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of 1.62 in call option returns and of 1.86 in put option returns. Commonly used
risk factors in the stock and options markets are incapable of explaining abnormal
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1. Introduction

Options are not redundant assets. Since Black and Scholes (1973), a majority of the
literature in option pricing has focused on an approach that first specifies the full dynamics
of the underlying price and its instantaneous variance and then employs risk-neutral
valuation. However, such a parametric approach may suffer from model misspecification
and is incapable to explain empirically observed variation in option returns (Israelov and
Kelly, 2017). Investors may not hold options up to maturity and may be more interested
in risk factors that drive variation of option returns and in quantifying any mispricing if
there exists in the option holding period. However, this question is far less understood
in the options market than in the corresponding underlying equity market.

In this paper, we follow the factor pricing approach and answer an important question:
whether options are mispriced under very general assumptions on systematic risk, and
if so, how we can quantify such mispricing. Different from equities, the factor pricing
approach is not straightforward to apply in the options market for at least three important
reasons. First, there do not exist well-established factors that can explain time series
comovements of options returns and average return spreads across options on individual
equities. Second, the unique option contractual features and relative underdevelopment of
the market make option return mispricing and exposures to systematic risk time-varying
and dependent on both underlying and option characteristics. Third, the dependence
structure of systematic risk and mispricing on characteristics may well change over time
as well, due to, for example, structural changes of the options market and different types
of arbitrage opportunities appearing and disappearing at different times.

Therefore, in this paper, we adopt the latent factor pricing approach and further make
alpha and beta depending on firm and option characteristics. To accommodate the time-
varying dependence structure, we resort to the projected principal component analysis
(PPCA) originally proposed by Fan, Liao, and Wang (2016) and then extended by Kim,
Korajczyk, and Neuhierl (2021). Unlike the standard statistical factor model, which

requires a large time series sample size for consistent estimation, the PPCA estimator of



the factor loading function converges to the true one as the dimension of the cross section
increases, even for short time series. This property allows us for estimating the model
using a short rolling window over time and hence introducing time-varying dependence
structure. We assume that characteristics are relatively stable over a short time interval
and estimate alphas of individual option returns that relate to characteristics. Based on
those alpha estimates, we construct option alpha portfolios that are completely out-of-
sample. This approach gives characteristics maximal explanatory power for systematic
risk before estimating alphas and therefore, the alpha portfolios constructed in this way
can be regarded as realizations of mispricing in the options market. Two recent papers
by Buchner and Kelly (2022) and Goyal and Saretto (2022) follow similar latent factor
pricing approach and apply the instrumental principal component analysis (IPCA) of
Kelly, Pruitt, and Su (2019) to examining the factor structure in S&P 500 index option
returns and individual equity option returns, respectively. However, a key difference is
that both assume that the dependence structures of systematic risk and mispricing on
characteristics are constant over time.

We implement a conservative investigation of option mispricing by focusing on short-
term at-the-money options contingent on individual stocks. Those options are the most
liquid and hence are less mispriced. If there exists any mispricing in these options, it
is likely to be even more serious in less liquid segments of the options market. Using
both volatility surface data and single equity options data provided by OptionMetrics,
we construct a large cross-section of short-maturity at-the-money call and put options for
the period ranging from March 1996 to December 2021. Option returns in our sample are
delta-hedged, removing the part that can be explained by local variation of the underlying
stock price. We further construct a large panel of firm and option characteristics (in total,
113 characteristics), on which option betas and alphas may potentially depend.

There is a tradeoff when we choose the size of the rolling window in the extended
PPCA. A larger window size could give us more observations to estimate the functions
of factor loadings and mispricing, whereas a smaller window size makes our assumption
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different window sizes ranging from 12 to 24 months. Within each window, we use
all option returns observations and the initial observations of characteristics to obtain
functional structure of mispricing and then estimate alphas of individual option returns
using the end-of-window characteristics. Based on those alpha estimates, we construct
an alpha portfolio whose weights are proportional to individual option alphas that purely
relate to characteristics and hold this portfolio for one month and compute its realized
returns. We repeat this procedure over time to the end of sample. For a window size
of 12 months, we find that for the number of the latent factors ranging from 1 to 10,
the annualized Sharpe ratio of the call alpha portfolio ranges from 1.17 to 1.62, and the
Sharpe ratio of the put alpha portfolio ranges from 1.28 to 1.86. Note that the exact
number of the latent factors is unknown and needs to be estimated. Using the projected-
PC eigenvalue ratio test of Fan, Liao, and Wang (2016), we find that the number of
the latent factors varies from 1 to 3 over time. The smaller number of factors may be
insufficient to capture all systematic risks; however, Kim, Korajczyk, and Neuhierl (2021)
show that a slight increase of the number of extracted factors does not harm the model
performance materially. Therefore, we select the number of the latent factors equal to 3
in most of our analyses. In fact, the Sharpe ratios of both call and put alpha portfolios
reach the highest values of 1.62 and 1.86, respectively, when the number of the latent
factors is set to 3.

We then ask whether the commonly used risk factors in the stock and options mar-
kets can explain the abnormal returns of option alpha portfolios. We consider multiple
stock market factors, namely, the Fama-French five factors (Fama and French, 1992, 1996,
2015), the momentum factor (Carhart, 1997), the g five factors (Hou et al., 2021), and the
mispricing four factors (Stambaugh and Yuan, 2017), and various options market factors,
namely, the Karakaya three factors (Karakaya, 2013), the liquidity factor (Christoffersen,
Goyenko, Jacobs, and Karoui, 2018), and the idiosyncratic volatility factor (Cao and Han,
2013); we also construct several latent factors from option returns using principal compo-
nent analysis (PCA) and risk-premium PCA (RP-PCA) of Lettau and Pelger (2020). We

find that none of those factor models can explain the abnormal returns of option alpha



portfolios. The smallest risk-adjusted return is from the mispricing four-factor models,
which is 1.89% (¢ = 6.93) for the call alpha portfolio and 2.34% (¢ = 7.30) for the put
alpha portfolios. The risk-adjusted return from a factor model that includes all five op-
tions market factors is about 2.92% (¢ = 3.95) for the call alpha portfolio and it is about
3.03% (t = 4.04) for the put alpha portfolio.

The contributions of characteristics to systematic risk and mispricing vary substan-
tially over time, in support of our argument that temporal dependence structures of
systematic risk and mispricing on characteristics are time-varying. Furthermore, most
characteristics are only related to mispricing for a very short while, reflecting that such
mispricing may disappear very quickly after its discovery. We find that characteristics re-
lated to risk-neutral moments of the underlying stock and liquidity play more important
roles in capturing both mispricing and systematic risk. Characteristics that significantly
contribute to systematic risk also contribute to mispricing at times. According to the
broad classification of Chen and Zimmermann (2022) and Bali, Beckmeyer, Moerke, and
Weigert (2022), we find that most of the top 20 characteristics contributing to systematic
risk and mispricing are in the groups of liquidity and risk. Bali, Beckmeyer, Moerke,
and Weigert (2022) also find importance of liquidity- and risk-lated characteristics in
predicting the cross-section of option returns.

Introducing nonlinearity captured by interaction terms of characteristics slightly im-
proves the performance of alpha portfolios. We find that in comparison with the linear
case, with the 12-month window size and three latent factors, the annualized Sharpe ratio
of the call alpha portfolio increases from 1.62 to 1.69, and the Sharpe ratio of the put al-
pha portfolio increases from 1.86 to 1.88. We further find that when the interaction terms
are introduced, the contributions of many characteristics become negligible and most of
the top 20 characteristics contributing to systematic risk and mispricing are those related
to interactions of characteristics. However, consistently with the previous finding, the
liquidity- and risk-related characteristics still play the most important roles.

We implement various robustness checks. Our results remain when using different

estimation window sizes and using the post-2004 sample. Furthermore, while our analysis



in the main text is based on the volatility surface option data, we find that our results
are robust to using the single equity options data.

Our paper relates and contributes to several strands of literature. First, it closely
relates to the literature that searches for the factor structure in options returns. As
mentioned above, Buchner and Kelly (2022) and Goyal and Saretto (2022) apply the
IPCA method to searching for the factor structures of the S&P index option returns and
individual equity option returns, respectively. Both find that the mispricing in option
returns is relatively small. However, our paper differs in important aspects. First, we
allow for time-varying dependence structures of both systematic risk and mispricing on
characteristics, whereas in the IPCA procedure, the relations between characteristics and
systematic risk/mispricing are constant over time. Time-varying dependence structure
can better help us identify mispricing, given that a particular mispricing is usually short-
lived. Second, we consider a large panel of 113 characteristics that have been shown to
predict stock returns (Neuhierl, Tang, Varneskov, and Zhou, 2021) and/or to predict op-
tion returns (Bali, Beckmeyer, Moerke, and Weigert, 2022), whereas Buchner and Kelly
(2022) employ only 7 option-related variables and Goyal and Saretto (2022) use 44 char-
acteristics. Indeed, using a large set of characteristics is important in spanning expected
returns and covariance and revealing the underlying risk-return relationship. Given such
differences, our paper reveals economically substantial mispricing in the options market.

