less understood

in the options market than in the corresponding underlying equity market.

In this paper, we follow the factor pricing approach and answer an important question:

whether options are mispriced under very general assumptions on systematic risk, and

if so, how we can quantify such mispricing. Different from equities, the factor pricing

approach is not straightforward to apply in the options market for at least three important

reasons. First, there do not exist well-established factors that can explain time series

comovements of options returns and average return spreads across options on individual

equities. Second, the unique option contractual features and relative underdevelopment of

the market make option return mispricing and exposures to systematic risk time-varying

and dependent on both underlying and option characteristics. Third, the dependence

structure of systematic risk and mispricing on characteristics may well change over time

as well, due to, for example, structural changes of the options market and different types

of arbitrage opportunities appearing and disappearing at different times.

Therefore, in this paper, we adopt the latent factor pricing approach and further make

alpha and beta depending on firm and option characteristics. To accommodate the time-

varying dependence structure, we resort to the projected principal component analysis

(PPCA) originally proposed by Fan, Liao, and Wang (2016) and then extended by Kim,

Korajczyk, and Neuhierl (2021). Unlike the standard statistical factor model, which

requires a large time series sample size for consistent estimation, the PPCA estimator of
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the factor loading function converges to the true one as the dimension of the cross section

increases, even for short time series. This property allows us for estimating the model

using a short rolling window over time and hence introducing time-varying dependence

structure. We assume that characteristics are relatively stable over a short time interval

and estimate alphas of individual option returns that relate to characteristics. Based on

those alpha estimates, we construct option alpha portfolios that are completely out-of-

sample. This approach gives characteristics maximal explanatory power for systematic

risk before estimating alphas and therefore, the alpha portfolios constructed in this way

can be regarded as realizations of mispricing in the options market. Two recent papers

by Buchner and Kelly (2022) and Goyal and Saretto (2022) follow similar latent factor

pricing approach and apply the instrumental principal component analysis (IPCA) of

Kelly, Pruitt, and Su (2019) to examining the factor structure in S&P 500 index option

returns and individual equity option returns, respectively. However, a key difference is

that both assume that the dependence structures of systematic risk and mispricing on

characteristics are constant over time.

We implement a conservative investigation of option mispricing by focusing on short-

term at-the-money options contingent on individual stocks. Those options are the most

liquid and hence are less mispriced. If there exists any mispricing in these options, it

is likely to be even more serious in less liquid segments of the options market. Using

both volatility surface data and single equity options data provided by OptionMetrics,

we construct a large cross-section of short-maturity at-the-money call and put options for

the period ranging from March 1996 to December 2021. Option returns in our sample are

delta-hedged, removing the part that can be explained by local variation of the underlying

stock price. We further construct a large panel of firm and option characteristics (in total,

113 characteristics), on which option betas and alphas may potentially depend.

There is a tradeoff when we choose the size of the rolling window in the extended

PPCA. A larger window size could give us more observations to estimate the functions

of factor loadings and mispricing, whereas a smaller window size makes our assumption

of stable characteristics in the window more acceptable. Hence, in the paper, we try
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different window sizes ranging from 12 to 24 months. Within each window, we use

all option returns observations and the initial observations of characteristics to obtain

functional structure of mispricing and then estimate alphas of individual option returns

using the end-of-window characteristics. Based on those alpha estimates, we construct

an alpha portfolio whose weights are proportional to individual option alphas that purely

relate to characteristics and hold this portfolio for one month and compute its realized

returns. We repeat this procedure over time to the end of sample. For a window size

of 12 months, we find that for the number of the latent factors ranging from 1 to 10,

the annualized Sharpe ratio of the call alpha portfolio ranges from 1.17 to 1.62, and the

Sharpe ratio of the put alpha portfolio ranges from 1.28 to 1.86. Note that the exact

number of the latent factors is unknown and needs to be estimated. Using the projected-

PC eigenvalue ratio test of Fan, Liao, and Wang (2016), we find that the number of

the latent factors varies from 1 to 3 over time. The smaller number of factors may be

insufficient to capture all systematic risks; however, Kim, Korajczyk, and Neuhierl (2021)

show that a slight increase of the number of extracted factors does not harm the model

performance materially. Therefore, we select the number of the latent factors equal to 3

in most of our analyses. In fact, the Sharpe ratios of both call and put alpha portfolios

reach the highest values of 1.62 and 1.86, respectively, when the number of the latent

factors is set to 3.

We then ask whether the commonly used risk factors in the stock and options mar-

kets can explain the abnormal returns of option alpha portfolios. We consider multiple

stock market factors, namely, the Fama-French five factors (Fama and French, 1992, 1996,

2015), the momentum factor (Carhart, 1997), the q five factors (Hou et al., 2021), and the

mispricing four factors (Stambaugh and Yuan, 2017), and various options market factors,

namely, the Karakaya three factors (Karakaya, 2013), the liquidity factor (Christoffersen,

Goyenko, Jacobs, and Karoui, 2018), and the idiosyncratic volatility factor (Cao and Han,

2013); we also construct several latent factors from option returns using principal compo-

nent analysis (PCA) and risk-premium PCA (RP-PCA) of Lettau and Pelger (2020). We

find that none of those factor models can explain the abnormal returns of option alpha
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portfolios. The smallest risk-adjusted return is from the mispricing four-factor models,

which is 1.89% (t = 6.93) for the call alpha portfolio and 2.34% (t = 7.30) for the put

alpha portfolios. The risk-adjusted return from a factor model that includes all five op-

tions market factors is about 2.92% (t = 3.95) for the call alpha portfolio and it is about

3.03% (t = 4.04) for the put alpha portfolio.

The contributions of characteristics to systematic risk and mispricing vary substan-

tially over time, in support of our argument that temporal dependence structures of

systematic risk and mispricing on characteristics are time-varying. Furthermore, most

characteristics are only related to mispricing for a very short while, reflecting that such

mispricing may disappear very quickly after its discovery. We find that characteristics re-

lated to risk-neutral moments of the underlying stock and liquidity play more important

roles in capturing both mispricing and systematic risk. Characteristics that significantly

contribute to systematic risk also contribute to mispricing at times. According to the

broad classification of Chen and Zimmermann (2022) and Bali, Beckmeyer, Moerke, and

Weigert (2022), we find that most of the top 20 characteristics contributing to systematic

risk and mispricing are in the groups of liquidity and risk. Bali, Beckmeyer, Moerke,

and Weigert (2022) also find importance of liquidity- and risk-lated characteristics in

predicting the cross-section of option returns.

Introducing nonlinearity captured by interaction terms of characteristics slightly im-

proves the performance of alpha portfolios. We find that in comparison with the linear

case, with the 12-month window size and three latent factors, the annualized Sharpe ratio

of the call alpha portfolio increases from 1.62 to 1.69, and the Sharpe ratio of the put al-

pha portfolio increases from 1.86 to 1.88. We further find that when the interaction terms

are introduced, the contributions of many characteristics become negligible and most of

the top 20 characteristics contributing to systematic risk and mispricing are those related

to interactions of characteristics. However, consistently with the previous finding, the

liquidity- and risk-related characteristics still play the most important roles.

We implement various robustness checks. Our results remain when using different

estimation window sizes and using the post-2004 sample. Furthermore, while our analysis
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in the main text is based on the volatility surface option data, we find that our results

are robust to using the single equity options data.

Our paper relates and contributes to several strands of literature. First, it closely

relates to the literature that searches for the factor structure in options returns. As

mentioned above, Buchner and Kelly (2022) and Goyal and Saretto (2022) apply the

IPCA method to searching for the factor structures of the S&P index option returns and

individual equity option returns, respectively. Both find that the mispricing in option

returns is relatively small. However, our paper differs in important aspects. First, we

allow for time-varying dependence structures of both systematic risk and mispricing on

characteristics, whereas in the IPCA procedure, the relations between characteristics and

systematic risk/mispricing are constant over time. Time-varying dependence structure

can better help us identify mispricing, given that a particular mispricing is usually short-

lived. Second, we consider a large panel of 113 characteristics that have been shown to

predict stock returns (Neuhierl, Tang, Varneskov, and Zhou, 2021) and/or to predict op-

tion returns (Bali, Beckmeyer, Moerke, and Weigert, 2022), whereas Buchner and Kelly

(2022) employ only 7 option-related variables and Goyal and Saretto (2022) use 44 char-

acteristics. Indeed, using a large set of characteristics is important in spanning expected

returns and covariance and revealing the underlying risk-return relationship. Given such

differences, our paper reveals economically substantial mispricing in the options market.

Early studies on the factor structure in option returns include Coval and Shumway

(2001) and Jones (2006). Karakaya (2013) focuses on individual equity options and pro-

poses three factors of level, maturity, and value. Christoffersen, Fournier, and Jacobs

(2018) find a strong factor structure in individual equity options using the principal com-

ponent analysis approach and show the first principal components of the equity volatility

levels, skews, and term structures explain a substantial fraction of the cross-sectional

variation. Working with option portfolios constructed from a certain number of firm

characteristics, Horenstein, Vasquez, and Xiao (2020) find that a four-factor model can

explain the cross-section and time-series of equity option returns.

Our paper also contributes to the literature on cross-sectional option return pre-
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dictability. A number of papers investigate whether those firm characteristics that fore-

cast stock returns can also predict option returns (see, e.g., Bakshi and Kappadia, 2003;

Goyal and Saretto, 2009; Cao and Han, 2013; Hu and Jacobs, 2020; Vasquez, 2017;

Christoffersen, Goyenko, Jacobs, and Karoui, 2018; Zhan, Han, Cao, and Tong, 2022).

Using a large panel of firm and option characteristics, two recent studies of Brooks,

Chance, and Shafaati (2018) and Bali, Beckmeyer, Moerke, and Weigert (2022) apply

machine learning methods to investigate option return predictability in the cross-section

of individual equity options. However, these papers do not clearly answer the question on

the sources of option return predictability: whether predictability is from characteristics

predicting alpha or predicting beta. Our paper quantifies how much of expected excess

option return is from mispricing.

Another contribution of our paper is to clearly show importance of risk- and liquidity-

related characteristics in predicting option returns. Those studies that use only a limited

number of characteristics may suffer from the issue of omitted variables. Further, the

assumption of constant temporal dependence of alpha and beta can not capture the

structural changes of the data generating process, and therefore cannot capture time-

series variation of contributions of characteristics. Instead, we build up the latent factor

model by using information contained in a wide range of firm and option characteris-

tics and estimate both cross-sectional and the temporal relations between characteristics

and systematic risk and mispricing. We find that characteristics related to risk-neutral

moments and stock and option liquidity and their interactions are more closely associ-

ated with options mispricing and factor loadings. Bali, Beckmeyer, Moerke, and Weigert

(2022) apply machine learning approaches to option return predictability and find that

the top three relevant groups of characteristics are those of option contractual features,

liquidity, and risk.

The paper proceeds as follows. Section 2 presents the model and estimation method

based on the PPCA method. Section 3 introduces the data on options and firm char-

acteristics. Section 4 presents our main empirical results based on the volatility surface

options data. Section 5 provides several robustness checks. Section 6 concludes the paper.
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Extra results are presented in the Internet Appendix.

2. Model and Estimation

2.1. Delta-Hedged Option Returns

We focus on individual stock option returns that are delta-hedged. Given that the un-

derlying stock price variation is a key factor that affects option returns, delta-hedging

results in the fraction of option returns that is not explained by local-linear exposure

to fluctuations of the underlying stock price. Following the literature (e.g., Bakshi and

Kappadia, 2003; Cao and Han, 2013), we first calculate the delta-hedged option gain that

is a daily-rebalanced zero-investment portfolio consisting of a long option (call or put)

position, hedged by a short position in the underlying stock.

Let t = t0 < · · · < tN = t+ τ represent all trading days between time t and t+ τ , and

in this paper, we choose τ equal to one month. The daily delta-hedged option gain over

the one-month investment period is given by

Π(t, t+ τ) = (Vt+τ − Vt)−
N−1∑
n=0

∆tn

(
Stn+1 − Stn

)
−

N−1∑
n=0

anrn
365

(Vtn −∆tnStn) , (1)

where Vt represents the option price at time t, St is the stock price at time t, ∆t is the

Black-Scholes delta of the option at time t, an is the number of calendar days between

two successive trading dates, and rt is the annualized risk-free interest rate.

As we see from Equation (1), the delta-hedged option gain can be separated into three

components: the first term, Vt+τ − Vt, is the difference between the end-of-period and

initial option prices; the second term,
∑N−1

n=0 ∆tn

(
Stn+1 − Stn

)
, is the amount invested

in the underlying stock for hedging the first-order stock price movement; and the last

term,
∑N−1

n=0
anrn
365

(Vtn −∆tnStn), is the difference between the option and stock positions

that investors can borrow from or lend to the market. To make the delta-hedged option

gain comparable across options, similar to Cao and Han (2013), we scale the dollar delta-
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hedged option gain by the absolute position in the options and underlying stock:1

rt,t+τ =
Π(t, t+ τ)

|∆tSt − Vt|
. (2)

2.2. The Model

The literature on option pricing primarily employs parametric no-arbitrage models to

investigate risk factors that affect option prices. However, such an approach needs a full

specification of dynamics of the underlying stock price. Israelov and Kelly (2017) show

that such parametric no-arbitrage models are unable to explain a large part of empirically

observed variation in option returns.