Early studies on the factor structure in option returns include Coval and Shumway
(2001) and Jones (2006). Karakaya (2013) focuses on individual equity options and pro-
poses three factors of level, maturity, and value. Christoffersen, Fournier, and Jacobs
(2018) find a strong factor structure in individual equity options using the principal com-
ponent analysis approach and show the first principal components of the equity volatility
levels, skews, and term structures explain a substantial fraction of the cross-sectional
variation. Working with option portfolios constructed from a certain number of firm
characteristics, Horenstein, Vasquez, and Xiao (2020) find that a four-factor model can
explain the cross-section and time-series of equity option returns.

Our paper also contributes to the literature on cross-sectional option return pre-



dictability. A number of papers investigate whether those firm characteristics that fore-
cast stock returns can also predict option returns (see, e.g., Bakshi and Kappadia, 2003;
Goyal and Saretto, 2009; Cao and Han, 2013; Hu and Jacobs, 2020; Vasquez, 2017;
Christoffersen, Goyenko, Jacobs, and Karoui, 2018; Zhan, Han, Cao, and Tong, 2022).
Using a large panel of firm and option characteristics, two recent studies of Brooks,
Chance, and Shafaati (2018) and Bali, Beckmeyer, Moerke, and Weigert (2022) apply
machine learning methods to investigate option return predictability in the cross-section
of individual equity options. However, these papers do not clearly answer the question on
the sources of option return predictability: whether predictability is from characteristics
predicting alpha or predicting beta. Our paper quantifies how much of expected excess
option return is from mispricing.

Another contribution of our paper is to clearly show importance of risk- and liquidity-
related characteristics in predicting option returns. Those studies that use only a limited
number of characteristics may suffer from the issue of omitted variables. Further, the
assumption of constant temporal dependence of alpha and beta can not capture the
structural changes of the data generating process, and therefore cannot capture time-
series variation of contributions of characteristics. Instead, we build up the latent factor
model by using information contained in a wide range of firm and option characteris-
tics and estimate both cross-sectional and the temporal relations between characteristics
and systematic risk and mispricing. We find that characteristics related to risk-neutral
moments and stock and option liquidity and their interactions are more closely associ-
ated with options mispricing and factor loadings. Bali, Beckmeyer, Moerke, and Weigert
(2022) apply machine learning approaches to option return predictability and find that
the top three relevant groups of characteristics are those of option contractual features,
liquidity, and risk.

The paper proceeds as follows. Section 2 presents the model and estimation method
based on the PPCA method. Section 3 introduces the data on options and firm char-
acteristics. Section 4 presents our main empirical results based on the volatility surface

options data. Section 5 provides several robustness checks. Section 6 concludes the paper.



Extra results are presented in the Internet Appendix.

2. Model and Estimation

2.1. Delta-Hedged Option Returns

We focus on individual stock option returns that are delta-hedged. Given that the un-
derlying stock price variation is a key factor that affects option returns, delta-hedging
results in the fraction of option returns that is not explained by local-linear exposure
to fluctuations of the underlying stock price. Following the literature (e.g., Bakshi and
Kappadia, 2003; Cao and Han, 2013), we first calculate the delta-hedged option gain that
is a daily-rebalanced zero-investment portfolio consisting of a long option (call or put)
position, hedged by a short position in the underlying stock.

Lett =ty < --- <ty =t+7 represent all trading days between time ¢ and ¢ + 7, and
in this paper, we choose 7 equal to one month. The daily delta-hedged option gain over

the one-month investment period is given by
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where V; represents the option price at time ¢, S; is the stock price at time ¢, A; is the
Black-Scholes delta of the option at time ¢, a, is the number of calendar days between
two successive trading dates, and r; is the annualized risk-free interest rate.

As we see from Equation (1), the delta-hedged option gain can be separated into three
components: the first term, V,,, — V;, is the difference between the end-of-period and
initial option prices; the second term, Zg;ol Ay, (Stn o Stn), is the amount invested
in the underlying stock for hedging the first-order stock price movement; and the last

term, Zivz_ol e (Vi — Ay, S, ), is the difference between the option and stock positions

that investors can borrow from or lend to the market. To make the delta-hedged option

gain comparable across options, similar to Cao and Han (2013), we scale the dollar delta-



hedged option gain by the absolute position in the options and underlying stock:

I(t, t+7)
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2.2. The Model

The literature on option pricing primarily employs parametric no-arbitrage models to
investigate risk factors that affect option prices. However, such an approach needs a full
specification of dynamics of the underlying stock price. Israelov and Kelly (2017) show
that such parametric no-arbitrage models are unable to explain a large part of empirically
observed variation in option returns.

In this paper, we rely on the factor pricing approach to investigate the risk-return
relationship in the options market. We assume that the stochastic discount factor (SDF),

myy1, iS a linear function of some return-based risk factors, fii1,

Mg = 1= b (frer — pre), (3)

where b, is a vector of (time-varying) SDF loadings and i, is expected values of factors.

The condition of no-arbitrage ensures existence of a positive SDF such that

Emiariger] =0 = 11 = aig + B fren + €, (4)

where the factor loadings, 8;+ = cov(ri 11, fre1)vars(fiz1) ™', @iy captures any mispricing
in option returns, and the factor risk premium is given by A\, = F;[F; 1]. Correct specifi-
cation of the model results in zero mispricing and the expected option returns should be
determined by Ei[r; 1] = BitA:.

It may be desirable to use some pre-specified observable factors. However, this is
difficult for the options market as there do not exist well-established observable factors.

Therefore, we rely on a factor model that treats the pricing factors as latent. The arbitrage

n a recent study, Buchner and Kelly (2022) scale the dollar delta-hedged option gain by the under-
lying stock price.



pricing theory of Ross (1976) (also see, Huberman, 1982; Chamberlain and Rothschild,
1983; Ingersoll, 1984) guarantees the existence of a factor model and bounded pricing

errors. Under some mild conditions, the model can be written in matrix form as

R = al), + BF +E, (5)

where R is a N x T matrix containing /N option returns for a time period t =1,..., T, F
is a T'x K matrix of latent factors summarizing the systematic risk in the option market,
a is a N x 1 vector capturing the pricing errors, B is a N x K factor loading matrix,
and E is a N x T matrix containing the error term for each return at each time.

The option contractual structure with finite maturity and different moneyness suggests
that both alpha and beta in Equation (5) should depend on option characteristics, and
more importantly, the dependence structure of alpha and beta on characteristics should
also be changing over time due to, for example, structural changes of the market, and
different types of alpha appearing and disappearing quickly at different times. Therefore,
we assume that a and B are functions of firm and option characteristics, and for a short
time period, those characteristics are relatively stable. Let X be a N x L matrix of

characteristics and assume that both a and B are affine functions of X as follows,

a=X0+T,  B=XB+TI}, (6)

where 0 is a L x 1 vector, B is a L x K matrix of constant, and the N x 1 vector I',
and the N x K matrix I'g are orthogonal to X, absorbing the parts of o and B that
are not related to characteristics. It becomes clear from the above setup that the option
return predictability is either due to characteristics predicting alpha (mispricing) or due
to characteristics predicting beta (systematic risk). By further exploring @ and 3, we can
learn contributions of characteristics to a and B and deepen our understanding of exact
sources of option return predictability. Combining Equations (5) and (6), we rewrite the
factor model as

R=(X0+T,)1,+ (XB8+T1sF +E. (7)
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2.3. Estimation

Our aim is not only to introduce time-varying alpha and beta, but also to make the
dependence of alpha and beta on characteristics changing over time. These two features
are important for investigating the risk-return relationship in the option market. For
this purpose, we rely on the projected principal component (PPCA) approach originally
proposed by Fan, Liao, and Wang (2016) to estimate the model. The PPCA estimator
of the factor loading function converges to the true one as the dimension (N) of the
cross section increases, even for small time-series samples (7). This property allows us
for estimating the model using a short rolling window over time and hence introducing
time-varying dependence structure. While the original approach of Fan, Liao, and Wang
(2016) explicitly imposes zero restriction on alpha, a recent study by Kim, Korajczyk,
and Neuhierl (2021) extend this approach to estimate not only the latent factors and
their loadings, but also the mispricing function that relates alpha to characteristics.

We assume that characteristics are relatively stable over a short-time interval and es-
timate the model following the rolling procedure of Kim, Korajczyk, and Neuhierl (2021),
which actually treats the model of Equation (7) as a locally unconditional approxima-
tion to a conditional model. Within each estimation window, the dependence of a and
B on characteristics are constant; however, the rolling estimation of the model enables
us to study both the cross-sectional and the temporal relations of characteristics with
systematic risk and mispricing.

Under some standard regularities of factor models (see, Fan, Liao, and Wang, 2016;
Kim, Korajczyk, and Neuhierl, 2021), within each time window, the estimation with the
extended PPCA is implemented in the following four steps. First, we demean option
returns to remove alpha and then project the demeaned time-series option returns on
characteristics to obtain the demeaned projected option returns that only depend on
factor loadings (X3) and demeaned latent factors. Second, we apply the standard PCA to
the demeaned projected option returns to obtain estimates of factor loadings and factors.
Up to here, the procedure gives characteristics maximal explanatory power to systematic

risk. Third, we estimate the mispricing function (X@) by regressing average returns of
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individual options on characteristics orthogonal to the estimated factor loading (XB),
which is equivalent to project residuals of average option returns to risk premia (Xfif‘)
onto characteristics. Finally, we use the estimated mispricing function to construct an
alpha portfolio,

1

b= —X86.
W= 0 (8)

To be specific, for the time window, ¢ = 0,1,...,T (e.g., T = 12 months), we use
the option returns from ¢t = 1,...,7T and characteristics at time 0, Xy, to obtain 6. The
alpha portfolio weights are then computed using the updated characteristics at time 7T,
Xr, as wr = NLTXTQ, which are used to compute the alpha portfolio return at T+ 1,

o711 = WpRr. 1. The characteristics X are standardized to have zero means, suggesting
that the portfolio weights wr sum to zero and the portfolio is a zero-cost investment.
This procedure is repeated recursively at each month up to the end of sample. The
portfolio constructed in this way is an alpha portfolio without exposure to systematic
risk based on pure alpha that is related to characteristics,? is completely out-of-sample,

and hence can be regarded as a realization of mispricing in the option market.

3. Data and Summary Statistics

3.1. Option Data

Our option data are obtained from OptionMetrics [vyDB, a primary database for research
on options. This dataset includes options on individual equities, indexes, and exchange-
traded funds. In the paper, we focus on options on individual common equities listed on
NYSE, NYSE American (formerly AMEX), and NASDAQ for the period of March 1996 to
December 2021. The information provided by OptionMetrics includes option maturities,
strikes, implied volatilities, and sensitivity measures (Greeks), as well as information on
underlying stocks. We use both volatility surface data and single equity options data and

mainly focus on short-maturity at-the-money options given that those options are the

2There exists the other source of mispricing that is unrelated to characteristics due to the constant
term I',.
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most liquid and hence should suffer less from mispricing.

Volatility Surface Data. We download the volatility surface file, which contains the
interpolated implied volatility on standardized options with respect to fixed deltas and
maturities for each security on each day. The implied volatility is computed using bino-
mial trees that take into account the early exercise of individual stock options and the
dividends expected to be paid over the life of the options. Volatility surface options can
be regarded as portfolios composed of single equity options used in interpolation, and we
believe that those data should contain the same but clean information as single equity
options. The interpolation leaves us fewer missing values, and we can build our empirical
analyses on a larger sample. We select at-the-money options (delta equal to 0.5 for calls
and -0.5 for puts) with time-to-maturity of 30 days, and we then construct one-month
delta-hedged option returns at the end of each month.

Single Equity Options Data. We also extract single equity options from the option
price file. Following the literature (see, e.g., Goyal and Saretto, 2009; Cao and Han,
2013; Zhan, Han, Cao, and Tong, 2022; Bali, Beckmeyer, Moerke, and Weigert, 2022), we
apply several filters to the data. First, we remove those options whose implied volatility
and Greeks are unavailable. Second, we eliminate those options whose underlying stocks
pay dividends during the one-month investment period. Third, we drop options with
zero trading volume over the last seven calendar days to ensure the options are liquid
enough. Fourth, to avoid the microstructure noise, we delete the options whose best bid
price is zero, the best offer price is not strictly larger than the best bid price, the option
price is smaller than $0.125, or the relative bid-ask spread is larger than 50%. Fifth, we
drop those options that violate the American option bounds and the convexity condition
(Bollerslev, Todorov, and Xu, 2015). Finally, from those options that survive, we select
one call and one put whose moneyness are closest to one and that have the shortest
maturity but longer than one month at the end of each month for each underlying stock.

Summary Statistics. To show the distribution of option returns, we pool all obser-
vations of the option-date pairs and present the summary statistics in Table 1. Panel

A presents the summary statistics of option returns constructed from the volatility sur-
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face data, and Panel B and C reports summary statistics of call and put option returns,
respectively, constructed from the single equity options. In general, the sample sizes of
option returns from the volatility surface data are much larger than those from the single
equity options data. Based on the volatility surface data, there are 293,459 observations
of call returns and 297,275 observations of put returns, whereas based on single equity
options data, there are only 90,356 observations of call returns and 68,045 observations
of put returns.

When we use the volatility surface data, we see from Panel A that the monthly mean
return of delta-hedged call options is negative, -1.07%, with a relatively high standard
deviation of 16.68%, and the monthly mean return of delta-hedged put options is positive,
0.61%, also with a large standard deviation of 15.50%. However, from Panels B and C, we
see that when we use single equity options data, the monthly mean returns of both call
and put option returns are negative, -0.19% and -0.30%, respectively, and their standard
deviations become smaller, 5.02% and 4.24%, respectively.

While for the volatility surface data, the maturity and delta of call and put options
are fixed at 30 days and 0.5 (absolute value), respectively, the mean maturity of both call
and put options in the single equity options data is slightly longer, about 49 days, with
a standard deviation of about 2, and their mean moneyness is about 1, with a very small
standard deviation of 0.03. We also present liquidity and size of the underlying stocks
in the last two rows of each panel, we see that the mean Amihud illiquidity ratio in the
volatility surface data (Panel A) is much larger than those in the single equity options
data (Panels B and C), suggesting that the underlying stocks in the single equity options
data are on average more liquid, and that the average size of the underlying stocks in the
single equity options data (Panels B and C) is larger than that in the volatility surface

data.

3.2. Characteristics

The characteristics used in the paper contain both firm- and option-specific variables. Our

firm characteristics are mainly from Chen and Zimmermann (2022) who construct over
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200 variables documented in the literature that have predictive power in the cross-section
of stock returns.® Several studies have shown that a number of firm characteristics that
can predict stock returns can also forecast option returns (see, e.g., Cao and Han, 2013;
Hu and Jacobs, 2020; Karakaya, 2013; Vasquez, 2017; Zhan, Han, Cao, and Tong, 2022).
We only choose those variables that have continuous values with missing values less than
15%, and we also drop several characteristics that are very highly correlated with other
variables. As a result, we choose 79 firm characteristics from Chen and Zimmermann
(2022) database.

Furthermore, the literature has found that a number of option-related variables have
predictive power for stock returns and/or option returns (see recent studies by Neuhierl,
Tang, Varneskov, and Zhou (2021) for stock returns and Bali, Beckmeyer, Moerke, and
Weigert (2022) for option returns). We therefore construct a total of 31 option-related
characteristics following this strand of literature. Given their relevance to option returns,
size, stock price and stock return are also included in our study. The complete list of
firm and options characteristics and the corresponding references are presented in Table
Al in the Internet Appendix. In total, there are 113 characteristics to be considered in
our empirical analysis.

We cross-sectionally rank and standardize all characteristics at each month such that
they are in the range of [—0.5,0.5]. The missing values are then imputed to be 0. One
advantage of using the cross-sectional ranks of characteristics is that the impact of po-
tential data errors and outliers in individual characteristics can be largely alleviated (see,
e.g., Kelly, Pruitt, and Su, 2019; Freyberger, Neuhierl, and Weber, 2020; Kozak, Nagel,
and Santosh, 2020).

4. Empirical Results

In this section, we present our main empirical results based on the volatility surface
data. To save space, we move results based on single equity options data to the Internet

Appendix. Subsection 4.1 presents the overall performance of option alpha portfolios;

3Those data are publicly available at Andrew Y. Chen’s website, www.openassetpricing.com.
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Subsection 4.2 discusses whether the commonly used factors in the stock market and in the
options market can explain abnormal returns of option alpha portfolios; and Subsection
4.3 examines contributions of characteristics to systematic risk and mispricing in the

options market.

4.1. Performance of Option Alpha Portfolios

Following the extended PPCA procedure presented in Section 2, we construct option
alpha portfolios with different numbers of latent factors and examine how the number
of latent factors (K) affect performance of option alpha portfolios. We implement the
extended PPCA using a rolling window approach with the window size of 12 months to
construct alpha portfolios, for which individual option’s weights are proportional to the
corresponding estimated alphas as in Equation (8). To make the results comparable with
common equity and option factors, we normalize the in-sample annualized standard devi-
ation of alpha portfolios to 20%. Panels A and B of Table 2 summarizes the performance
results of call and put alpha portfolios, respectively.

From Panel A, we see that the annualized Sharpe ratios of call alpha portfolios are
relatively high, ranging from 1.17 to 1.62. The Sharpe ratio is about 1.52 when we choose
only one latent factor; it then slightly increases to 1.62 when the number of factors is
chosen to be 3; thereafter, the Sharpe ratio is steeply declining to 1.17 when the number
of factors reaches 10. We also notice that the increase of Sharpe ratio from K = 1 to
K = 3 is due to an increase of the alpha portfolio mean, and that the out-of-sample
standard deviation is smaller than the in-sample standard deviation, which is normalized
to 20%, when the mean or Sharpe ratio of the alpha portfolio reaches the highest level.
The call alpha portfolio returns are in general right-skewed and leptokurtic.