In this paper, we rely on the factor pricing approach to investigate the risk-return

relationship in the options market. We assume that the stochastic discount factor (SDF),

mt+1, is a linear function of some return-based risk factors, ft+1,

mt+1 = 1− b′t
(
ft+1 − µf,t

)
, (3)

where bt is a vector of (time-varying) SDF loadings and µf,t is expected values of factors.

The condition of no-arbitrage ensures existence of a positive SDF such that

Et[mt+1ri,t+1] = 0 ⇒ ri,t+1 = αi,t + β′
i,tft+1 + ϵi,t+1, (4)

where the factor loadings, βi,t ≡ covt(ri,t+1, ft+1)vart(ft+1)
−1, αi,t captures any mispricing

in option returns, and the factor risk premium is given by λt = Et[Ft+1]. Correct specifi-

cation of the model results in zero mispricing and the expected option returns should be

determined by Et[ri,t+1] = βi,tλt.

It may be desirable to use some pre-specified observable factors. However, this is

difficult for the options market as there do not exist well-established observable factors.

Therefore, we rely on a factor model that treats the pricing factors as latent. The arbitrage

1In a recent study, Buchner and Kelly (2022) scale the dollar delta-hedged option gain by the under-
lying stock price.
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pricing theory of Ross (1976) (also see, Huberman, 1982; Chamberlain and Rothschild,

1983; Ingersoll, 1984) guarantees the existence of a factor model and bounded pricing

errors. Under some mild conditions, the model can be written in matrix form as

R = α1′
T +BF′ + E, (5)

where R is a N ×T matrix containing N option returns for a time period t = 1, . . . , T , F

is a T ×K matrix of latent factors summarizing the systematic risk in the option market,

α is a N × 1 vector capturing the pricing errors, B is a N × K factor loading matrix,

and E is a N × T matrix containing the error term for each return at each time.

The option contractual structure with finite maturity and different moneyness suggests

that both alpha and beta in Equation (5) should depend on option characteristics, and

more importantly, the dependence structure of alpha and beta on characteristics should

also be changing over time due to, for example, structural changes of the market, and

different types of alpha appearing and disappearing quickly at different times. Therefore,

we assume that α and B are functions of firm and option characteristics, and for a short

time period, those characteristics are relatively stable. Let X be a N × L matrix of

characteristics and assume that both α and B are affine functions of X as follows,

α = Xθ + Γα, B = Xβ + Γβ, (6)

where θ is a L × 1 vector, β is a L × K matrix of constant, and the N × 1 vector Γα

and the N × K matrix Γβ are orthogonal to X, absorbing the parts of α and B that

are not related to characteristics. It becomes clear from the above setup that the option

return predictability is either due to characteristics predicting alpha (mispricing) or due

to characteristics predicting beta (systematic risk). By further exploring θ and β, we can

learn contributions of characteristics to α and B and deepen our understanding of exact

sources of option return predictability. Combining Equations (5) and (6), we rewrite the

factor model as

R = (Xθ + Γα)1
′
T + (Xβ + Γβ)F

′ + E. (7)
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2.3. Estimation

Our aim is not only to introduce time-varying alpha and beta, but also to make the

dependence of alpha and beta on characteristics changing over time. These two features

are important for investigating the risk-return relationship in the option market. For

this purpose, we rely on the projected principal component (PPCA) approach originally

proposed by Fan, Liao, and Wang (2016) to estimate the model. The PPCA estimator

of the factor loading function converges to the true one as the dimension (N) of the

cross section increases, even for small time-series samples (T ). This property allows us

for estimating the model using a short rolling window over time and hence introducing

time-varying dependence structure. While the original approach of Fan, Liao, and Wang

(2016) explicitly imposes zero restriction on alpha, a recent study by Kim, Korajczyk,

and Neuhierl (2021) extend this approach to estimate not only the latent factors and

their loadings, but also the mispricing function that relates alpha to characteristics.

We assume that characteristics are relatively stable over a short-time interval and es-

timate the model following the rolling procedure of Kim, Korajczyk, and Neuhierl (2021),

which actually treats the model of Equation (7) as a locally unconditional approxima-

tion to a conditional model. Within each estimation window, the dependence of α and

B on characteristics are constant; however, the rolling estimation of the model enables

us to study both the cross-sectional and the temporal relations of characteristics with

systematic risk and mispricing.

Under some standard regularities of factor models (see, Fan, Liao, and Wang, 2016;

Kim, Korajczyk, and Neuhierl, 2021), within each time window, the estimation with the

extended PPCA is implemented in the following four steps. First, we demean option

returns to remove alpha and then project the demeaned time-series option returns on

characteristics to obtain the demeaned projected option returns that only depend on

factor loadings (Xβ) and demeaned latent factors. Second, we apply the standard PCA to

the demeaned projected option returns to obtain estimates of factor loadings and factors.

Up to here, the procedure gives characteristics maximal explanatory power to systematic

risk. Third, we estimate the mispricing function (Xθ) by regressing average returns of
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individual options on characteristics orthogonal to the estimated factor loading (Xβ̂),

which is equivalent to project residuals of average option returns to risk premia (Xβ̂F̄)

onto characteristics. Finally, we use the estimated mispricing function to construct an

alpha portfolio,

ŵ =
1

N
Xθ̂. (8)

To be specific, for the time window, t = 0, 1, . . . , T (e.g., T = 12 months), we use

the option returns from t = 1, . . . , T and characteristics at time 0, X0, to obtain θ̂. The

alpha portfolio weights are then computed using the updated characteristics at time T ,

XT , as ŵT = 1
NT

XT θ̂, which are used to compute the alpha portfolio return at T + 1,

Ra
p,T+1 = ŵ′

TRT+1. The characteristicsX are standardized to have zero means, suggesting

that the portfolio weights ŵT sum to zero and the portfolio is a zero-cost investment.

This procedure is repeated recursively at each month up to the end of sample. The

portfolio constructed in this way is an alpha portfolio without exposure to systematic

risk based on pure alpha that is related to characteristics,2 is completely out-of-sample,

and hence can be regarded as a realization of mispricing in the option market.

3. Data and Summary Statistics

3.1. Option Data

Our option data are obtained from OptionMetrics IvyDB, a primary database for research

on options. This dataset includes options on individual equities, indexes, and exchange-

traded funds. In the paper, we focus on options on individual common equities listed on

NYSE, NYSE American (formerly AMEX), and NASDAQ for the period of March 1996 to

December 2021. The information provided by OptionMetrics includes option maturities,

strikes, implied volatilities, and sensitivity measures (Greeks), as well as information on

underlying stocks. We use both volatility surface data and single equity options data and

mainly focus on short-maturity at-the-money options given that those options are the

2There exists the other source of mispricing that is unrelated to characteristics due to the constant
term Γα.
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most liquid and hence should suffer less from mispricing.

Volatility Surface Data. We download the volatility surface file, which contains the

interpolated implied volatility on standardized options with respect to fixed deltas and

maturities for each security on each day. The implied volatility is computed using bino-

mial trees that take into account the early exercise of individual stock options and the

dividends expected to be paid over the life of the options. Volatility surface options can

be regarded as portfolios composed of single equity options used in interpolation, and we

believe that those data should contain the same but clean information as single equity

options. The interpolation leaves us fewer missing values, and we can build our empirical

analyses on a larger sample. We select at-the-money options (delta equal to 0.5 for calls

and -0.5 for puts) with time-to-maturity of 30 days, and we then construct one-month

delta-hedged option returns at the end of each month.

Single Equity Options Data. We also extract single equity options from the option

price file. Following the literature (see, e.g., Goyal and Saretto, 2009; Cao and Han,

2013; Zhan, Han, Cao, and Tong, 2022; Bali, Beckmeyer, Moerke, and Weigert, 2022), we

apply several filters to the data. First, we remove those options whose implied volatility

and Greeks are unavailable. Second, we eliminate those options whose underlying stocks

pay dividends during the one-month investment period. Third, we drop options with

zero trading volume over the last seven calendar days to ensure the options are liquid

enough. Fourth, to avoid the microstructure noise, we delete the options whose best bid

price is zero, the best offer price is not strictly larger than the best bid price, the option

price is smaller than $0.125, or the relative bid-ask spread is larger than 50%. Fifth, we

drop those options that violate the American option bounds and the convexity condition

(Bollerslev, Todorov, and Xu, 2015). Finally, from those options that survive, we select

one call and one put whose moneyness are closest to one and that have the shortest

maturity but longer than one month at the end of each month for each underlying stock.

Summary Statistics. To show the distribution of option returns, we pool all obser-

vations of the option-date pairs and present the summary statistics in Table 1. Panel

A presents the summary statistics of option returns constructed from the volatility sur-

13



face data, and Panel B and C reports summary statistics of call and put option returns,

respectively, constructed from the single equity options. In general, the sample sizes of

option returns from the volatility surface data are much larger than those from the single

equity options data. Based on the volatility surface data, there are 293,459 observations

of call returns and 297,275 observations of put returns, whereas based on single equity

options data, there are only 90,356 observations of call returns and 68,045 observations

of put returns.

When we use the volatility surface data, we see from Panel A that the monthly mean

return of delta-hedged call options is negative, -1.07%, with a relatively high standard

deviation of 16.68%, and the monthly mean return of delta-hedged put options is positive,

0.61%, also with a large standard deviation of 15.50%. However, from Panels B and C, we

see that when we use single equity options data, the monthly mean returns of both call

and put option returns are negative, -0.19% and -0.30%, respectively, and their standard

deviations become smaller, 5.02% and 4.24%, respectively.

While for the volatility surface data, the maturity and delta of call and put options

are fixed at 30 days and 0.5 (absolute value), respectively, the mean maturity of both call

and put options in the single equity options data is slightly longer, about 49 days, with

a standard deviation of about 2, and their mean moneyness is about 1, with a very small

standard deviation of 0.03. We also present liquidity and size of the underlying stocks

in the last two rows of each panel, we see that the mean Amihud illiquidity ratio in the

volatility surface data (Panel A) is much larger than those in the single equity options

data (Panels B and C), suggesting that the underlying stocks in the single equity options

data are on average more liquid, and that the average size of the underlying stocks in the

single equity options data (Panels B and C) is larger than that in the volatility surface

data.

3.2. Characteristics

The characteristics used in the paper contain both firm- and option-specific variables. Our

firm characteristics are mainly from Chen and Zimmermann (2022) who construct over
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200 variables documented in the literature that have predictive power in the cross-section

of stock returns.3 Several studies have shown that a number of firm characteristics that

can predict stock returns can also forecast option returns (see, e.g., Cao and Han, 2013;

Hu and Jacobs, 2020; Karakaya, 2013; Vasquez, 2017; Zhan, Han, Cao, and Tong, 2022).

We only choose those variables that have continuous values with missing values less than

15%, and we also drop several characteristics that are very highly correlated with other

variables. As a result, we choose 79 firm characteristics from Chen and Zimmermann

(2022) database.

Furthermore, the literature has found that a number of option-related variables have

predictive power for stock returns and/or option returns (see recent studies by Neuhierl,

Tang, Varneskov, and Zhou (2021) for stock returns and Bali, Beckmeyer, Moerke, and

Weigert (2022) for option returns). We therefore construct a total of 31 option-related

characteristics following this strand of literature. Given their relevance to option returns,

size, stock price and stock return are also included in our study. The complete list of

firm and options characteristics and the corresponding references are presented in Table

A1 in the Internet Appendix. In total, there are 113 characteristics to be considered in

our empirical analysis.

We cross-sectionally rank and standardize all characteristics at each month such that

they are in the range of [−0.5, 0.5]. The missing values are then imputed to be 0. One

advantage of using the cross-sectional ranks of characteristics is that the impact of po-

tential data errors and outliers in individual characteristics can be largely alleviated (see,

e.g., Kelly, Pruitt, and Su, 2019; Freyberger, Neuhierl, and Weber, 2020; Kozak, Nagel,

and Santosh, 2020).

4. Empirical Results

In this section, we present our main empirical results based on the volatility surface

data. To save space, we move results based on single equity options data to the Internet

Appendix. Subsection 4.1 presents the overall performance of option alpha portfolios;

3Those data are publicly available at Andrew Y. Chen’s website, www.openassetpricing.com.
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Subsection 4.2 discusses whether the commonly used factors in the stock market and in the

options market can explain abnormal returns of option alpha portfolios; and Subsection

4.3 examines contributions of characteristics to systematic risk and mispricing in the

options market.

4.1. Performance of Option Alpha Portfolios

Following the extended PPCA procedure presented in Section 2, we construct option

alpha portfolios with different numbers of latent factors and examine how the number

of latent factors (K) affect performance of option alpha portfolios. We implement the

extended PPCA using a rolling window approach with the window size of 12 months to

construct alpha portfolios, for which individual option’s weights are proportional to the

corresponding estimated alphas as in Equation (8). To make the results comparable with

common equity and option factors, we normalize the in-sample annualized standard devi-

ation of alpha portfolios to 20%. Panels A and B of Table 2 summarizes the performance

results of call and put alpha portfolios, respectively.

From Panel A, we see that the annualized Sharpe ratios of call alpha portfolios are

relatively high, ranging from 1.17 to 1.62. The Sharpe ratio is about 1.52 when we choose

only one latent factor; it then slightly increases to 1.62 when the number of factors is

chosen to be 3; thereafter, the Sharpe ratio is steeply declining to 1.17 when the number

of factors reaches 10. We also notice that the increase of Sharpe ratio from K = 1 to

K = 3 is due to an increase of the alpha portfolio mean, and that the out-of-sample

standard deviation is smaller than the in-sample standard deviation, which is normalized

to 20%, when the mean or Sharpe ratio of the alpha portfolio reaches the highest level.

The call alpha portfolio returns are in general right-skewed and leptokurtic.

Panel B on put alpha portfolios reveals quite similar implications. The annualized

Sharpe ratios are also high, ranging from 1.28 when K = 10 to 1.86 when K = 3. Similar

to call alpha portfolios, when the number of latent factors is larger than 3, the Sharpe

ratio decreases. The put alpha portfolio returns with the maximal Sharpe ratio are also

right-skewed and leptokurtic
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The basic message delivered from Table 2 is that the Sharpe ratios of both call and put

option alpha portfolios are relatively high no matter which number of latent factors we

choose. What do high Sharpe ratios of call and put alpha portfolios imply? They suggest

that mispricing may be prevailing in the options market. As we show, we build alpha

portfolios based on estimated individual option alphas related to characteristics by firstly

giving them maximal explanatory power for systematic risk premia. The exposures of

alpha portfolios to systematic risks should approach zero when the number of individual

options increase. Therefore, we regard high Sharpe ratios of option alpha portfolios as

a realization of mispricing in the options market. We see that in general, Sharpe ratios

of put alpha portfolios are higher than those of call alpha portfolios, suggesting that

mispricing in put options may be more severe than in call options.

The number of true factors is unknown and needs to be estimated. As shown in Kim,

Korajczyk, and Neuhierl (2021), if the number of extracted factors is smaller than the

number of true factors, the extended PPCA can not guarantee orthogonality between

alpha portfolio weights and factor loadings, and furthermore, too many factors may lead

to inaccurate model estimates and harm the performance of alpha portfolios. There-

fore, for precisely determining the number of latent factors, we follow the projected-PC

eigenvalue-ratio method of Fan, Liao, and Wang (2016) to estimate the number of latent

factors by maximizing the ratio of adjacent eigenvalues of the demeaned projected option

returns (also see, Ahn and Horenstein, 2013; Lam and Yao, 2012). The basic idea of

this method is that the K largest eigenvalues of sample covariance grow with respect

to sample size, whereas the rest remains bounded or grows very slowly. We apply this

projected-PC eigenvalue-ratio test in each rolling window in both call and put option

samples and find that the optimal number of latent factors in both samples ranges from

1 to 3. The smaller number of factors may be insufficient to capture all systematic risks

and is unable to ensure estimated options alphas not exposed to systematic risks. Jones

(2006) argues that for explaining S&P 500 index option returns, the best-performing

model should have 2-3 factors, and that more complex models are very unstable out of

sample. Moreover, Kim, Korajczyk, and Neuhierl (2021) show that a slight increase of
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the number of extracted factors does not harm the model performance materially. We

therefore select the number of factors equal to 3 in most of our analyses. We have already

seen that at K = 3, the Sharpe ratios of both call and put alpha portfolios reach the

highest values, 1.62 and 1.86, respectively.

The last two columns of Table 2 present the minimum and maximum returns of alpha

portfolios, moderate values of which reveal that high Sharpe ratios of alpha portfolios are

not driven by extreme values. We further check if the performance of alpha portfolios

could be attributed to any small subsamples of options. We presents the distributions of

individual option weights in call and put alpha portfolios for K = 3 at each month in

the upper and lower panels of Figure 1, respectively. We see that for both call and put

alpha portfolios, the ranges of weights of individual options change over time and they

are always within narrow bounds, suggesting that any individual options can not have

dominant impact on the performance of both call and put alpha portfolios. Therefore,

we can conclude that high Sharpe ratios of both call and put alpha portfolios originate

most likely from economically substantial mispricing in the options market.

We further explore how the performance of alpha portfolios evolves over time. Figure

2 shows the natural logarithm of cumulative returns of call and put alpha portfolios with

K = 1 and 3, their corresponding market portfolios, and the stock market portfolio in the

upper and lower panels, respectively. The market portfolio of call (put) options is simply

the equal-weighted average of all call (put) option returns using all data in the volatility

surface file. To ensure the returns of different portfolios are comparable, we normalize the

alpha portfolios to have the same standard deviations as the stock market portfolios. We

see that the cumulative returns of both call and put alpha portfolios increase dramatically

over time, whereas the cumulative returns of the call market portfolio are decreasing over

time and the cumulative returns of the put market portfolio hardly display any increasing

or decreasing tendency. The cumulative returns of the stock market portfolio slightly

increase over time. The price paths of alpha portfolios with K = 1 and 3 look very

similar. We further notice that the increase of cumulative returns of both call and put

alpha portfolios is much faster in the beginning period of the sample, suggesting that
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mispricing is even more serious in this period. As a robustness check in Section 5, we

reconstruct alpha portfolios using the post-2004 sample and still find considerable Sharpe

ratios for both call and put alpha portfolios.

4.2. Option Alpha Portfolios and Risk Factors

Our alpha portfolios are constructed based on estimates of alphas that are related to

characteristics and are orthogonal to systematic risk in the options market. In this part,

we further examine whether the commonly used risk factors in the stock and options

markets can explain abnormal returns of both call and put alpha portfolios.

Option Market Factors. Different from the stock market, there do not exist well-

established observable risk factors in the options market, and studies examining the

factor structure on option returns are relatively sparse. Following the literature, we rely

on the three factors of Karakaya (2013), the liquidity factor (see, e.g., Christoffersen,

Goyenko, Jacobs, and Karoui, 2018), and the idiosyncratic risk factor (see, e.g., Cao

and Han, 2013). Karakaya (2013) proposes three factors, namely, level, maturity, and

value, to explain variations in the cross-section of individual option returns. The options

used in Karakaya (2013) have various moneyness and maturities, whereas in our paper,

we mainly focus on short-maturity at-the-money options that are the most liquid and

are less mispriced. To give those three factors maximal explanatory power, we modify

them slightly by using at-the-money options only. Similar to Karakaya (2013), we define

the level factor as the equal-weighted average excess returns of at-the-money options;

we define the maturity factor as the equal-weighted average of return difference between

6-month and 1-month at-the-money options; and the value factor is defined as the high-

minus-low returns of decile portfolios sorted on the value, defined as the difference between

average implied volatility of at-the-money call and put options and realized volatility of

the underlying stock (Goyal and Saretto, 2009).

Cao and Han (2013) find that delta-hedged option returns decreases monotonically

with an increase in the underlying idiosyncratic volatility. Another study by Christof-

fersen, Goyenko, Jacobs, and Karoui (2018) find that there exist significant illiquidity
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premia in the equity options market. A recent paper by Zhan, Han, Cao, and Tong

(2022) show that the option idiosyncratic volatility and illiquidity factors can explain

option return spreads constructed based on well-studied 10 firm characteristics. There-

fore, using all at-the-money call and put options in our sample, we construct these two

factors as high-minus-low spread returns of decile option portfolios based on the Amihud

illiquidity ratio and idiosyncratic volatility of the underlying stock.

Table 3 presents the regression results of the call and put alpha portfolio returns

(K = 3) on those option market factors in Panels A and B, respectively. The first

column of each panel shows that the alpha portfolios earn statistically significant average

monthly excess returns, 2.31% (t = 7.42) for the call alpha portfolio and 2.67% (t = 7.90)

for the put alpha portfolio. When we use the level factor alone, akin to the CAPM in

the options market, we find that the risk-adjusted return is about 2.25% for the call

alpha portfolio and is about 2.62% for the put alpha portfolio, both of which are highly

statistically significant (t = 6.90/7.12, respectively). However, when we use the Karakaya

three factors, the risk-adjusted return increases to 3.17% for the call alpha portfolio and

to 3.56% for the put alpha portfolio, both of which are still highly statistically significant.

We then combine the level factor and the illiquidity and idiosyncratic volatility factors

together. We still find highly statistically significant risk-adjusted returns for both call

and put alpha portfolios (2.06% and 2.41%, respectively). Finally, in the last column, we

combine all five factors together and find that the risk-adjusted return is about 2.92%

(t = 3.95) for the call alpha portfolio and is about 3.03% (t = 4.04) for the put alpha

portfolio. We also find that none of the factors is statistically significant in explaining

the call and put alpha portfolio returns.

We also check how the risk-adjusted returns change with an increase in the number of

latent factors in Figure 3. In general, when the model is more likely misspecified, i.e., the

number of latent factors is too small (e.g., only one factor) or too large (e.g., 10 factors),

the risk-adjusted returns become relatively small for both call and put alpha portfolios.

We also find that the risk-adjusted returns from the factor models that contain Karakaya

factors are larger than those that exclude them.

20



Stock Market Factors. Given its high relevance to the options market, we also try

the commonly used factors in the stock market, namely, the Fama-French five factors

(Fama and French, 1992, 1996, 2015), the Carhart momentum factor (Carhart, 1997),

the q factors (Hou, Xue, and Zhang, 2015; Hou, Mo, Xue, and Zhang, 2021), and the

mispricing factors (Stambaugh and Yuan, 2017). We run the time-series regressions of

returns of alpha portfolios based on three latent factors in PPCA on those common equity

factors and check if the superior performance of option alpha portfolios can be attributed

to risks related to the stock market. The regression results are presented in Table 4.

Panel A is for the call alpha portfolio and panel B for the put alpha portfolio.

In columns 1-6, we introduce the market factor, the Fama-French five factors, the FF5

augmented by momentum factors, the q four factors, the q five factors, and the mispricing

four factors, respectively. We see that the alpha estimates from those factor models are

very close to the average monthly excess returns of alpha portfolios and are all highly

statistically significant. Columns 2 and 3 reveal that except the stock market factor,

the four Fama-French factors and the momentum factor are statistically significant in the

regression of the call alpha portfolio returns, and except the stock market and momentum

factors, the four Fama-French factors are statistically significant in the regression of the

put alpha portfolio returns. Both call and put alpha portfolio returns are negatively

related to the value and profitability factors and are positively related to the size and

investment factors. Columns 4 and 5 show that the size factor is significant in explaining

both call and put alpha portfolios in q factors. In the last column, we find that when

using mispricing factors, the alpha estimates are the smallest for both call and put alpha

portfolios, but the magnitudes are still economically substantial, 1.89% and 2.34% in call

and put alpha portfolios, respectively. The explanatory power of mispricing factors for

the call alpha portfolio returns mainly comes from the size and performance factors, while

that for the put alpha portfolio only steps from the size factor. The above results suggest

that the commonly used risk factors in the stock market have trivial explanatory power

for abnormal returns of both call and put alpha portfolios. Figure A1 in the Internet

Appendix presents how the alpha estimates (risk-adjusted returns) resulting from the
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different stock factor models vary with respect to the number of the latent factors. We

see that the risk-adjusted returns of alpha portfolios are relatively stable with respect to

K.

Option Latent Factors. We also try the latent option factors to explain returns on

option alpha portfolios. For this purpose, we rely on the Principal Component Analy-

sis (PCA) and the Risk-Premium Principal Component Analysis (RP-PCA, Lettau and

Pelger, 2020) to extract the latent factors of call (put) option returns. Note that even

though our option alpha portfolios are constructed in real-time recursively using a small

window, we use the whole sample to extract latent factors to give them more information.

Following Lettau and Pelger (2020), we set the hyperparameter of λ in RP-PCA to 10.

Increasing λ to larger values has negligible impact on the results. Table A2 and Figure A2

in the Internet Appendix present the main results, which show that those latent factors

are also incapable of explaining abnormal returns of both call and put alpha portfolios.

4.3. Contributions of Characteristics to Mispricing and Systematic Risk

In the extended PPCA, within each estimation period, factor loadings and mispricing

are functions of characteristics observed at the beginning of the period. A natural ques-

tion is then how and which of those characteristics affect factor loadings and mispricing

over time. For this purpose, we regress the estimated factor loadings and mispricing

on characteristics in each period, and the estimated β̂ and θ̂ (see Equation (6)) capture

the relationships between characteristics and systematic risk and mispricing, respectively.

The estimated coefficients of β̂ and θ̂ are a L×K matrix and a L×1 vector, respectively.

We evaluate the contribution of characteristic l to systematic risk as
∑K

k=1 |β̂k,l| and to

mispricing as |θ̂l|. To make contributions of characteristics comparable over time, we

normalize the contributions cross-sectionally at each period such that the largest contri-

bution of a characteristic is always equal to one.

Figure 4 presents the heatmap of characteristics to systematic risk for call option

returns. The heatmap for put option returns is similar and presented in Figure A3 in

the Internet Appendix. We clearly see that the contributions of characteristics vary both
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in the cross section and in the time series. In the cross-section, we see that there are

a number of characteristics whose contributions are sizable, whereas many others have

negligible contributions. For example, those variables related to underlying equity and

option liquidity (e.g., illiquidity, VolMkt, vol/dvol) are closely related to systematic risk;

and the risk-neutral moments (e.g., 9m/12m skewness and kurtosis, upside and downside

semivariances of Huang and Li (2019)) also play important roles in factor loadings. We

also find that the characteristics with significant contributions in the heatmap for put

option returns are very similar to those for call option returns. We further notice that

the contributions of those key characteristics change over time. The time-varying contri-

butions of characteristics suggest that the temporal dependence between characteristics

and factor loadings is not constant. The constant temporal dependence is a standard

assumption usually adopted in conditional factor pricing models (including the IPCA ap-

proach of Kelly, Pruitt, and Su (2019)), and our approach based on the extended PPCA

easily enable us to capture such a time-varying relation between characteristics and risk

and mispricing.