Panel B on put alpha portfolios reveals quite similar implications. The annualized
Sharpe ratios are also high, ranging from 1.28 when K = 10 to 1.86 when K = 3. Similar
to call alpha portfolios, when the number of latent factors is larger than 3, the Sharpe
ratio decreases. The put alpha portfolio returns with the maximal Sharpe ratio are also

right-skewed and leptokurtic
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The basic message delivered from Table 2 is that the Sharpe ratios of both call and put
option alpha portfolios are relatively high no matter which number of latent factors we
choose. What do high Sharpe ratios of call and put alpha portfolios imply? They suggest
that mispricing may be prevailing in the options market. As we show, we build alpha
portfolios based on estimated individual option alphas related to characteristics by firstly
giving them maximal explanatory power for systematic risk premia. The exposures of
alpha portfolios to systematic risks should approach zero when the number of individual
options increase. Therefore, we regard high Sharpe ratios of option alpha portfolios as
a realization of mispricing in the options market. We see that in general, Sharpe ratios
of put alpha portfolios are higher than those of call alpha portfolios, suggesting that
mispricing in put options may be more severe than in call options.

The number of true factors is unknown and needs to be estimated. As shown in Kim,
Korajczyk, and Neuhier]l (2021), if the number of extracted factors is smaller than the
number of true factors, the extended PPCA can not guarantee orthogonality between
alpha portfolio weights and factor loadings, and furthermore, too many factors may lead
to inaccurate model estimates and harm the performance of alpha portfolios. There-
fore, for precisely determining the number of latent factors, we follow the projected-PC
eigenvalue-ratio method of Fan, Liao, and Wang (2016) to estimate the number of latent
factors by maximizing the ratio of adjacent eigenvalues of the demeaned projected option
returns (also see, Ahn and Horenstein, 2013; Lam and Yao, 2012). The basic idea of
this method is that the K largest eigenvalues of sample covariance grow with respect
to sample size, whereas the rest remains bounded or grows very slowly. We apply this
projected-PC eigenvalue-ratio test in each rolling window in both call and put option
samples and find that the optimal number of latent factors in both samples ranges from
1 to 3. The smaller number of factors may be insufficient to capture all systematic risks
and is unable to ensure estimated options alphas not exposed to systematic risks. Jones
(2006) argues that for explaining S&P 500 index option returns, the best-performing
model should have 2-3 factors, and that more complex models are very unstable out of

sample. Moreover, Kim, Korajczyk, and Neuhierl (2021) show that a slight increase of
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the number of extracted factors does not harm the model performance materially. We
therefore select the number of factors equal to 3 in most of our analyses. We have already
seen that at K = 3, the Sharpe ratios of both call and put alpha portfolios reach the
highest values, 1.62 and 1.86, respectively.

The last two columns of Table 2 present the minimum and maximum returns of alpha
portfolios, moderate values of which reveal that high Sharpe ratios of alpha portfolios are
not driven by extreme values. We further check if the performance of alpha portfolios
could be attributed to any small subsamples of options. We presents the distributions of
individual option weights in call and put alpha portfolios for K = 3 at each month in
the upper and lower panels of Figure 1, respectively. We see that for both call and put
alpha portfolios, the ranges of weights of individual options change over time and they
are always within narrow bounds, suggesting that any individual options can not have
dominant impact on the performance of both call and put alpha portfolios. Therefore,
we can conclude that high Sharpe ratios of both call and put alpha portfolios originate
most likely from economically substantial mispricing in the options market.

We further explore how the performance of alpha portfolios evolves over time. Figure
2 shows the natural logarithm of cumulative returns of call and put alpha portfolios with
K =1 and 3, their corresponding market portfolios, and the stock market portfolio in the
upper and lower panels, respectively. The market portfolio of call (put) options is simply
the equal-weighted average of all call (put) option returns using all data in the volatility
surface file. To ensure the returns of different portfolios are comparable, we normalize the
alpha portfolios to have the same standard deviations as the stock market portfolios. We
see that the cumulative returns of both call and put alpha portfolios increase dramatically
over time, whereas the cumulative returns of the call market portfolio are decreasing over
time and the cumulative returns of the put market portfolio hardly display any increasing
or decreasing tendency. The cumulative returns of the stock market portfolio slightly
increase over time. The price paths of alpha portfolios with K = 1 and 3 look very
similar. We further notice that the increase of cumulative returns of both call and put

alpha portfolios is much faster in the beginning period of the sample, suggesting that
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mispricing is even more serious in this period. As a robustness check in Section 5, we
reconstruct alpha portfolios using the post-2004 sample and still find considerable Sharpe

ratios for both call and put alpha portfolios.

4.2. Option Alpha Portfolios and Risk Factors

Our alpha portfolios are constructed based on estimates of alphas that are related to
characteristics and are orthogonal to systematic risk in the options market. In this part,
we further examine whether the commonly used risk factors in the stock and options
markets can explain abnormal returns of both call and put alpha portfolios.

Option Market Factors. Different from the stock market, there do not exist well-
established observable risk factors in the options market, and studies examining the
factor structure on option returns are relatively sparse. Following the literature, we rely
on the three factors of Karakaya (2013), the liquidity factor (see, e.g., Christoffersen,
Goyenko, Jacobs, and Karoui, 2018), and the idiosyncratic risk factor (see, e.g., Cao
and Han, 2013). Karakaya (2013) proposes three factors, namely, level, maturity, and
value, to explain variations in the cross-section of individual option returns. The options
used in Karakaya (2013) have various moneyness and maturities, whereas in our paper,
we mainly focus on short-maturity at-the-money options that are the most liquid and
are less mispriced. To give those three factors maximal explanatory power, we modify
them slightly by using at-the-money options only. Similar to Karakaya (2013), we define
the level factor as the equal-weighted average excess returns of at-the-money options;
we define the maturity factor as the equal-weighted average of return difference between
6-month and 1-month at-the-money options; and the value factor is defined as the high-
minus-low returns of decile portfolios sorted on the value, defined as the difference between
average implied volatility of at-the-money call and put options and realized volatility of
the underlying stock (Goyal and Saretto, 2009).

Cao and Han (2013) find that delta-hedged option returns decreases monotonically
with an increase in the underlying idiosyncratic volatility. Another study by Christof-

fersen, Goyenko, Jacobs, and Karoui (2018) find that there exist significant illiquidity
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premia in the equity options market. A recent paper by Zhan, Han, Cao, and Tong
(2022) show that the option idiosyncratic volatility and illiquidity factors can explain
option return spreads constructed based on well-studied 10 firm characteristics. There-
fore, using all at-the-money call and put options in our sample, we construct these two
factors as high-minus-low spread returns of decile option portfolios based on the Amihud
illiquidity ratio and idiosyncratic volatility of the underlying stock.

Table 3 presents the regression results of the call and put alpha portfolio returns
(K = 3) on those option market factors in Panels A and B, respectively. The first
column of each panel shows that the alpha portfolios earn statistically significant average
monthly excess returns, 2.31% (¢t = 7.42) for the call alpha portfolio and 2.67% (¢t = 7.90)
for the put alpha portfolio. When we use the level factor alone, akin to the CAPM in
the options market, we find that the risk-adjusted return is about 2.25% for the call
alpha portfolio and is about 2.62% for the put alpha portfolio, both of which are highly
statistically significant (¢t = 6.90/7.12, respectively). However, when we use the Karakaya
three factors, the risk-adjusted return increases to 3.17% for the call alpha portfolio and
to 3.56% for the put alpha portfolio, both of which are still highly statistically significant.
We then combine the level factor and the illiquidity and idiosyncratic volatility factors
together. We still find highly statistically significant risk-adjusted returns for both call
and put alpha portfolios (2.06% and 2.41%, respectively). Finally, in the last column, we
combine all five factors together and find that the risk-adjusted return is about 2.92%
(t = 3.95) for the call alpha portfolio and is about 3.03% (¢ = 4.04) for the put alpha
portfolio. We also find that none of the factors is statistically significant in explaining
the call and put alpha portfolio returns.

We also check how the risk-adjusted returns change with an increase in the number of
latent factors in Figure 3. In general, when the model is more likely misspecified, i.e., the
number of latent factors is too small (e.g., only one factor) or too large (e.g., 10 factors),
the risk-adjusted returns become relatively small for both call and put alpha portfolios.
We also find that the risk-adjusted returns from the factor models that contain Karakaya

factors are larger than those that exclude them.
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Stock Market Factors. Given its high relevance to the options market, we also try
the commonly used factors in the stock market, namely, the Fama-French five factors
(Fama and French, 1992, 1996, 2015), the Carhart momentum factor (Carhart, 1997),
the ¢ factors (Hou, Xue, and Zhang, 2015; Hou, Mo, Xue, and Zhang, 2021), and the
mispricing factors (Stambaugh and Yuan, 2017). We run the time-series regressions of
returns of alpha portfolios based on three latent factors in PPCA on those common equity
factors and check if the superior performance of option alpha portfolios can be attributed
to risks related to the stock market. The regression results are presented in Table 4.
Panel A is for the call alpha portfolio and panel B for the put alpha portfolio.

In columns 1-6, we introduce the market factor, the Fama-French five factors, the FF5
augmented by momentum factors, the g four factors, the ¢ five factors, and the mispricing
four factors, respectively. We see that the alpha estimates from those factor models are
very close to the average monthly excess returns of alpha portfolios and are all highly
statistically significant. Columns 2 and 3 reveal that except the stock market factor,
the four Fama-French factors and the momentum factor are statistically significant in the
regression of the call alpha portfolio returns, and except the stock market and momentum
factors, the four Fama-French factors are statistically significant in the regression of the
put alpha portfolio returns. Both call and put alpha portfolio returns are negatively
related to the value and profitability factors and are positively related to the size and
investment factors. Columns 4 and 5 show that the size factor is significant in explaining
both call and put alpha portfolios in ¢ factors. In the last column, we find that when
using mispricing factors, the alpha estimates are the smallest for both call and put alpha
portfolios, but the magnitudes are still economically substantial, 1.89% and 2.34% in call
and put alpha portfolios, respectively. The explanatory power of mispricing factors for
the call alpha portfolio returns mainly comes from the size and performance factors, while
that for the put alpha portfolio only steps from the size factor. The above results suggest
that the commonly used risk factors in the stock market have trivial explanatory power
for abnormal returns of both call and put alpha portfolios. Figure Al in the Internet

Appendix presents how the alpha estimates (risk-adjusted returns) resulting from the
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different stock factor models vary with respect to the number of the latent factors. We
see that the risk-adjusted returns of alpha portfolios are relatively stable with respect to
K.

Option Latent Factors. We also try the latent option factors to explain returns on
option alpha portfolios. For this purpose, we rely on the Principal Component Analy-
sis (PCA) and the Risk-Premium Principal Component Analysis (RP-PCA, Lettau and
Pelger, 2020) to extract the latent factors of call (put) option returns. Note that even
though our option alpha portfolios are constructed in real-time recursively using a small
window, we use the whole sample to extract latent factors to give them more information.
Following Lettau and Pelger (2020), we set the hyperparameter of A in RP-PCA to 10.
Increasing A to larger values has negligible impact on the results. Table A2 and Figure A2
in the Internet Appendix present the main results, which show that those latent factors

are also incapable of explaining abnormal returns of both call and put alpha portfolios.

4.3. Contributions of Characteristics to Mispricing and Systematic Risk

In the extended PPCA, within each estimation period, factor loadings and mispricing
are functions of characteristics observed at the beginning of the period. A natural ques-
tion is then how and which of those characteristics affect factor loadings and mispricing
over time. For this purpose, we regress the estimated factor loadings and mispricing
on characteristics in each period, and the estimated ,B and 0 (see Equation (6)) capture
the relationships between characteristics and systematic risk and mispricing, respectively.
The estimated coefficients of 3 and 6 are a L x K matrix and a L x 1 vector, respectively.
We evaluate the contribution of characteristic [ to systematic risk as Y p , | Bkl| and to
mispricing as |6;]. To make contributions of characteristics comparable over time, we
normalize the contributions cross-sectionally at each period such that the largest contri-
bution of a characteristic is always equal to one.

Figure 4 presents the heatmap of characteristics to systematic risk for call option
returns. The heatmap for put option returns is similar and presented in Figure A3 in

the Internet Appendix. We clearly see that the contributions of characteristics vary both
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in the cross section and in the time series. In the cross-section, we see that there are
a number of characteristics whose contributions are sizable, whereas many others have
negligible contributions. For example, those variables related to underlying equity and
option liquidity (e.g., illiquidity, VolMkt, vol/dvol) are closely related to systematic risk;
and the risk-neutral moments (e.g., 9m/12m skewness and kurtosis, upside and downside
semivariances of Huang and Li (2019)) also play important roles in factor loadings. We
also find that the characteristics with significant contributions in the heatmap for put
option returns are very similar to those for call option returns. We further notice that
the contributions of those key characteristics change over time. The time-varying contri-
butions of characteristics suggest that the temporal dependence between characteristics
and factor loadings is not constant. The constant temporal dependence is a standard
assumption usually adopted in conditional factor pricing models (including the IPCA ap-
proach of Kelly, Pruitt, and Su (2019)), and our approach based on the extended PPCA
easily enable us to capture such a time-varying relation between characteristics and risk
and mispricing.

Figure 5 presents the heatmap of characteristics to mispricing for call option returns
(see Figure A4 in the Internet Appendix for put option returns). Compared with the
heatmaps of systematic risk, we see that there are fewer characteristics that are consis-
tently related to mispricing. Many characteristics are only related to mispricing for a few
periods, reflecting that such mispricing disappears quickly. It seems that the character-
istics related to option liquidity play very important role in determining mispricing: the
variables such as vol, dvol, so, and dso periodically have sizable contributions. The mis-
pricing heatmaps further highlight the importance of time-varying dependence between
characteristics and mispricing.

The heatmaps are convenient for visually checking the cross-sectional contributions
of characteristics and the time-series variations of dependence of systematic risk and
mispricing on characteristics. We further quantify the aggregate contributions of charac-
teristics by taking the time-series average of contributions of each characteristic. Table

5 summarize the time-series average contributions of top 20 characteristics to mispricing
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and factor ladings. Panel A is for call option returns and Panel B for put option returns.
From both panels, we see that most characteristics contributing to both systematic risk
and mispricing can be roughly categorized into Liquidity and Risk, according to the clas-
sification of Bali, Beckmeyer, Moerke, and Weigert (2022) and Chen and Zimmermann
(2022). The liquidity group contains measures of liquidity of options and underlying
stocks, e.g., option trading volume (vol), trading volume of a stock scaled by its market
equity (VolMkt), the Amihud illiquidity ratio of the underlying (Illiquidity), and the zero
trading days (zerotrade) of the underlying. The underlying liquidity may also relate to
options liquidity. The risk group includes characteristics that measure riskiness of the
underlying stocks, e.g., long-term risk-neutral skewness and kurtosis (rns9m, rns12m,
rnk9m, rnk12m), the difference between implied volatility and historical volatility (ivrv),
and risk-neutral semivariance (mfvu, mfvd). Other characteristics such size and so (the
stock-option trading volume ratio) are also closely related to option/stock liquidity. We
refer readers to Table Al in the Internet Appendix for the complete classification of all
113 characteristics. Our results in Table 5 suggest that liquidity- and risk-related char-
acteristics contribute substantially to the factor loadings and are crucial in capturing
mispricing, suggesting that option return predictability stems from the predicting power
of characteristics to both mispricing and systematic risk. It seems that there exists sys-
tematic mispricing in the options market and those options with certain risk and liquidity
features may expose higher mispricing than others.

Goyal and Saretto (2009) document option return predictability by the implied and
historical variance spread, and they interpret it as a measure of volatility mispricing;
however, Karakaya (2013) regards the implied and historical variance spread as a measure
of option value. We find that the variables of ivrv and ivrv_ratio, two measures of the
implied-historical volatility spread, contribute to both mispricing and systematic risk.
Christoffersen, Goyenko, Jacobs, and Karoui (2018) find existence of significant illiquidity
premia in the options market, and Zhan, Han, Cao, and Tong (2022) employ the Amihud
illiquidity ratio of the underlying stock as a measure of the option liquidity. Our results

suggest that the illiquidity premium is related to both systematic risk and mispricing. In a
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recent study, using the machine learning approach, Bali, Beckmeyer, Moerke, and Weigert
(2022) also find that those characteristics related to liquidity and risk play important
roles in predicting future option returns. However, all the above studies are silent and
do not quantify how much option return predictability is from predicting mispricing or
systematic risk or both.

To better understand the relationships between alpha portfolios and characteristics,
we compare ranks of characteristics in the long and short legs. The long (short) leg is the
group of option returns that receive the positive (negative) weights in the alpha portfolios.
We calculate the average value of the rank-transformed characteristics in each leg at each
time. We present time-series ranks of size and characteristics related to Illiquidity and
Risk in long and short legs for call alpha portfolios in Figure A5 in the Internet Appendix.
The ranks of characteristics in the long and short legs change over time, further supporting
that the temporal dependence of mispricing on characteristics are time-varying. We find
that the call alpha portfolio generally long (short) options contingent on large-cap (small-
cap) underlying stocks; however, for some periods, e.g., during the 2008 financial crisis,
the alpha portfolio takes long positions on call options of small-cap firms. The ranks
of the Amihud Illiquidity ratio are similar to those of size except for the reverse of the
long and short legs, which suggests that the contribution of size may result from its
correlation with the illiquidity. The spreads of ranks in 9-month risk-neutral skewness,
upside and downside semivariances are relatively large, consistent with the findings in
Table 5 that the risk-neutral moments are closely related to mispricing. For put options,
the magnitudes of average ranks of characteristics in long and short legs are akin to those
in call options (see Figure A6 in the Internet Appendix), but the signs are reversed.
Given that the values of call and put options depend on the stock price movements in
the opposite direction, the same characteristics should have the opposite impact on the
call and put alpha portfolios.

To further investigate the source of performances of option alpha portfolios, we con-
struct alpha portfolios using the subsample of options based on a certain number of

characteristics. We choose 14 important risk- and liquidity-related characteristics in pre-
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dicting option alphas from Table 5. We estimate the options alphas each month using the
previous 12-month data with three latent factors, then divide all options into two groups
based on the median of each characteristic. The high (low) group contains options with
the characteristic above (below) the median. Within each group, we build alpha portfo-
lios with option weights proportional to estimated option alphas. The alpha portfolios
on high (low) groups are noted as high (low) alpha portfolios. The results are reported
in Table 6. H-L is the Sharpe ratio difference between the high and low alpha portfolios.
The annualized Sharpe ratios of alpha portfolios on option subsamples are in general
smaller than those on full samples, which may result from the decrease in the sample
size. The Sharpe ratio differences between high and low alpha portfolios are substantial.