Figure 5 presents the heatmap of characteristics to mispricing for call option returns

(see Figure A4 in the Internet Appendix for put option returns). Compared with the

heatmaps of systematic risk, we see that there are fewer characteristics that are consis-

tently related to mispricing. Many characteristics are only related to mispricing for a few

periods, reflecting that such mispricing disappears quickly. It seems that the character-

istics related to option liquidity play very important role in determining mispricing: the

variables such as vol, dvol, so, and dso periodically have sizable contributions. The mis-

pricing heatmaps further highlight the importance of time-varying dependence between

characteristics and mispricing.

The heatmaps are convenient for visually checking the cross-sectional contributions

of characteristics and the time-series variations of dependence of systematic risk and

mispricing on characteristics. We further quantify the aggregate contributions of charac-

teristics by taking the time-series average of contributions of each characteristic. Table

5 summarize the time-series average contributions of top 20 characteristics to mispricing
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and factor ladings. Panel A is for call option returns and Panel B for put option returns.

From both panels, we see that most characteristics contributing to both systematic risk

and mispricing can be roughly categorized into Liquidity and Risk, according to the clas-

sification of Bali, Beckmeyer, Moerke, and Weigert (2022) and Chen and Zimmermann

(2022). The liquidity group contains measures of liquidity of options and underlying

stocks, e.g., option trading volume (vol), trading volume of a stock scaled by its market

equity (VolMkt), the Amihud illiquidity ratio of the underlying (Illiquidity), and the zero

trading days (zerotrade) of the underlying. The underlying liquidity may also relate to

options liquidity. The risk group includes characteristics that measure riskiness of the

underlying stocks, e.g., long-term risk-neutral skewness and kurtosis (rns9m, rns12m,

rnk9m, rnk12m), the difference between implied volatility and historical volatility (ivrv),

and risk-neutral semivariance (mfvu, mfvd). Other characteristics such size and so (the

stock-option trading volume ratio) are also closely related to option/stock liquidity. We

refer readers to Table A1 in the Internet Appendix for the complete classification of all

113 characteristics. Our results in Table 5 suggest that liquidity- and risk-related char-

acteristics contribute substantially to the factor loadings and are crucial in capturing

mispricing, suggesting that option return predictability stems from the predicting power

of characteristics to both mispricing and systematic risk. It seems that there exists sys-

tematic mispricing in the options market and those options with certain risk and liquidity

features may expose higher mispricing than others.

Goyal and Saretto (2009) document option return predictability by the implied and

historical variance spread, and they interpret it as a measure of volatility mispricing;

however, Karakaya (2013) regards the implied and historical variance spread as a measure

of option value. We find that the variables of ivrv and ivrv ratio, two measures of the

implied-historical volatility spread, contribute to both mispricing and systematic risk.

Christoffersen, Goyenko, Jacobs, and Karoui (2018) find existence of significant illiquidity

premia in the options market, and Zhan, Han, Cao, and Tong (2022) employ the Amihud

illiquidity ratio of the underlying stock as a measure of the option liquidity. Our results

suggest that the illiquidity premium is related to both systematic risk and mispricing. In a
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recent study, using the machine learning approach, Bali, Beckmeyer, Moerke, and Weigert

(2022) also find that those characteristics related to liquidity and risk play important

roles in predicting future option returns. However, all the above studies are silent and

do not quantify how much option return predictability is from predicting mispricing or

systematic risk or both.

To better understand the relationships between alpha portfolios and characteristics,

we compare ranks of characteristics in the long and short legs. The long (short) leg is the

group of option returns that receive the positive (negative) weights in the alpha portfolios.

We calculate the average value of the rank-transformed characteristics in each leg at each

time. We present time-series ranks of size and characteristics related to Illiquidity and

Risk in long and short legs for call alpha portfolios in Figure A5 in the Internet Appendix.

The ranks of characteristics in the long and short legs change over time, further supporting

that the temporal dependence of mispricing on characteristics are time-varying. We find

that the call alpha portfolio generally long (short) options contingent on large-cap (small-

cap) underlying stocks; however, for some periods, e.g., during the 2008 financial crisis,

the alpha portfolio takes long positions on call options of small-cap firms. The ranks

of the Amihud Illiquidity ratio are similar to those of size except for the reverse of the

long and short legs, which suggests that the contribution of size may result from its

correlation with the illiquidity. The spreads of ranks in 9-month risk-neutral skewness,

upside and downside semivariances are relatively large, consistent with the findings in

Table 5 that the risk-neutral moments are closely related to mispricing. For put options,

the magnitudes of average ranks of characteristics in long and short legs are akin to those

in call options (see Figure A6 in the Internet Appendix), but the signs are reversed.

Given that the values of call and put options depend on the stock price movements in

the opposite direction, the same characteristics should have the opposite impact on the

call and put alpha portfolios.

To further investigate the source of performances of option alpha portfolios, we con-

struct alpha portfolios using the subsample of options based on a certain number of

characteristics. We choose 14 important risk- and liquidity-related characteristics in pre-
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dicting option alphas from Table 5. We estimate the options alphas each month using the

previous 12-month data with three latent factors, then divide all options into two groups

based on the median of each characteristic. The high (low) group contains options with

the characteristic above (below) the median. Within each group, we build alpha portfo-

lios with option weights proportional to estimated option alphas. The alpha portfolios

on high (low) groups are noted as high (low) alpha portfolios. The results are reported

in Table 6. H-L is the Sharpe ratio difference between the high and low alpha portfolios.

The annualized Sharpe ratios of alpha portfolios on option subsamples are in general

smaller than those on full samples, which may result from the decrease in the sample

size. The Sharpe ratio differences between high and low alpha portfolios are substantial.

The maximum difference for call (put) options is 0.83 (0.82).

5. Robustness Checks

In this section, we implement several robustness checks. Subsection 5.1 expands the

space of characteristics by adding interaction terms and examine how nonlinearity affects

the performance of option alpha portfolios. Subsection 5.2 checks how the performance

of option alpha portfolios changes with respect to different rolling window size used in

the extended PPCA. Subsection 5.3 investigates how option alpha portfolios perform in

the post-2004 sample. Subsection 5.4 explores whether our findings remain when we use

single equity options data.

5.1. Nonlinearity

In the above analysis, we assume that alpha and factor loadings in option returns are

linear functions of firm and option characteristics. Several recent studies have shown

that nonlinearity, in particular, interactions of characteristics, play important roles in

explaining equity excess returns (see, e.g., Freyberger, Neuhierl, and Weber, 2020; Kozak,

Nagel, and Santosh, 2020). It then raises a question whether our results remain when

we introduce interaction terms in functions of mispricing and factor loadings. For this

purpose, we expand the space of characteristics by adding interaction terms. Given that
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the number of characteristics is large, interacting all characteristics leads to voluminous

combinations. As we have already seen from the above (see Table 5) that the risk- and

liquidity-related characteristics play much more important roles than others, we decide to

interact those risk-neutral moments, namely, rns9m, rnk9m, ivrv, and mfvu, with those

liquidity-related variables, namely, vol, illiquidity. We also add size and so to liquidity-

related variables since they are highly correlated with underlying stock liquidity. Based

on these expanded characteristics, we then reestimate the mispricing function using the

same extended PPCA and construct the corresponding alpha portfolios.

The performance of the alpha portfolios is presented in Table 7. We see that when

interaction terms are introduced, Sharpe ratios of alpha portfolios are still economically

substantial. In fact, when K = 3, the Sharpe ratio is about 1.69 for the call alpha

portfolio, and it is about 1.88 for the put alpha portfolio, both of which are larger than

those values in the linear case observed in Table 2. We also notice that for the call and put

alpha portfolio, the Sharpe ratio reaches the highest level when K = 3. The increase of

Sharpe ratios mainly comes from the rise of portfolio returns. Those results may suggest

that introducing interaction terms can help estimate mispricing and systematic risk more

effectively.

The cross-sectional and temporal contributions of characteristics and their interac-

tions to factor loadings and mispricing for call option returns are presented in Figure 6

and Figure 7, respectively. For brevity, we present corresponding figures for put option

returns in the Internet Appendix (see Figure A7 and Figure A8). We see that these two

figures are quite different from those in the linear case. Now the contributions concen-

trate only on a very small number of characteristics, in particular, on interaction terms.

The feature of “on-and-off” of characteristics in the alpha heatmap becomes even more

obvious. It seems that when interaction terms are introduced, contributions of many

individual characteristics become negligible, highlighting importance of interaction terms

in predicting option returns. Table 8 presents the top 20 characteristics that contribute

to factor loadings and mispricing for call and put returns in Panels A and B, respectively.

With comparison to Table 5, we find that many interaction terms jump in and the most
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important variables are still those of liquidity- and risk-related characteristics and their

combinations. We notice that most of those characteristics belonging to the group of

Others disappear, and only so and size remain since they are closely related to liquidity.

5.2. Size of Estimation Windows

In constructing alpha portfolios, we face a tradeoff: the longer estimation window gives

us more observations to estimate systematic factors and mispricing, whereas the shorter

one makes the assumption of stable characteristics within the window more acceptable.

We check how the estimation window size affects the performance of alpha portfolios.

We consider the window size ranging from 12 months to 24 months, and the number of

latent factors is equal to 3. The performance of alpha portfolios is presented in Table

9. We see that for both call and put alpha portfolios, though the annualized standard

deviations do not change that much, the annualized mean returns decline with respect

to an increase of the window size. For call alpha portfolios, the Sharpe ratio decreases

from 1.62 for the window size of 12 months to 1.24 for the window size of 24 months,

and for put alpha portfolios, the Sharpe ratio decreases from 1.86 for the window size of

12 months to 1.32 for the window size of 24 months. The performance deterioration of

alpha portfolios for the longer window size may result from our assumption that char-

acteristics in the estimation window are constant. The longer the estimation window

is, the worse this assumption becomes. Fortunately, the PPCA approach enables us to

accurately estimate the latent factors even for a small sample size (T ). We find that

the characteristics significantly contributing to mispricing and systematic risks are very

similar across different estimation windows.

5.3. Subsamples

We have seen that the increase of cumulative returns of both call and put alpha portfolios

is much faster in the initial period of our sample. This may raise a concern that the high

Sharpe ratios we have found are driven by option observations in this period. In this

subsection, we explore the performance of alpha portfolios using the sample after 2004.
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The results are summarized in Table 10, in which we choose the number of the latent

factors equal to three. The means of post-2004 alpha portfolio returns are smaller than

those of the entire sample; however, the standard deviations of post-2004 alpha portfolios

also become smaller. Hence, the Sharpe ratios are comparable. The Sharpe ratios for call

alpha portfolios range from 1.08 for the window size of 24 months to 1.70 for the window

size of 18 months, and the Sharpe ratios for put alpha portfolios range from 1.20 for the

window size of 24 months to 1.69 for the window size of 21 months.

5.4. Using Single Equity Options Data

All the above results are based on the volatility surface options data provided by Option-

Matrics. The volatility surface options in our sample have the homogeneous moneyness

and days-to-maturity; however, in practice such options do not exist and investors have

only access to actual equity options. Therefore, we ask whether our findings remain

when we use the single equity options data. Given that we require that each firm in our

sample has successive non-missing observations in each estimation period, the option ob-

servations used to build alpha portfolios are fewer than those from the volatility surface

options data (see Table 1).

We implement the same empirical exercises as above and report all the results in

the Internet Appendix (Tables A3–A9). In short, we still find economically substantial

mispricing in single equity options. For the model with three latent factors and with

a window size of 12 months, the Sharpe ratio of the call alpha portfolio is about 1.13,

and the Sharpe ratio of the put alpha portfolio is about 1.35. The abnormal returns of

both call and put alpha portfolios can not be explained by commonly used observable

risk factors. When constructing alpha portfolios using subsamples, the Sharpe ratio

differences between risk-related characteristics subsamples are larger on average than

those between liquidity-related subsamples. The decreases in the importance of liquidity-

related characteristics are as expected since the single equity options we used are more

liquid.

We further construct the alpha portfolios only using liquid options with positive trad-
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ing volume, positive open interest, and option bid-ask spread smaller than its 75% cross-

sectional quantile (which is 0.15 for call and 0.13 for put). The results are presented in

Table A8 in the Internet Appendix. We again find economically substantial Sharpe ratios

for both call and put alpha portfolios.

6. Conclusion

Options are not redundant assets. In the options market, investors may not hold options

up to maturity and may be more interested in risk factors that drive variation of option

returns and in quantifying any mispricing if exists in the holding period. However, this

question is far less understood in the options market than in the corresponding underlying

equity market.

In this paper, relying on the latent factor pricing approach, we examine whether

options are mispriced under very general assumptions on systematic risk, and if so, how

we can quantify such mispricing. Based on the projected principal component analysis

approach of Fan, Liao, and Wang (2016) and Kim, Korajczyk, and Neuhierl (2021), our

latent factor model can take into account time-varying dependence of systematic risk

and mispricing on a large panel of firm and option characteristics. We construct option

alpha portfolios based on the estimated individual option mispricing. When we choose

the number of the latent factors equal to 3 and an estimation window with size of 12

months, the out-of-sample annualized Sharpe ratios of call and put alpha portfolios are

1.62 and 1.86, respectively, revealing economically substantial mispricing in the options

market.

Commonly used risk factors in the stock and options markets cannot explain abnormal

returns of option alpha portfolios. Our results are robust with different estimation win-

dow sizes and the post-2004 sample; the results remain when we use single equity options

instead of the volatility surface option data. Characteristics related to risk-neutral mo-

ments and liquidity and their interactions play very important roles in capturing option

mispricing; most characteristics that contribute to mispricing also contribute to system-

atic risk.

30



References

Ahn, S. and A. Horenstein (2013). Eigenvalue ratio test for the number of factors.

Econometrica 81, 1203–1227.

Bakshi, G. and N. Kappadia (2003). Delta-hedged gains and the negative market volatility

risk premium. Review of Financial Studies 16, 527–566.

Bali, T. G., H. Beckmeyer, M. Moerke, and F. Weigert (2022). Option return predictabil-

ity with machine learning and big data. Technical report, Georgetown University.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal

of Political Economy 81, 637–659.

Bollerslev, T., V. Todorov, and L. Xu (2015). Tail risk premia and return predictability.

Journal of Financial Economics 118, 113–134.

Brooks, R., D. Chance, and M. Shafaati (2018). The cross-section of individual equity

option returns. Technical report, Lousiana State University.

Buchner, M. and B. Kelly (2022). A factor model for option returns. Journal of Financial

Economics 143, 1140–1161.

Cao, J. and B. Han (2013). Cross section of option returns and idiosyncratic stock

volatility. Journal of Financial Economics 108, 231–249.

Carhart, M. (1997). On persistence in mutual fund performance. Journal of Finance 52,

57–82.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure, and mean-

variance analysis on large asset markets. Econometrica 51, 1281–1304.

Chen, A. Y. and T. Zimmermann (2022). Open source cross-sectional asset pricing.

Critical Finance Review 11, 207–264.

Christoffersen, P., M. Fournier, and K. Jacobs (2018). The factor structure in equity

options. Review of Financial Studies 31, 595–637.

Christoffersen, P., R. Goyenko, K. Jacobs, and M. Karoui (2018). Illiquidity premia in

the equity options market. Review of Financial Studies 31, 811–851.

Coval, J. and T. Shumway (2001). Expected option returns. Journal of Finance 56,

983–1009.

Fama, E. and K. French (1992). The cross-section of expected stock returns. Journal of

Finance 47, 427–465.

31



Fama, E. and K. French (1996). Multifactor explanations of asset pricing anomalies.

Journal of Finance 51, 55–84.

Fama, E. and K. French (2015). A five-factor asset pricing model. Journal of Financial

Economics 116, 1–22.

Fan, J., Y. Liao, and W. Wang (2016). Projected principal component analysis in factor

models. Annals of Statistics 44, 219–254.

Freyberger, J., A. Neuhierl, and M. Weber (2020). Dissecting characteristics nonpara-

metrically. Review of Financial Studies 33, 2326–2377.

Goyal, A. and A. Saretto (2009). Cross-section of option returns and volatility. Journal

of Financial Economics 94, 310–326.

Goyal, A. and A. Saretto (2022). Are equity option returns abnormal? ipca says no.

Technical report.

Horenstein, A., A. Vasquez, and X. Xiao (2020). Common factors in equity option returns.

Technical report, University of Miami.

Hou, K., H. Mo, C. Xue, and L. Zhang (2021). An augmented q-factor model with

expected growth. Review of Finance 25, 1–41.

Hou, K., C. Xue, and L. Zhang (2015). Digesting anomalies: An investment approach.

The Review of Financial Studies 28, 650–705.

Hu, G. and K. Jacobs (2020). Volatility and expected option returns. Journal of Financial

and Quantitative Analysis 55, 1025–1060.

Huang, T. and J. Li (2019). Option-implied variance asymmetry and the cross-section of

stock returns. Journal of Banking and Finance 101, 21–36.

Huberman, G. (1982). A simple approach to arbitrage pricing theory. Journal of Eco-

nomic Theory 28, 183–191.

Ingersoll, J. E. (1984). Some results on the theory of arbitrage pricing. Journal of

Finance 39, 1021–1039.

Israelov, R. and B. Kelly (2017). Forecasting the distribution of option returns. Technical

report, Yale University.

Jones, C. (2006). A nonlinear factor analysis of S&P 500 index option returns. Journal

of Finance 61, 2325–2363.

32



Karakaya, M. (2013). Characteristics and expected returns in individual equity options.

Technical report, University of Chicago.

Kelly, B., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model

of risk and return. Journal of Financial Economics 134, 501–534.

Kim, S., R. Korajczyk, and A. Neuhierl (2021). Arbitrage portfolios. Review of Financial

Studies 34, 2813–2856.

Kozak, S., S. Nagel, and S. Santosh (2020). Shrinking the cross-section. Journal of

Financial Economics 135, 271–292.

Lam, C. and Q. Yao (2012). Factor modeling for high-dimensional time series: Inference

for the number of factors. Annals of Statistics 40, 694–726.

Lettau, M. and M. Pelger (2020). Factors that fit the time series and cross-section of

stock returns. The Review of Financial Studies 33, 2274–2325.

Neuhierl, A., X. Tang, R. Varneskov, and G. Zhou (2021). Option characteristics as

cross-sectional predictors. Technical report, Washington University in St. Louis.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic

Theory 13, 341–360.

Stambaugh, R. F. and Y. Yuan (2017). Mispricing factors. Review of Financial Studies 30,

1270–1315.

Vasquez, A. (2017). Equity volatility term structures and the cross-section of option

returns. Journal of Financial and Quantitative Analysis 52, 2727–2754.

Zhan, X., B. Han, J. Cao, and Q. Tong (2022). Option return predictability. Review of

Financial Studies 35, 1394–1442.

33



Table 1: Summary Statistics

This table reports the distribution of delta-hedged option returns and the liquidity measures of the un-

derlying. We collect options with underlying stocks listed in NYSE, NYSE American (formerly AMEX),

or NASDAQ from OptionMetrics. The sample period is from March 1996 to December 2021. The delta-

hedged options returns are calculated as a portfolio with one option hedged by ∆ shares of underling

stocks, following Cao and Han (2013). ∆ is the options delta from the Black-Scholes-Merton model.

We hold the portfolio for one month, and delta hedges are rebalanced daily. Amihud Illiquidity is the

Amihud illiquidity ratio in Amihud (2002) of the underlying stocks, and size is the natural logarithm of

the firms’ market capitalization. Panel A reports the summary statistics of the volatility surface options.

The summary statistics of Amihud illiquidity and size are for underlying of call options. Panel B and C

displays the summary statistics of single equity call and put options. Moneyness is defined as the ratio of

strike price to spot stock price. Days-to-maturity is the days between the date of portfolio construction

and the expiration date of options. Vega is the options vega from the Black-Scholes-Merton model scaled

by the stock price. Bid-ask spread is the difference between the options bid price and ask price scaled

by the mean of bid and ask prices.

Panel A: Volatility Surface Options

Variables n mean SD p90 p75 median p25 p10

Delta-hedged call return 293459 (%) -1.07 16.68 17.46 7.94 -0.56 -9.20 -19.76

Delta-hedged put return 297275 (%) 0.61 15.50 17.61 8.11 0.17 -7.72 -16.53

Amihud Illiquidity 293459 1.48 4.05 3.40 1.06 0.29 0.08 0.03

Size 289764 6.91 1.41 8.76 7.79 6.81 5.91 5.16

Panel B: Single Equity Call Options

n mean SD p90 p75 median p25 p10

Delta-hedged call return 90356 (%) -0.19 5.02 4.32 1.23 -0.77 -2.46 -4.37

Moneyness = K/S 90356 1.00 0.03 1.05 1.02 1.00 0.98 0.96

Days-to-maturity 90356 49.32 2.04 52 51 49 48 47

Vega 90356 0.14 0.01 0.15 0.15 0.14 0.14 0.13

Bid-ask spread 90356 0.12 0.08 0.04 0.06 0.10 0.15 0.22

Amihud Illiquidity 89399 0.13 0.26 0.31 0.13 0.05 0.02 0.01

Size 90356 8.08 1.27 9.74 8.85 7.99 7.19 6.51

Panel C: Single Equity Put Options

n mean SD p90 p75 median p25 p10

Delta-hedged Put return 68045 (%) -0.30 4.24 3.56 0.95 -0.81 -2.31 -3.94

Moneyness = K/S 68045 1.00 0.03 1.04 1.02 1.00 0.98 0.95

Days-to-maturity 68045 49.30 2.03 52 51 49 48 47

Vega 68045 0.14 0.01 0.15 0.15 0.14 0.14 0.13

Bid-ask spread 68045 0.11 0.08 0.03 0.06 0.09 0.13 0.21

Amihud Illiquidity 67292 0.08 0.13 0.19 0.09 0.04 0.02 0.01

Size 68045 8.30 1.28 9.97 9.09 8.20 7.40 6.72
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Table 2: Option Alpha Portfolios

This table shows the summary statistics of the option alpha portfolios. At each month, we estimate the

mapping from options alpha to characteristics, θ, by Projected Principal Component Analysis (PPCA)

introduced in section 3, and compute the estimated alphas as the product of θ̂ and one-month ahead

characteristics. The estimation window is 12 months. The weights of individual options in the alpha

portfolios are proportional to the estimated options alpha. K ranges from one to 10, and it is the

number of latent factors used in PPCA. Mean, SD, and SR shows the annualized mean return, annualized

standard deviation, and the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt

are skewness and kurtosis. Min and Max are minimum and maximum returns of the alpha portfolios

during the sample period.

Panel A: Alpha Portfolio of Call Options

K Mean SD SR Skew Kurt Min Max

1 0.22 0.14 1.52 1.35 6.19 -0.12 0.27

2 0.23 0.18 1.31 0.35 2.31 -0.15 0.24

3 0.28 0.17 1.62 1.35 6.92 -0.14 0.34

4 0.28 0.18 1.60 0.84 5.17 -0.2 0.31

5 0.28 0.18 1.52 0.71 4.70 -0.17 0.31

6 0.27 0.19 1.41 0.77 5.40 -0.19 0.35

7 0.25 0.19 1.31 0.68 3.92 -0.19 0.31

8 0.26 0.21 1.27 0.64 3.40 -0.19 0.31

9 0.26 0.21 1.24 0.64 4.20 -0.18 0.32

10 0.24 0.20 1.17 0.51 4.34 -0.19 0.33

Panel B: Alpha Portfolio of Put Options

K Mean SD SR Skew Kurt Min Max

1 0.27 0.15 1.80 2.10 11.14 -0.11 0.33

2 0.28 0.18 1.57 0.86 3.72 -0.17 0.25

3 0.32 0.17 1.86 1.11 4.73 -0.17 0.26

4 0.31 0.18 1.72 1.01 3.84 -0.14 0.25

5 0.29 0.17 1.68 0.63 2.55 -0.12 0.24

6 0.30 0.18 1.68 0.70 2.70 -0.12 0.26

7 0.29 0.18 1.58 0.83 2.89 -0.14 0.25

8 0.30 0.19 1.62 0.89 2.65 -0.13 0.25

9 0.29 0.19 1.59 0.86 2.68 -0.12 0.25

10 0.26 0.20 1.28 0.77 3.27 -0.14 0.29
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Table 3: Explanatory Power of Options Risk Factors

This table reveals the explanatory power of option risk factors on the option alpha portfolios returns.

We regress the monthly returns of the option alpha portfolios on the common risk factors in the options

market and report the alpha (in percentage) and factor loadings. Level is the equal-weighted average

excess returns of at-the-money options. Karakaya contains level, maturity and value factors. Maturity

factor is the equal-weighted average return difference between six-month and one-month at-the-money

options. Value factor is the high-minus-low returns of decile portfolios sorted on the value, the difference

between average implied volatility of at-the-money call and put options and realized volatility of the

underlying stock. Newey-West (1987) adjusted t-statistics are reported in the parathesis. ***/**/*

indicate the significant at 1%, 5% and 10% confidence level, respectively.

Panel A: Call Option Alpha Portfolio

Level + Illiq. Karakaya+

Excess ret. Level Karakaya + IdioRisk Illiq. + IdioRisk

Alpha 2.31*** 2.25*** 3.17*** 2.05*** 2.92***

(7.42) (6.90) (4.44) (6.67) (3.95)

Level -0.23 -0.09 0.13 0.19

(-0.85) (-0.35) (0.42) (0.68)

Maturity -0.26 -0.23

(-0.58) (-0.51)

Value -0.50* -0.46

(-1.67) (-1.48)

Illiquidity 0.22 0.04

(0.50) (0.09)

IdioRisk 0.81* 0.70

(1.65) (1.39)

Adj. R2 0.00 -0.00 0.01 0.01 0.01

Num. obs. 298 298 298 298 298

Panel B: Put Option Alpha Portfolio

Level + Illiq. Karakaya+

Excess ret. Level Karakaya + IdioRisk Illiq. + IdioRisk

Alpha 2.67*** 2.62*** 3.56*** 2.41*** 3.03***

(7.90) (7.12) (4.67) (6.93) (4.04)

Level -0.17 -0.18 0.31 0.25

(-0.47) (-0.59) (0.80) (0.75)

Maturity 0.15 0.09

(0.35) (0.21)

Value -0.51* -0.33

(-1.65) (-1.12)

Illiquidity 0.69 0.53

(1.58) (1.17)

IdioRisk 0.95* 0.87*

(1.94) (1.73)

Adj. R2 0.00 -0.00 0.01 0.02 0.02

Num. obs. 298 298 298 298 298
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Table 4: Explanatory Power of Equity Risk Factors

This table reveals the explanatory power of equity risk factors on the option alpha portfolios returns.