The maximum difference for call (put) options is 0.83 (0.82).

5. Robustness Checks

In this section, we implement several robustness checks. Subsection 5.1 expands the
space of characteristics by adding interaction terms and examine how nonlinearity affects
the performance of option alpha portfolios. Subsection 5.2 checks how the performance
of option alpha portfolios changes with respect to different rolling window size used in
the extended PPCA. Subsection 5.3 investigates how option alpha portfolios perform in
the post-2004 sample. Subsection 5.4 explores whether our findings remain when we use

single equity options data.

5.1. Nonlinearity

In the above analysis, we assume that alpha and factor loadings in option returns are
linear functions of firm and option characteristics. Several recent studies have shown
that nonlinearity, in particular, interactions of characteristics, play important roles in
explaining equity excess returns (see, e.g., Freyberger, Neuhierl, and Weber, 2020; Kozak,
Nagel, and Santosh, 2020). It then raises a question whether our results remain when
we introduce interaction terms in functions of mispricing and factor loadings. For this

purpose, we expand the space of characteristics by adding interaction terms. Given that
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the number of characteristics is large, interacting all characteristics leads to voluminous
combinations. As we have already seen from the above (see Table 5) that the risk- and
liquidity-related characteristics play much more important roles than others, we decide to
interact those risk-neutral moments, namely, rns9m, rnk9m, ivrv, and mfvu, with those
liquidity-related variables, namely, vol, illiquidity. We also add size and so to liquidity-
related variables since they are highly correlated with underlying stock liquidity. Based
on these expanded characteristics, we then reestimate the mispricing function using the
same extended PPCA and construct the corresponding alpha portfolios.

The performance of the alpha portfolios is presented in Table 7. We see that when
interaction terms are introduced, Sharpe ratios of alpha portfolios are still economically
substantial. In fact, when K = 3, the Sharpe ratio is about 1.69 for the call alpha
portfolio, and it is about 1.88 for the put alpha portfolio, both of which are larger than
those values in the linear case observed in Table 2. We also notice that for the call and put
alpha portfolio, the Sharpe ratio reaches the highest level when K = 3. The increase of
Sharpe ratios mainly comes from the rise of portfolio returns. Those results may suggest
that introducing interaction terms can help estimate mispricing and systematic risk more
effectively.

The cross-sectional and temporal contributions of characteristics and their interac-
tions to factor loadings and mispricing for call option returns are presented in Figure 6
and Figure 7, respectively. For brevity, we present corresponding figures for put option
returns in the Internet Appendix (see Figure A7 and Figure A8). We see that these two
figures are quite different from those in the linear case. Now the contributions concen-
trate only on a very small number of characteristics, in particular, on interaction terms.
The feature of “on-and-oft” of characteristics in the alpha heatmap becomes even more
obvious. It seems that when interaction terms are introduced, contributions of many
individual characteristics become negligible, highlighting importance of interaction terms
in predicting option returns. Table 8 presents the top 20 characteristics that contribute
to factor loadings and mispricing for call and put returns in Panels A and B, respectively.

With comparison to Table 5, we find that many interaction terms jump in and the most
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important variables are still those of liquidity- and risk-related characteristics and their
combinations. We notice that most of those characteristics belonging to the group of

Others disappear, and only so and size remain since they are closely related to liquidity.

5.2. Size of Estimation Windows

In constructing alpha portfolios, we face a tradeoff: the longer estimation window gives
us more observations to estimate systematic factors and mispricing, whereas the shorter
one makes the assumption of stable characteristics within the window more acceptable.
We check how the estimation window size affects the performance of alpha portfolios.
We consider the window size ranging from 12 months to 24 months, and the number of
latent factors is equal to 3. The performance of alpha portfolios is presented in Table
9. We see that for both call and put alpha portfolios, though the annualized standard
deviations do not change that much, the annualized mean returns decline with respect
to an increase of the window size. For call alpha portfolios, the Sharpe ratio decreases
from 1.62 for the window size of 12 months to 1.24 for the window size of 24 months,
and for put alpha portfolios, the Sharpe ratio decreases from 1.86 for the window size of
12 months to 1.32 for the window size of 24 months. The performance deterioration of
alpha portfolios for the longer window size may result from our assumption that char-
acteristics in the estimation window are constant. The longer the estimation window
is, the worse this assumption becomes. Fortunately, the PPCA approach enables us to
accurately estimate the latent factors even for a small sample size (7). We find that
the characteristics significantly contributing to mispricing and systematic risks are very

similar across different estimation windows.

5.3. Subsamples

We have seen that the increase of cumulative returns of both call and put alpha portfolios
is much faster in the initial period of our sample. This may raise a concern that the high
Sharpe ratios we have found are driven by option observations in this period. In this

subsection, we explore the performance of alpha portfolios using the sample after 2004.
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The results are summarized in Table 10, in which we choose the number of the latent
factors equal to three. The means of post-2004 alpha portfolio returns are smaller than
those of the entire sample; however, the standard deviations of post-2004 alpha portfolios
also become smaller. Hence, the Sharpe ratios are comparable. The Sharpe ratios for call
alpha portfolios range from 1.08 for the window size of 24 months to 1.70 for the window
size of 18 months, and the Sharpe ratios for put alpha portfolios range from 1.20 for the

window size of 24 months to 1.69 for the window size of 21 months.

5.4. Using Single Equity Options Data

All the above results are based on the volatility surface options data provided by Option-
Matrics. The volatility surface options in our sample have the homogeneous moneyness
and days-to-maturity; however, in practice such options do not exist and investors have
only access to actual equity options. Therefore, we ask whether our findings remain
when we use the single equity options data. Given that we require that each firm in our
sample has successive non-missing observations in each estimation period, the option ob-
servations used to build alpha portfolios are fewer than those from the volatility surface
options data (see Table 1).

We implement the same empirical exercises as above and report all the results in
the Internet Appendix (Tables A3-A9). In short, we still find economically substantial
mispricing in single equity options. For the model with three latent factors and with
a window size of 12 months, the Sharpe ratio of the call alpha portfolio is about 1.13,
and the Sharpe ratio of the put alpha portfolio is about 1.35. The abnormal returns of
both call and put alpha portfolios can not be explained by commonly used observable
risk factors. When constructing alpha portfolios using subsamples, the Sharpe ratio
differences between risk-related characteristics subsamples are larger on average than
those between liquidity-related subsamples. The decreases in the importance of liquidity-
related characteristics are as expected since the single equity options we used are more
liquid.

We further construct the alpha portfolios only using liquid options with positive trad-
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ing volume, positive open interest, and option bid-ask spread smaller than its 75% cross-
sectional quantile (which is 0.15 for call and 0.13 for put). The results are presented in
Table A8 in the Internet Appendix. We again find economically substantial Sharpe ratios

for both call and put alpha portfolios.

6. Conclusion

Options are not redundant assets. In the options market, investors may not hold options
up to maturity and may be more interested in risk factors that drive variation of option
returns and in quantifying any mispricing if exists in the holding period. However, this
question is far less understood in the options market than in the corresponding underlying
equity market.

In this paper, relying on the latent factor pricing approach, we examine whether
options are mispriced under very general assumptions on systematic risk, and if so, how
we can quantify such mispricing. Based on the projected principal component analysis
approach of Fan, Liao, and Wang (2016) and Kim, Korajczyk, and Neuhier] (2021), our
latent factor model can take into account time-varying dependence of systematic risk
and mispricing on a large panel of firm and option characteristics. We construct option
alpha portfolios based on the estimated individual option mispricing. When we choose
the number of the latent factors equal to 3 and an estimation window with size of 12
months, the out-of-sample annualized Sharpe ratios of call and put alpha portfolios are
1.62 and 1.86, respectively, revealing economically substantial mispricing in the options
market.

Commonly used risk factors in the stock and options markets cannot explain abnormal
returns of option alpha portfolios. Our results are robust with different estimation win-
dow sizes and the post-2004 sample; the results remain when we use single equity options
instead of the volatility surface option data. Characteristics related to risk-neutral mo-
ments and liquidity and their interactions play very important roles in capturing option
mispricing; most characteristics that contribute to mispricing also contribute to system-

atic risk.
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Table 1: Summary Statistics

This table reports the distribution of delta-hedged option returns and the liquidity measures of the un-
derlying. We collect options with underlying stocks listed in NYSE, NYSE American (formerly AMEX),
or NASDAQ from OptionMetrics. The sample period is from March 1996 to December 2021. The delta-
hedged options returns are calculated as a portfolio with one option hedged by A shares of underling
stocks, following Cao and Han (2013). A is the options delta from the Black-Scholes-Merton model.
We hold the portfolio for one month, and delta hedges are rebalanced daily. Amihud Iliquidity is the
Amihud illiquidity ratio in Amihud (2002) of the underlying stocks, and size is the natural logarithm of
the firms’ market capitalization. Panel A reports the summary statistics of the volatility surface options.
The summary statistics of Amihud illiquidity and size are for underlying of call options. Panel B and C
displays the summary statistics of single equity call and put options. Moneyness is defined as the ratio of
strike price to spot stock price. Days-to-maturity is the days between the date of portfolio construction
and the expiration date of options. Vega is the options vega from the Black-Scholes-Merton model scaled
by the stock price. Bid-ask spread is the difference between the options bid price and ask price scaled
by the mean of bid and ask prices.