We regress the monthly returns of the option alpha portfolios on the common risk factors in the stock

market and report the alpha (in percentage) and factor loadings. Market is the stock market factor.

FF3 is the market, size, and value factors in Fama and French (1993). UMD is the momentum factor in

Carhart (1997). FF5 is the market, size, value, investment, and profitability factors in Fama and French

(2015). Q4 contains the market, size, investment and profitability factors proposed by Hou, Xue and

Zhang (2015). Q5 is the Q4 plus the expected investment growth factors in Hou, Mo, Xue and Zhang

(2021). MF4 consists of market, size, management and performance factors in Stambsugh and Yuan

(2017). Newey-West (1987) adjusted t-statistics are reported in the parathesis. ***/**/* indicate the

significant at 1%, 5% and 10% confidence level, respectively.

Panel A: Call Option Alpha Portfolio

Market FF5 FF5+umd Q4 Q5 MF4

alpha 2.31*** 2.28*** 2.33*** 2.41*** 2.24*** 1.89***

(7.59) (8.13) (7.98) (7.57) (8.01) (6.93)

mktrf 0.04 -0.06 0.00 -0.14 -0.10 0.11

(0.53) (-0.83) (0.02) (-1.56) (-1.15) (1.32)

smb 0.36*** 0.33***

(3.09) (3.00)

hml -0.48*** -0.37***

(-4.03) (-3.23)

rmw -0.37** -0.40***

(-2.39) (-2.72)

cma 0.52*** 0.48***

(2.65) (2.59)

umd 0.18

(1.46)

me 0.45** 0.48**

(2.24) (2.37)

ia -0.20 -0.18

(-0.94) (-0.83)

roe -0.22* -0.33**

(-1.75) (-2.19)

eg 0.30

(1.46)

size 0.48**

(2.47)

mgmt 0.21

(0.97)

perf 0.25**

(2.01)

Adj. R2 -0.00 0.22 0.25 0.12 0.12 0.11

Num. obs. 298 298 298 298 298 298

37



Panel B: Put Option Alpha Portfolio

Market FF5 FF5+umd Q4 Q5 MF4

alpha 2.67*** 2.76*** 2.71*** 2.89*** 2.70*** 2.34***

(7.99) (8.36) (7.99) (7.57) (7.86) (7.30)

mktrf 0.00 -0.11 -0.07 -0.20 -0.16 0.06

(0.00) (-1.55) (-0.85) (-2.13) (-1.75) (0.61)

smb 0.32*** 0.30**

(2.78) (2.56)

hml -0.45*** -0.38***

(-3.45) (-3.15)

rmw -0.36*** -0.38***

(-2.66) (-2.90)

cma 0.38** 0.36**

(2.05) (2.03)

umd 0.11

(0.83)

me 0.33** 0.36**

(1.97) (2.14)

ia -0.22 -0.20

(-1.12) (-0.99)

roe -0.35** -0.46***

(-2.21) (-2.60)

eg 0.32

(1.44)

size 0.42**

(2.49)

mgmt 0.17

(0.74)

perf 0.20

(1.45)

Adj. R2 -0.00 0.19 0.20 0.10 0.11 0.07

Num. obs. 298 298 298 298 298 298
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Table 6: Alpha Portfolios on Subsamples of Options

This table shows the Annualized Sharpe ratios of alpha portfolios on options above and below charac-

teristics median. Options alphas are estimated using all call or put options, while the high (low) alpha

portfolios are constructed using options with the characteristic above (below) its median. Estimation

window is 12 months and the latent factors are set to three. abs(H − L) shows the absolute value of

Sharpe rstio differences between high alpha portfolios and low alpha portfolios.

Panel A. Call Options Panel B: Put Options

Char. Cat. High Low abs(H-L) High Low abs(H-L)

rns9m Risk 1.33 0.62 0.71 1.53 1.01 0.52

rnk9m Risk 1.03 1.16 0.14 1.41 1.32 0.08

rns12m Risk 1.33 0.61 0.72 1.55 0.96 0.59

rnk12m Risk 1.05 1.14 0.09 1.33 1.32 0.01

mfvu Risk 1.27 0.56 0.72 1.51 1.01 0.51

mfvd Risk 1.26 0.69 0.57 1.42 1.15 0.27

ivrv Risk 0.92 1.49 0.57 1.30 1.76 0.47

ivrv ratio Risk 1.44 1.00 0.45 1.71 1.37 0.33

vol Liquidity 0.70 1.34 0.64 1.00 1.42 0.42

dvol Liquidity 0.68 1.35 0.67 0.93 1.42 0.49

VolMkt Liquidity 1.26 0.97 0.29 1.45 1.25 0.20

Illiquidity Liquidity 1.42 0.70 0.72 1.69 0.87 0.82

zerotrade Liquidity 1.27 0.84 0.43 1.47 1.09 0.39

DolVol Liquidity 1.52 0.69 0.83 1.68 0.91 0.77
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Table 7: Alpha Portfolios with Interactions of Characteristics

This table shows the summary statistics of the alpha portfolios when adding the interaction of char-

acteristics. We interact rns9m, rnk9m, ivrv, and mfvu with vol, illiquidity, size, and so to allow the

nonlinearity. At each month, we estimate the mapping from options alpha to characteristics, θ, by Pro-

jected Principal Component Analysis (PPCA) introduced in section 3, and compute the estimated alphas

as the product of θ̂ and one-month ahead characteristics. The estimation window is 12 months. The

weights of individual options in the alpha portfolios are proportional to the estimated options alpha. K

ranges from one to 10, and it is the number of latent factors of PPCA. Mean, SD, and Sharpe shows the

annualized mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha

portfolios, respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and

maximum returns of the alpha portfolios during the sample period.

Panel A: Call Option Alpha Portfolio

K Mean SD Sharpe Skew Kurt Min Max

1 0.23 0.14 1.60 1.06 5.54 -0.12 0.27

2 0.25 0.18 1.40 0.25 1.91 -0.16 0.23

3 0.30 0.18 1.69 1.02 4.99 -0.15 0.33

4 0.31 0.18 1.68 0.70 3.73 -0.20 0.29

5 0.30 0.18 1.63 0.76 3.47 -0.16 0.31

6 0.28 0.19 1.50 0.83 4.83 -0.16 0.35

7 0.28 0.19 1.42 0.60 3.87 -0.20 0.32

8 0.28 0.21 1.36 0.58 3.50 -0.20 0.31

9 0.28 0.21 1.38 0.43 3.17 -0.20 0.31

10 0.28 0.20 1.37 0.57 3.57 -0.20 0.31

Panel B: Put Option Alpha Portfolio

K Mean SD Sharpe Skew Kurt Min Max

1 0.27 0.15 1.82 1.58 7.56 -0.11 0.29

2 0.29 0.18 1.62 0.80 3.26 -0.16 0.26

3 0.33 0.17 1.88 0.96 3.84 -0.16 0.26

4 0.32 0.18 1.76 1.13 4.05 -0.12 0.30

5 0.30 0.18 1.69 0.62 2.05 -0.12 0.22

6 0.30 0.18 1.68 0.72 2.47 -0.12 0.23

7 0.29 0.19 1.58 1.07 3.47 -0.13 0.26

8 0.30 0.19 1.57 1.10 3.68 -0.11 0.29

9 0.30 0.20 1.54 1.23 4.36 -0.11 0.32

10 0.27 0.21 1.31 1.32 5.29 -0.12 0.36
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Table 9: Alpha Portfolios with Different Estimation Windows

This table shows the summary statistics of the alpha portfolios with different estimation windows. The

estimation windows are 12, 15, 18, 21, and 24 months. At each month, we estimate the mapping from

options alpha to characteristics, θ, by Projected Principal Component Analysis (PPCA) introduced in

section 3, and compute the estimated alphas as the product of θ̂ and one-month ahead characteristics.

The weights of individual options in the alpha portfolios are proportional to the estimated options

alpha. We set the number of latent factors K equal to three. We report the summary statistics of

alpha portfolios in the entire and post-2004 samples. Mean, SD, and Sharpe shows the annualized

mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha portfolios,

respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and maximum

returns of the alpha portfolios during the sample period.

Panel A: Call Alpha Portfolios

K Window Mean SD Sharpe Skew Kurt Min Max

3 12 0.28 0.17 1.62 1.35 6.92 -0.14 0.34

3 15 0.25 0.18 1.40 1.97 16.39 -0.18 0.45

3 18 0.26 0.16 1.61 1.22 6.31 -0.15 0.31

3 21 0.19 0.16 1.21 1.03 5.59 -0.13 0.32

3 24 0.22 0.18 1.24 0.60 2.40 -0.12 0.28

Panel B: Put Alpha Portfolios

K Window Mean SD Sharpe Skew Kurt Min Max

3 12 0.32 0.17 1.86 1.11 4.73 -0.17 0.26

3 15 0.29 0.18 1.57 1.48 8.92 -0.13 0.40

3 18 0.27 0.17 1.60 1.21 5.18 -0.13 0.30

3 21 0.26 0.17 1.60 0.70 2.84 -0.12 0.28

3 24 0.24 0.18 1.32 0.61 1.67 -0.14 0.28
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Table 10: Subsamples and Alpha Portfolios

This table shows the summary statistics of the alpha portfolios with different estimation windows. The

estimation windows are 12, 15, 18, 21, and 24 months. At each month, we estimate the mapping from

options alpha to characteristics, θ, by Projected Principal Component Analysis (PPCA) introduced in

section 3, and compute the estimated alphas as the product of θ̂ and one-month ahead characteristics.

The weights of individual options in the alpha portfolios are proportional to the estimated options

alpha. We set the number of latent factors K equal to three. We report the summary statistics of

alpha portfolios in the entire and post-2004 samples. Mean, SD, and Sharpe shows the annualized

mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha portfolios,

respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and maximum

returns of the alpha portfolios during the sample period.

Panel A: Call Alpha Portfolios (2004-2019)

K Window Mean SD Sharpe Skew Kurt Min Max

3 12 0.20 0.13 1.49 0.36 1.14 -0.07 0.18

3 15 0.20 0.14 1.40 -0.27 2.66 -0.18 0.16

3 18 0.23 0.13 1.70 0.30 0.63 -0.08 0.16

3 21 0.16 0.14 1.16 0.16 0.13 -0.08 0.14

3 24 0.16 0.15 1.08 0.08 0.49 -0.11 0.16

Panel B: Put Alpha Portfolios (2004-2019)

K Window Mean SD Sharpe Skew Kurt Min Max

3 12 0.23 0.14 1.62 0.00 2.28 -0.17 0.16

3 15 0.23 0.15 1.51 0.14 0.99 -0.12 0.15

3 18 0.23 0.14 1.63 0.25 0.65 -0.10 0.14

3 21 0.25 0.15 1.69 0.24 0.20 -0.12 0.14

3 24 0.20 0.16 1.20 0.32 0.20 -0.10 0.16
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Figure 1: Distributions of Alpha Portfolio Weights

These two figures show the distribution of weights of individual options in the alpha portfolios. The upper

(lower) panel shows weights for call (put) options.The alpha portfolios are constructed as introduced in

table 2. The number of latent factors is three, and the estimation window is twelve months. The blue and

red lines represent the maximum and minimum weights. The grey-shadowed areas display the weights

ranked between maximum and 95%, and the weights ranked between minimum and 5%, respectively.

The dark-shadowed area represents weights ranked between 5% and 95%. The black line in the middle

of the figure shows the median weights of individual options.

45



Figure 2: Cumulative Returns of Option Alpha and Market Portfolios

These two figures exhibit the natural logarithm of the cumulative returns (in excess of one) of two alpha

and two market portfolios. The upper (lower) panel shows price path of portfolios of call (put) options.

The blue and orange lines represent the log prices of the alpha portfolios with one and three latent

factors, respectively. The estimation window is twelve months. The green and red lines are log prices of

call (put) options and stock market portfolios, respectively. The call (put) options market portfolio is

the equal-weighted average return of all one-month at-the-money call (put) options. The four portfolios

are adjusted to have the same standard deviation as the stock market portfolio.
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Figure 3: Alphas of Options Market Risk Factors with Varying K

This figure reveals the explanatory power of options market risk factors on the returns of alpha portfolios

with the varying number of latent factors K. The upper (lower) panel is for call (put) options. The esti-

mation window of the alpha portfolios is twelve months. We regress the returns of the alpha portfolios on

options market risk factors and report alphas. Excess return is the monthly return of the alpha portfolios

minus the risk-free rate. Level is the market portfolio that contains all call and put options. Karakaya

represents the level, maturity, and value factors constructed following Karakaya (2013). Illiquidity and

Idiosyncratic Risk are two factors constructed on Amihud’s illiquidity ratio and idiosyncratic volatility

of the underlying, respectively. Factors are constructed as the difference of extreme deciles of one-month

at-the-money options.
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Figure 4: Contributions of Characteristics to Call Options Factor Loadings

The heatmap displays the contributions of the firm characteristics on options factor loadings. The number

of latent factors is three, and the estimation window is twelve months. We estimate the options factor

loadings by PPCA and regress the estimated factor loadings on characteristics to uncover the mapping

from factor loadings to characteristics. The contribution of the firm characteristic is the summation of

the magnitude of the mapping. The contributions are scaled by maximum contribution each month, so

the range of contributions is zero to one. The heatmap shows the contributions of characteristics in each

month. Darker (lighter) the mark, the closer the contribution to one (zero).
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Figure 5: Contributions of Characteristics to Call Options Alphas

The heatmap displays the contributions of the firm characteristics on options alphas. The number of

latent factors is three, and the estimation window is twelve months. The contributions are measured by

θ, the mapping from options alphas to characteristics. The contributions are scaled by maximum con-

tribution each month, so the range of contributions is zero to one. The heatmap shows the contributions

of characteristics in each month. Darker (lighter) the mark, the closer the contribution to one (zero).
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Figure 6: Contributions of Characteristics to Call Options Factor Loadings - Nonlinear
Case

The heatmap displays the contributions of the firm characteristics on options factor loadings. The number

of latent factors is three, and the estimation window is twelve months. We interact vol, illiquidity, size,

and so with rns9m, rnk9m, ivrv, and mfvu. Contributions are calculated as in figure 4. Darker (lighter)

the mark, the closer the contribution to one (zero).
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Figure 7: Contributions of Characteristics to Call Options Alphas - Nonlinear Case

The heatmap displays the contributions of the firm characteristics on options alphas. The number of

latent factors is three, and the estimation window is twelve months. We interact vol, illiquidity, size, and

so with rns9m, rnk9m, ivrv, and mfvu. Contributions are calculated as in figure 5. Darker (lighter) the

mark, the closer the contribution to one (zero).
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Internet Appendix
(not for publication)

Option Mispricing and Alpha Portfolios

Andras Fulop, Junye Li, and Mo Wang

I. Characteristics

Table A1 summarizes the firm and option characteristics used in the paper. The original

authors of the characteristics and years of the paper published are displayed. The details

of the construction of the characteristics can be found in Chen and Zimmermann (2022)

and Bali, Beckmeyer, Moerke, and Weigert (2022). The characteristics are divided into 10

categories according to Bali, Beckmeyer, Moerke, andWeigert (2022). If the characteristic

is not in Bali, Beckmeyer, Moerke, and Weigert (2022), we decide its category based on

Chen and Zimmermann (2022) or the category of similar characteristics.

II. Additional Figures and Tables

Figure A1 presents how the alpha estimates (risk-adjusted returns) resulting from the

different stock factor models vary with respect to the number of the latent factors in

PPCA. Figure A2 presents how the alpha estimates resulting from the latent option

factor models vary with respect to the number of the latent factors in PPCA.

Figures A3 and A4 present the cross-sectional and temporal contributions of char-

acteristics to beta and alpha, respectively. The number of latent factors is three, and

the estimation window is twelve months. The contribution of the firm characteristic is

the summation of the magnitude of the mapping. The contributions are scaled by the

maximum contribution each month, so the range of contributions is zero to one. The

heatmap shows the contributions of characteristics in each month.
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Figures A5 and A6 present the average ranks of characteristics in the long and short

legs of the call and put alpha portfolios, respectively. The number of latent factors is

three, and the estimation window is twelve months. The ranks of characteristics range

from -0.5 to 0.5. The long and short legs contain options with positive and negative

weights in the put portfolios, respectively. The light blue line represents the short leg,

while the orange line represents the long leg.

Figures A7 and A8 present the cross-sectional and temporal contributions of charac-

teristics to beta and alpha, respectively, when we take into account interaction terms of

characteristics.

Table A2 reveals the explanatory power of option latent factors on the alpha portfo-

lios’ returns. We extract latent factors from options by PCA or RP-PCA (Risk Premium

PCA). We regress the monthly returns of the alpha portfolios on the latent factors and

report the alpha (in percentage) and factor loadings. PCA (RP-PCA) factors are con-

structed by applying PCA (RP-PCA) to at-the-money options. The λ in RP-PCA is set

to 10.

III. Results from Single Equity Options Data

III.1. Overall Performance

Table A3 shows the performances of alpha portfolios built on single equity options. The

estimation window is six months. We choose six months instead of twelve months because

the underlying that satisfies the liquidity filter becomes insufficient when extending the

estimation window. Although we normalize the in-sample annualized standard deviation

of alpha portfolios to 20%, the standard deviations of the alpha portfolios are notably

high, which may be due to the small number of options used. The annualized Sharpe

ratios of the alpha portfolios for call options range from 1.66 to 2.23, and those for

put options range from 1.26 to 1.79. Sharpe ratios are lower for put options than call

options, which may step from the smaller sample size of put options. These Sharpe ratios

are higher than those of volatility surface options. Annualized mean returns of alpha

2



portfolios with three latent factors are 69% for call options and 62% for put options,

which are approximately twice as large as those for volatility surface options. When

K = 3, the kurtosis is 1.88 for call options and 4.26 for put options, indicating that the

performances of the alpha portfolios are not driven by outliers. The ranges of portfolio

returns also support this argument.

We investigate the impact of the length of estimation windows on the performance of

alpha portfolios in the entire sample and post-2004 sample. Table A4 displays the results.

Like the empirical pattern of the volatility surface options, the annualized Sharpe ratios

decrease when prolonging the estimation window in the whole sample. The decrease

is significant for call options: extending the estimation window from 6 months to 12

months leads to a decrease in the Sharpe ratio from 2.22 to 1.13. Sharpe ratios of put

options are relatively low in general but still have a decreasing pattern when the length

of the estimation window increases. Two issues may be responsible for the decreasing

Sharpe ratios. The first one is the assumption of the constant characteristics discussed

previously. When extending the length, assuming that the characteristics are unchanged

within the estimation window becomes implausible. The second issue is the decreasing

number of options used each month, as shown in the last columns of Table A4. PPCA

requires sufficient options to get a consistent estimator. Given that the sample size of

single equity options is limited, the loss of options caused by extending the estimation

window hurt the Sharpe ratio more severely than that in volatility surface options. No

matter the length of estimation windows, the put options available for PPCA are less

than the call options, which is an important reason why the Sharpe ratios of put options

are lower than that of call options.

At the beginning of the single equity options sample, the number of options available

for PPCA is minimal, preventing the PPCA from consistently estimating the parameters.

After dropping the alpha portfolios before 2004, the annualized Sharpe ratios of alpha

portfolios with three latent factors and six-month estimation windows increase to 2.62

for single equity call options and 2.25 for single equity put options. The Sharpe ratios

still decrease with the length of the estimation window, while the magnitudes of Sharpe

3



ratios are broadly larger than those in the entire sample for call and put options.

III.2. Factor Analysis

We explore if the returns of alpha portfolios can be attributed to option factors docu-

mented in the literature. Option factors are constructed similarly as before, except we

use single equity options instead of volatility surface options in construction. Table A5

displays the results. For the single equity call options, the coefficient of the value factor

is highly significant. The alpha of the alpha portfolios decreases from 5.73% (t=9.58) to

3.82% (t=4.77) when introducing all five factors. No factor is significant in explaining

the alpha portfolio returns of single euqity put options. We aggregate all the factors in

the last columns, and the risk-adjusted return of the alpha portfolio for single equity call

options is 3.82% (t=4.77) and that for single equity put options is 4.91% (t=4.30). Over-

all, option factor models cannot explain the performances of alpha portfolios on single

equity options.

III.3. Mispricing, Systematic Risks, and Characteristics

We explore the association of characteristics with alpha and with factor loadings. We

compute the contributions of the characteristics as in section 4.3. Table A6 shows the top

20 essential characteristics in their contribution to alpha and factor loadings. Character-

istics that contribute to systematic risks also contribute to mispricing. This phenomenon

is common in both single equity call and put options and is consistent with the findings

in volatility surface options. We divide the most characteristics into a group related to

options liquidity and a group linked to higher moments risks. The characteristics of the

two groups are similar to those of volatility surface options. The ranks of the liquidity-

related characteristics decline compared with their ranks in the results of volatility surface

options, indicating that risk-related characteristics are more important in measuring sys-

tematic risks and mispricing among single equity options. The possible reason may be

that the single equity options we used are highly liquid and have less variation in liquidity,

so the liquidity characteristics are not as important as in the volatility surface options.
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We also construct alpha portfolios using subsamples of single equity options to explore

the impact of the characteristics. Table A7 in the appendix shows the Sharpe ratios of the

high and low alpha portfolios on single equity options. The high and low alpha portfolios

are constructed the same as those in Table 6. The results are similar to those for call and

put options, except that the Sharpe ratio differences between risk-related characteristics

subsamples are larger on average than those between liquidity-related subsamples. The

decreases in the importance of liquidity-related characteristics are as expected since the

single equity options we used are very liquid.

III.4. Liquidity and Transaction Cost

To explore the impact of option liquidity on alpha portfolio performance, we estimate

the portfolio weights using all options, and construct portfolios using only liquid options.

We define liquid options as options with positive trading volume, positive open interest

and the bid-ask-spread below its 75% quantile (0.15 for call and 0.13 for put). The alpha

portfolios are summarized in table A8. With only liquid options, the performances of

alpha portfolios are even higher than those in table A3. When the number of latent

factor equals 3, the annualized Sharpe ratio of single equity call (put) alpha portfolio

increase from 2.22 (1.68) to 2.44 (2.45). Table A8 suggests that mispricing we document

in the options market is not restricted to illiquid options.

To shed light on the transaction cost, we introduce the effective bid-ask spread. We

consider effective bid-ask spread of 0, 10%, 20% and 40% of quoted bid-ask spread. The

effective bid (ask) is the average of quoted bid and ask price minus (plus) one-half of the

effective bid-ask spread. Given the single equity options in our sample are short-lived, to

be more realistic, we hold the options to maturity when we construct the alpha portfolios.

The portfolio weights are estimated by one-month single equity option returns as before.

Table A9 displays the results. As we expected, the annualized Sharpe ratios of single

equity options decrease with transaction cost. We find that when effective spread is 40%-

60% of quoited bid-ask spread, the annualized Sharpe ratios of single equity option alpha

portfolios are close to zero.
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Table A2: Explanatory Power of Options Latent Factors

This table reveals the explanatory power of option latent factors on the returns of alpha portfolios. We

regress the monthly returns of the alpha portfolios on the option latent factors and report the alpha

(in percentage) and factor loadings. PCA (RP-PCA) factors are constructed by applying PCA (RP-

PCA) to at-the-money options. The λ in RP-PCA is set to 10. Newey-West (1987) adjusted t-statistics

are reported in the parathesis. ***/**/* indicate the significant at 1%, 5% and 10% confidence level,

respectively.

Panel A: Alpha Portfolio of Call Options

PCA 1F PCA 3F RP-PCA 1F RP-PCA 3F

Alpha 2.20*** 2.19*** 2.20*** 2.24***

(7.80) (8.23) (7.80) (7.71)

PCA1 0.00 0.00

(1.46) (1.56)

PCA2 0.02**

(2.37)

PCA3 0.00

(-0.13)

RP-PCA1 0.00 0.00

(1.45) (1.27)

RP-PCA2 0.02**

(2.37)

RP-PCA3 -0.01

(-0.64)

Adj. R2 0.01 0.12 0.01 0.12

Num. obs. 298 298 298 298

Panel B: Alpha Portfolio of Put Options

PCA 1F PCA 3F RP-PCA 1F RP-PCA 3F

Alpha 2.00*** 1.99*** 1.99*** 2.09***

(7.53) (7.92) (7.48) (6.74)

PCA1 0.01*** 0.01***

(4.05) (4.86)

PCA2 0.02***

(2.86)

PCA3 -0.01

(-0.97)

RP-PCA1 0.01*** 0.01***

(4.05) (4.16)

RP-PCA2 0.02***

(3.02)

RP-PCA3 -0.01

(-1.04)

Adj. R2 0.11 0.23 0.11 0.22

Num. obs. 298 298 298 298
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Table A3: Alpha Portfolios of Single Equity Options

This table shows the summary statistics of the alpha portfolios built on single equity options. The alpha

portfolios are constructed in the way introduced in table 2. The number of latent factors K ranges from

one to ten. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and

the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Alpha Portfolio of Single Equity Call Options

K Mean SD SR Skew Kurt Min Max

1 0.66 0.30 2.21 1.00 2.73 -0.19 0.45

2 0.65 0.29 2.23 0.56 1.35 -0.18 0.37

3 0.69 0.31 2.22 0.98 1.88 -0.17 0.39

4 0.60 0.31 1.93 0.86 2.98 -0.25 0.46

5 0.48 0.29 1.66 0.57 3.72 -0.37 0.38

6 0.59 0.32 1.86 0.28 1.74 -0.36 0.38

7 0.58 0.32 1.79 0.48 1.34 -0.27 0.39

8 0.60 0.31 1.89 0.44 2.28 -0.34 0.43

9 0.59 0.32 1.85 0.42 1.41 -0.31 0.38

10 0.56 0.33 1.72 -0.07 3.38 -0.48 0.36

Panel B: Alpha Portfolio of Single Equity Put Options

K Mean SD SR Skew Kurt Min Max

1 0.54 0.40 1.34 -2.86 34.71 -1.11 0.64

2 0.57 0.34 1.67 0.23 3.56 -0.36 0.47

3 0.62 0.37 1.68 0.51 4.26 -0.37 0.51

4 0.56 0.35 1.62 0.16 4.25 -0.43 0.45

5 0.51 0.38 1.33 -0.98 12.52 -0.77 0.54

6 0.56 0.34 1.63 -0.42 3.65 -0.44 0.42

7 0.57 0.32 1.79 -0.24 2.62 -0.41 0.36

8 0.46 0.37 1.26 -0.52 2.25 -0.40 0.35

9 0.52 0.34 1.52 -0.09 1.48 -0.29 0.36

10 0.53 0.32 1.64 -0.40 1.64 -0.32 0.29
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Table A4: Alpha Portfolios of Single Equity Options with Different Estimation Windows

This table shows the summary statistics of the alpha portfolios of single equity options with different

estimation windows. The estimation windows are 6, 9, 12, 15, and 18 months. We set the number of

latent factors K equal to three. We report the summary statistics of alpha portfolios in the entire and

post-2004 samples. Mean, SD, and SR shows the annualized mean return, annualized standard deviation,

and the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and

kurtosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample

period. Num. Obs. reports the monthly average number of options used to construct the alpha portfolios.