Panel A: Volatility Surface Options

Variables n mean SD P90 P75 median  p25 pl0
Delta-hedged call return 293459 (%) -1.07 16.68 17.46 7.94 -0.56 -9.20 -19.76
Delta-hedged put return 297275 (%) 0.61 1550 17.61 8.11 0.17 -7.72  -16.53

Amihud Nliquidity 293459 1.48 4.05 3.40  1.06 0.29 0.08 0.03
Size 289764 6.91 1.41 8.76  7.79 6.81 5.91 5.16
Panel B: Single Equity Call Options

n mean SD p90 p75 median  p25 pl0
Delta-hedged call return 90356 (%) -0.19  5.02 432 123  -0.77 -2.46 -4.37
Moneyness = K/S 90356 1.00 0.03 1.05  1.02 1.00 0.98 0.96
Days-to-maturity 90356 49.32  2.04 52 51 49 48 47
Vega 90356 0.14 0.01 0.15 0.15 0.14 0.14 0.13
Bid-ask spread 90356 0.12 0.08 0.04  0.06 0.10 0.15 0.22
Amihud Hliquidity 89399 0.13 0.26 0.31  0.13 0.05 0.02 0.01
Size 90356 8.08 1.27 9.74 885 7.99 7.19 6.51

Panel C: Single Equity Put Options

n mean SD p90 P75 median  p25 pl0
Delta-hedged Put return 68045 (%) -0.30 4.24  3.56 095  -0.81 -231 -394
Moneyness = K/S 68045 1.00 0.03 1.04  1.02 1.00 0.98 0.95
Days-to-maturity 68045 49.30  2.03 52 51 49 48 47
Vega 68045 0.14 0.01 0.15  0.15 0.14 0.14 0.13
Bid-ask spread 68045 0.11 0.08 0.03  0.06 0.09 0.13 0.21
Amihud Nliquidity 67292 0.08 0.13 0.19  0.09 0.04 0.02 0.01
Size 68045 8.30 1.28 9.97  9.09 8.20 7.40 6.72
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Table 2: Option Alpha Portfolios

This table shows the summary statistics of the option alpha portfolios. At each month, we estimate the

mapping from options alpha to characteristics, 8, by Projected Principal Component Analysis (PPCA)

introduced in section 3, and compute the estimated alphas as the product of 0 and one-month ahead

characteristics. The estimation window is 12 months. The weights of individual options in the alpha

portfolios are proportional to the estimated options alpha.

K ranges from one to 10, and it is the

number of latent factors used in PPCA. Mean, SD, and SR shows the annualized mean return, annualized

standard deviation, and the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt

are skewness and kurtosis. Min and Max are minimum and maximum returns of the alpha portfolios

during the sample period.

Panel A: Alpha Portfolio of Call Options

K Mean SD SR Skew Kurt Min Max
1 0.22 0.14 1.52 1.35 6.19 -0.12 0.27
2 0.23 0.18 1.31 0.35 2.31 -0.15 0.24
3 0.28 0.17 1.62 1.35 6.92 -0.14 0.34
4 0.28 0.18 1.60 0.84 5.17 -0.2 0.31
5 0.28 0.18 1.52 0.71 4.70 -0.17 0.31
6 0.27 0.19 1.41 0.77 5.40 -0.19 0.35
7 0.25 0.19 1.31 0.68 3.92 -0.19 0.31
8 0.26 0.21 1.27 0.64 3.40 -0.19 0.31
9 0.26 0.21 1.24 0.64 4.20 -0.18 0.32
10 0.24 0.20 1.17 0.51 4.34 -0.19 0.33
Panel B: Alpha Portfolio of Put Options
K Mean SD SR Skew Kurt Min Max
1 0.27 0.15 1.80 2.10 11.14 -0.11 0.33
2 0.28 0.18 1.57 0.86 3.72 -0.17 0.25
3 0.32 0.17 1.86 1.11 4.73 -0.17 0.26
4 0.31 0.18 1.72 1.01 3.84 -0.14 0.25
5 0.29 0.17 1.68 0.63 2.55 -0.12 0.24
6 0.30 0.18 1.68 0.70 2.70 -0.12 0.26
7 0.29 0.18 1.58 0.83 2.89 -0.14 0.25
8 0.30 0.19 1.62 0.89 2.65 -0.13 0.25
9 0.29 0.19 1.59 0.86 2.68 -0.12 0.25
10 0.26 0.20 1.28 0.77 3.27 -0.14 0.29
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Table 3: Explanatory Power of Options Risk Factors

This table reveals the explanatory power of option risk factors on the option alpha portfolios returns.
We regress the monthly returns of the option alpha portfolios on the common risk factors in the options
market and report the alpha (in percentage) and factor loadings. Level is the equal-weighted average
excess returns of at-the-money options. Karakaya contains level, maturity and value factors. Maturity
factor is the equal-weighted average return difference between six-month and one-month at-the-money
options. Value factor is the high-minus-low returns of decile portfolios sorted on the value, the difference

between average implied volatility of at-the-money call and put options and realized volatility of the

underlying stock. Newey-West (1987) adjusted t-statistics are reported in the parathesis. *¥*/** /*
indicate the significant at 1%, 5% and 10% confidence level, respectively.
Panel A: Call Option Alpha Portfolio
Level + Iliq. Karakaya+
Excess ret. Level Karakaya + IdioRisk Illiq. + IdioRisk
Alpha 2.31 %% 2. 25%H* 3.17HF* 2.05%%* 2.92%**
(7.42) (6.90) (4.44) (6.67) (3.95)
Level -0.23 -0.09 0.13 0.19
(-0.85) (-0.35) (0.42) (0.68)
Maturity -0.26 -0.23
(-0.58) (-0.51)
Value -0.50* -0.46
(-1.67) (-1.48)
Tliquidity 0.22 0.04
(0.50) (0.09)
IdioRisk 0.81%* 0.70
(1.65) (1.39)
Adj. R? 0.00 -0.00 0.01 0.01 0.01
Num. obs. 298 298 298 298 298
Panel B: Put Option Alpha Portfolio
Level + Illiq. Karakaya+
Excess ret. Level Karakaya + IdioRisk Illig. + IdioRisk
Alpha 2.67HF* 2.62%%* 3.56%** 2.41%%* 3.03%**
(7.90) (7.12) (4.67) (6.93) (4.04)
Level -0.17 -0.18 0.31 0.25
(-0.47) (-0.59) (0.80) (0.75)
Maturity 0.15 0.09
(0.35) (0.21)
Value -0.51%* -0.33
(-1.65) (-1.12)
Mliquidity 0.69 0.53
(1.58) (1.17)
IdioRisk 0.95* 0.87*
(1.94) (1.73)
Adj. R? 0.00 -0.00 0.01 0.02 0.02
Num. obs. 298 298 298 298 298
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Table 4: Explanatory Power of Equity Risk Factors

This table reveals the explanatory power of equity risk factors on the option alpha portfolios returns.
We regress the monthly returns of the option alpha portfolios on the common risk factors in the stock
market and report the alpha (in percentage) and factor loadings. Market is the stock market factor.
FF3 is the market, size, and value factors in Fama and French (1993). UMD is the momentum factor in
Carhart (1997). FF5 is the market, size, value, investment, and profitability factors in Fama and French
(2015). Q4 contains the market, size, investment and profitability factors proposed by Hou, Xue and
Zhang (2015). Q5 is the Q4 plus the expected investment growth factors in Hou, Mo, Xue and Zhang
(2021). MF4 consists of market, size, management and performance factors in Stambsugh and Yuan
(2017). Newey-West (1987) adjusted t-statistics are reported in the parathesis. ***/**/* indicate the
significant at 1%, 5% and 10% confidence level, respectively.