Panel A: Alpha Portfolio of Single Equity Call Options (Full Sample)

K Window Mean SD SR Skew Kurt Min Max Num.Obs.

3 6 0.69 0.31 2.22 0.98 1.88 -0.17 0.39 309.44

3 9 0.41 0.24 1.70 -0.22 0.38 -0.16 0.24 255.78

3 12 0.32 0.28 1.13 0.15 0.99 -0.23 0.33 219.28

3 15 0.34 0.26 1.31 0.33 0.59 -0.16 0.32 192.76

3 18 0.37 0.25 1.46 0.41 1.84 -0.26 0.30 171.67

Panel B: Alpha Portfolio of Single Equity Call Options (2004-2021)

K Window Mean SD SR Skew Kurt Min Max Num.Obs.

3 6 0.77 0.29 2.62 0.92 1.86 -0.11 0.38 365.14

3 9 0.43 0.24 1.74 -0.27 0.34 -0.16 0.24 307.36

3 12 0.36 0.29 1.23 0.15 0.99 -0.23 0.33 266.61

3 15 0.34 0.27 1.28 0.36 0.58 -0.16 0.32 236.14

3 18 0.32 0.26 1.25 0.41 2.10 -0.26 0.30 211.34

Panel C: Alpha Portfolio of Single Equity Put Options (Full Sample)

K Window Mean SD SR Skew Kurt Min Max Num.Obs.

3 6 0.62 0.37 1.68 0.51 4.26 -0.37 0.51 233.03

3 9 0.47 0.30 1.56 -0.51 4.19 -0.48 0.30 192.98

3 12 0.39 0.29 1.35 0.31 1.18 -0.25 0.34 165.95

3 15 0.28 0.25 1.13 0.60 1.62 -0.17 0.35 146.33

3 18 0.31 0.25 1.21 0.19 1.45 -0.22 0.31 130.83

Panel D: Alpha Portfolio of Single Equity Put Options (2004-2021)

K Window Mean SD SR Skew Kurt Min Max Num.Obs.

3 6 0.82 0.36 2.25 0.77 4.26 -0.32 0.51 292.55

3 9 0.57 0.31 1.83 -0.79 5.57 -0.48 0.30 244.12

3 12 0.47 0.30 1.59 0.25 1.03 -0.25 0.34 210.53

3 15 0.31 0.25 1.22 0.64 1.58 -0.14 0.35 185.62

3 18 0.32 0.26 1.26 0.04 1.56 -0.22 0.31 165.76
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Table A5: Explanation Power of Options Market Risk Factors on Single Equity Options
Alpha Portfolios

This table reveals the explanatory power of risk factors in the options market on the returns of the

alpha portfolios of single equity options. We regress the monthly returns of the alpha portfolios on the

common risk factors in the options market and report the alpha (in percentage) and factor loadings.

Options market risk factors are introduced in table 3, but are constructed by single equity options.

Newey-West (1987) adjusted t-statistics are reported in the parathesis. ***/**/* indicate the significant

at 1%, 5% and 10% confidence level, respectively.

Panel A: Alpha Portfolio of Single Equity Call Options

Level + Illiq. Karakaya +

Excess Ret. Level Karakaya + IdioRisk Illiq. + IdioRisk

Alpha 5.73*** 5.96*** 3.99*** 5.53*** 3.82***

(9.58) (9.40) (5.89) (6.59) (4.77)

Level 0.78* 0.49 0.90* 0.60

(1.87) (0.98) (1.91) (1.01)

Maturity 0.62 0.56

(0.69) (0.60)

Value 1.51*** 1.51***

(3.11) (3.00)

Illiquidity -0.73 -0.01

(-1.39) (-0.03)

IdioRisk -0.16 0.18

(-0.27) 0.34

Adj. R2 0.00 0.02 0.07 0.02 0.06

Num. obs. 292 292 292 292 292

Panel B: Alpha Portfolio of Single Equity Put Options

Level + Illiq. Karakaya +

Excess Ret. Level Karakaya + IdioRisk Illiq. + IdioRisk

Alpha 5.20*** 5.42*** 5.07*** 5.23*** 4.91***

(7.17) (6.79) (4.86) (5.77) (4.30)

Level 0.76 0.24 0.87 0.34

(1.16) (0.43) (1.13) (0.47)

Maturity 1.38 1.33

(1.12) (1.06)

Value 0.28 0.34

(0.55) (0.65)

Illiquidity 0.03 0.17

(0.05) (0.32)

IdioRisk 0.24 0.24

(0.46) (0.46)

Adj. R2 0.00 0.01 0.01 0.00 0.00

Num. obs. 292 292 292 292 292
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Table A7: Alpha Portfolios of Single Equity Options Subsamples

This table shows the alpha portfolios constructed using the subsamples of single euqity options. The

options alphas are estimated using all single equity options, while the high (low) alpha portfolios are

constructed using option with the characteristic above (below) the median. We choose 3 latent factors

and a 6-month estimation window. abs(H − L) represents the absolute value of Sharpe ratio differences

between high and low alpha portfolios.

Single Equity Calls Single Equity Puts

Char. Cat. High Low abs(H-L) High Low abs(H-L)

rns9m Risk 1.94 0.77 1.17 1.81 0.23 1.59

rnk9m Risk 0.54 2.11 1.56 -0.12 1.77 1.89

rns12m Risk 2.05 0.69 1.35 1.69 0.32 1.36

rnk12m Risk 0.55 2.09 1.54 -0.03 1.69 1.73

mfvu Risk 2.03 0.35 1.68 1.73 -0.01 1.73

mfvd Risk 2.15 0.24 1.90 1.85 -0.28 2.13

ivrv Risk 1.10 1.87 0.77 0.87 1.38 0.51

ivrv ratio Risk 1.81 1.20 0.61 1.34 1.04 0.29

vol Liquidity 2.04 1.05 0.98 1.78 0.47 1.31

dvol Liquidity 2.00 1.08 0.92 1.83 0.46 1.37

VolMkt Liquidity 1.19 2.01 0.83 0.53 1.55 1.02

Illiquidity Liquidity 2.01 1.09 0.92 1.69 0.64 1.05

zerotrade Liquidity 0.95 2.00 1.04 0.63 1.58 0.95

DolVol Liquidity 1.85 1.28 0.57 1.52 0.86 0.67
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Table A8: Alpha Portfolios of Liquid Single Equity Options

This table reveals the performance of alpha portfolios constructed by liquid single equity options.

We relax the restriction that options should have positive trading volume, and estimate the options

alphas using all options. We then construct alpha portfolios only using liquid options. Liquid

call (put) options are defined as options with positive trading volume, positive open interest and

option bid-ask spread less than 0.15 (0.13). The number of latent factors K ranges from one to

ten. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and the

annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Alpha Portdolios of Single Equity Call Options

K Mean SD SR Skew Kurt Min Max

1 0.60 0.22 2.79 1.33 6.05 -0.13 0.45

2 0.60 0.23 2.66 1.30 4.51 -0.13 0.38

3 0.60 0.25 2.44 2.29 12.95 -0.12 0.60

4 0.54 0.23 2.40 1.83 7.52 -0.10 0.45

5 0.44 0.20 2.20 1.26 3.22 -0.12 0.31

6 0.51 0.21 2.40 1.82 9.32 -0.13 0.47

7 0.51 0.21 2.45 1.55 6.66 -0.12 0.41

8 0.50 0.21 2.38 1.69 8.09 -0.13 0.43

9 0.51 0.21 2.45 1.27 4.88 -0.14 0.36

10 0.51 0.22 2.35 1.93 10.10 -0.13 0.48

Panel B: Alpha Portdolios of Single Equity Put Options

K Mean SD SR Skew Kurt Min Max

1 0.50 0.20 2.55 0.92 1.86 -0.11 0.28

2 0.50 0.20 2.42 0.85 2.77 -0.20 0.31

3 0.48 0.20 2.45 1.21 2.39 -0.08 0.27

4 0.46 0.20 2.31 1.64 6.01 -0.08 0.40

5 0.32 0.17 1.91 1.36 5.12 -0.12 0.30

6 0.40 0.19 2.13 0.53 2.38 -0.18 0.21

7 0.40 0.19 2.15 0.54 2.47 -0.18 0.22

8 0.40 0.18 2.17 0.57 2.07 -0.16 0.21

9 0.39 0.18 2.15 0.57 2.23 -0.15 0.23

10 0.40 0.18 2.27 0.52 1.99 -0.16 0.23
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Table A9: Alpha Portfolios of Liquid Single Equity Options

This table shows the performance of alpha portfolios when introducing the transaction cost. We

introduce transaction cost by considering effective bid-ask spread of 0, 10%,20% and 40% of quoted

bid-ask spread. The option returns used to estimate the alpha portfolio weights are one-month return,

and ones used to contruct the alpha portfolio are hold-to-maturity returns (about 50 days on average).

The number of latent factors in estimating portfolio weights is 3 and the estimatino window is 6

months. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and the

annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Single Equity Call Alpha Portfolio with Transaction Cost

K window Eff. Spread Mean SD Sharpe Skew Kurt Min Max

3 6 0 1.04 0.40 2.58 0.96 2.23 -0.32 0.60

3 6 10 0.86 0.39 2.20 0.86 2.16 -0.34 0.56

3 6 20 0.68 0.38 1.79 0.76 2.11 -0.37 0.53

3 6 40 0.32 0.36 0.87 0.54 2.00 -0.41 0.46

Pane B: Single Equity Put Alpha Portfolio with Transaction Cost

K window Eff. Spread Mean SD Sharpe Skew Kurt Min Max

3 6 0 0.91 0.47 1.94 0.81 3.19 -0.38 0.67

3 6 10 0.76 0.46 1.64 0.66 2.95 -0.40 0.64

3 6 20 0.60 0.45 1.32 0.50 2.73 -0.41 0.60

3 6 40 0.28 0.44 0.64 0.17 2.38 -0.45 0.53
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Figure A1: Alphas of Stock Market Risk Factors with Varying K

The two figures reveal the explanatory power of stock market risk factors on the returns of alpha portfolios

with the varying number of latent factors K. The upper (lower) panel is for call (put) alpha portfolios.

The estimation window of the alpha portfolios is twelve months. We regress the returns of the alpha

portfolios on stock market risk factors and report alphas. Excess return is the monthly return of the

alpha portfolios minus the risk-free rate. Market is the market portfolio of stocks in the CAPM model.

FF5 is the market, size, value, investment, and profitability in Fama and French (2015). UMD is the

momentum factor in Carhart (1997). Q4 is the market, size, investment and profitability in Hou, Xue

and Zhang (2015). Q5 is Q4 augmented by expected investment growth in Hou, Mo, Xue and Zhang

(2021). MF4 is market, size, management and performance factors in Stambaugh and Yuan (2017).
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Figure A2: Alphas of Options Latent Factors with Varying K

This figure reveals the explanatory power of options latent factors on the returns of alpha portfolios with

the varying number of latent factors K. The upper (lower) panel is for call (put) options. The estimation

window of the alpha portfolios is twelve months. We regress the returns of the alpha portfolios on options

latent factors and report alphas. Excess return is the monthly return of the alpha portfolios minus the

risk-free rate. PCA (RPPCA) factors are constructed by applying PCA (RP-PCA) to option returns.

The λ in RP-PCA is chosen to be 10.
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Figure A3: Contributions of Characteristics to Put Options Factor Loadings
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Figure A4: Contributions of Characteristics to Put Options Alphas
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Figure A5: Ranks of Characteristics in the Long and Short Legs

The figures show the average ranks of characteristics in the long and short legs of the call options alpha

portfolios. The number of latent factors is three, and the estimation window is twelve months. The

ranks of characteristics range from -0.5 to 0.5. The long and short legs contain call options with positive

and negative weights in the alpha portfolios, respectively. The light blue line represents the short leg,

while the orange line represents the long leg.
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Figure A6: Ranks of Characteristics in the Long and Short Legs

The figures show the average ranks of characteristics in the long and short legs of the put options alpha

portfolios. The number of latent factors is three, and the estimation window is twelve months. The

ranks of characteristics range from -0.5 to 0.5. The long and short legs contain put options with positive

and negative weights in the alpha portfolios, respectively. The light blue line represents the short leg,

while the orange line represents the long leg.
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Figure A7: Contributions of Characteristics to Put Options Factor Loadings - Nonlinear
Case
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Figure A8: Contributions of Characteristics to Put Options Alphas - Nonlinear Case
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