Panel A: Call Option Alpha Portfolio

Market FF5 FF5+4+umd Q4 Q5 MF4
alpha 2.31°%** 2.28%** 2.33%** 2.41%%* 2.24%** 1.89***
(7.59) (8.13) (7.98) (7.57) (8.01) (6.93)
mktrf 0.04 -0.06 0.00 -0.14 -0.10 0.11
(0.53) (-0.83) (0.02) (-1.56) (-1.15) (1.32)
smb 0.36%** 0.33%**
(3.09) (3.00)
hml -0.48*** -0.37***
(-4.03) (-3.23)
rmw -0.37%* -0.40%%*
(-2.39) (-2.72)
cma 0.52%** 0.48***
(2.65) (2.59)
umd 0.18
(1.46)
me 0.45%* 0.48%*
(2.24) (2.37)
ia -0.20 -0.18
(-0.94) (-0.83)
roe -0.22* -0.33**
(-1.75) (-2.19)
eg 0.30
(1.46)
size 0.48**
(2.47)
mgmt 0.21
(0.97)
perf 0.25%*
(2.01)
Adj. R? -0.00 0.22 0.25 0.12 0.12 0.11
Num. obs. 298 298 298 298 298 298
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Panel B: Put Option Alpha Portfolio

Market FF5 FF5+4+umd Q4 Q5 MF4
alpha 2.67F** 2.76%** 2.71F** 2.89%** 2.70%*** 2.34*¥*
(7.99) (8.36) (7.99) (7.57) (7.86) (7.30)
mktrf 0.00 -0.11 -0.07 -0.20 -0.16 0.06
(0.00) (-1.55) (-0.85) (-2.13) (-1.75) (0.61)
smb 0.32%%* 0.30%*
(2.78) (2.56)
hml -0.45%%* -0.38%%*
(-3.45) (-3.15)
rmw -0.36*** -0.38%**
(-2.66) (-2.90)
cma 0.38%* 0.36%*
(2.05) (2.03)
umd 0.11
(0.83)
me 0.33%* 0.36%*
(1.97) (2.14)
ia -0.22 -0.20
(-1.12) (-0.99)
roe -0.35%* -0.467%%*
(-2.21) (-2.60)
eg 0.32
(1.44)
size 0.42%*
(2.49)
mgmt 0.17
(0.74)
perf 0.20
(1.45)
Adj. R? -0.00 0.19 0.20 0.10 0.11 0.07
Num. obs. 298 298 298 298 298 298
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Table 6: Alpha Portfolios on Subsamples of Options

This table shows the Annualized Sharpe ratios of alpha portfolios on options above and below charac-
teristics median. Options alphas are estimated using all call or put options, while the high (low) alpha
portfolios are constructed using options with the characteristic above (below) its median. Estimation
window is 12 months and the latent factors are set to three. abs(H — L) shows the absolute value of

Sharpe rstio differences between high alpha portfolios and low alpha portfolios.

Panel A. Call Options Panel B: Put Options

Char. Cat. High Low abs(H-L) High Low abs(H-L)
rns9m Risk 1.33 0.62 0.71 1.53 1.01 0.52
rnk9m Risk 1.03 1.16 0.14 1.41 1.32 0.08
rns12m Risk 1.33 0.61 0.72 1.55 0.96 0.59
rnk12m Risk 1.05 1.14 0.09 1.33 1.32 0.01
mfvu Risk 1.27 0.56 0.72 1.51 1.01 0.51
mfvd Risk 1.26 0.69 0.57 1.42 1.15 0.27
ivrv Risk 0.92 1.49 0.57 1.30 1.76 0.47
ivrv_ratio Risk 1.44 1.00 0.45 1.71 1.37 0.33
vol Liquidity 0.70 1.34 0.64 1.00 1.42 0.42
dvol Liquidity 0.68 1.35 0.67 0.93 1.42 0.49
VolMkt Liquidity 1.26 0.97 0.29 1.45 1.25 0.20
Iiquidity Liquidity 1.42 0.70 0.72 1.69 0.87 0.82
zerotrade Liquidity 1.27 0.84 0.43 1.47 1.09 0.39
DolVol Liquidity 1.52 0.69 0.83 1.68 0.91 0.77
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Table 7: Alpha Portfolios with Interactions of Characteristics

This table shows the summary statistics of the alpha portfolios when adding the interaction of char-
acteristics. We interact rns9m, rnk9m, ivrv, and mfvu with vol, illiquidity, size, and so to allow the
nonlinearity. At each month, we estimate the mapping from options alpha to characteristics, 8, by Pro-
jected Principal Component Analysis (PPCA) introduced in section 3, and compute the estimated alphas
as the product of ® and one-month ahead characteristics. The estimation window is 12 months. The
weights of individual options in the alpha portfolios are proportional to the estimated options alpha. K
ranges from one to 10, and it is the number of latent factors of PPCA. Mean, SD, and Sharpe shows the
annualized mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha
portfolios, respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and

maximum returns of the alpha portfolios during the sample period.

Panel A: Call Option Alpha Portfolio

K Mean SD Sharpe Skew Kurt Min Max
1 0.23 0.14 1.60 1.06 5.54 -0.12 0.27
2 0.25 0.18 1.40 0.25 1.91 -0.16 0.23
3 0.30 0.18 1.69 1.02 4.99 -0.15 0.33
4 0.31 0.18 1.68 0.70 3.73 -0.20 0.29
5 0.30 0.18 1.63 0.76 3.47 -0.16 0.31
6 0.28 0.19 1.50 0.83 4.83 -0.16 0.35
7 0.28 0.19 1.42 0.60 3.87 -0.20 0.32
8 0.28 0.21 1.36 0.58 3.50 -0.20 0.31
9 0.28 0.21 1.38 0.43 3.17 -0.20 0.31
10 0.28 0.20 1.37 0.57 3.57 -0.20 0.31
Panel B: Put Option Alpha Portfolio
K Mean SD Sharpe Skew Kurt Min Max
1 0.27 0.15 1.82 1.58 7.56 -0.11 0.29
2 0.29 0.18 1.62 0.80 3.26 -0.16 0.26
3 0.33 0.17 1.88 0.96 3.84 -0.16 0.26
4 0.32 0.18 1.76 1.13 4.05 -0.12 0.30
5 0.30 0.18 1.69 0.62 2.05 -0.12 0.22
6 0.30 0.18 1.68 0.72 2.47 -0.12 0.23
7 0.29 0.19 1.58 1.07 3.47 -0.13 0.26
8 0.30 0.19 1.57 1.10 3.68 -0.11 0.29
9 0.30 0.20 1.54 1.23 4.36 -0.11 0.32
10 0.27 0.21 1.31 1.32 5.29 -0.12 0.36
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Table 9: Alpha Portfolios with Different Estimation Windows

This table shows the summary statistics of the alpha portfolios with different estimation windows. The
estimation windows are 12, 15, 18, 21, and 24 months. At each month, we estimate the mapping from
options alpha to characteristics, 8, by Projected Principal Component Analysis (PPCA) introduced in
section 3, and compute the estimated alphas as the product of 0 and one-month ahead characteristics.
The weights of individual options in the alpha portfolios are proportional to the estimated options
alpha. We set the number of latent factors K equal to three. We report the summary statistics of
alpha portfolios in the entire and post-2004 samples. Mean, SD, and Sharpe shows the annualized
mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha portfolios,
respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and maximum

returns of the alpha portfolios during the sample period.

Panel A: Call Alpha Portfolios

K Window Mean SD Sharpe Skew Kurt Min Max
3 12 0.28 0.17 1.62 1.35 6.92 -0.14 0.34
3 15 0.25 0.18 1.40 1.97 16.39 -0.18 0.45
3 18 0.26 0.16 1.61 1.22 6.31 -0.15 0.31
3 21 0.19 0.16 1.21 1.03 5.59 -0.13 0.32
3 24 0.22 0.18 1.24 0.60 2.40 -0.12 0.28
Panel B: Put Alpha Portfolios
K Window Mean SD Sharpe Skew Kurt Min Max
3 12 0.32 0.17 1.86 1.11 4.73 -0.17 0.26
3 15 0.29 0.18 1.57 1.48 8.92 -0.13 0.40
3 18 0.27 0.17 1.60 1.21 5.18 -0.13 0.30
3 21 0.26 0.17 1.60 0.70 2.84 -0.12 0.28
3 24 0.24 0.18 1.32 0.61 1.67 -0.14 0.28
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Table 10: Subsamples and Alpha Portfolios

This table shows the summary statistics of the alpha portfolios with different estimation windows. The
estimation windows are 12, 15, 18, 21, and 24 months. At each month, we estimate the mapping from
options alpha to characteristics, 8, by Projected Principal Component Analysis (PPCA) introduced in
section 3, and compute the estimated alphas as the product of 0 and one-month ahead characteristics.
The weights of individual options in the alpha portfolios are proportional to the estimated options
alpha. We set the number of latent factors K equal to three. We report the summary statistics of
alpha portfolios in the entire and post-2004 samples. Mean, SD, and Sharpe shows the annualized
mean return, annualized standard deviation, and the annualized Sharpe ratio of the alpha portfolios,
respectively. Skew and Kurt are skewness and kurtosis. Min and Max are minimum and maximum

returns of the alpha portfolios during the sample period.

Panel A: Call Alpha Portfolios (2004-2019)

K Window Mean SD Sharpe Skew Kurt Min Max
3 12 0.20 0.13 1.49 0.36 1.14 -0.07 0.18
3 15 0.20 0.14 1.40 -0.27 2.66 -0.18 0.16
3 18 0.23 0.13 1.70 0.30 0.63 -0.08 0.16
3 21 0.16 0.14 1.16 0.16 0.13 -0.08 0.14
3 24 0.16 0.15 1.08 0.08 0.49 -0.11 0.16
Panel B: Put Alpha Portfolios (2004-2019)
K Window Mean SD Sharpe Skew Kurt Min Max
3 12 0.23 0.14 1.62 0.00 2.28 -0.17 0.16
3 15 0.23 0.15 1.51 0.14 0.99 -0.12 0.15
3 18 0.23 0.14 1.63 0.25 0.65 -0.10 0.14
3 21 0.25 0.15 1.69 0.24 0.20 -0.12 0.14
3 24 0.20 0.16 1.20 0.32 0.20 -0.10 0.16
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weight

weight

These two figures show the distribution of weights of individual options in the alpha portfolios. The upper
(lower) panel shows weights for call (put) options.The alpha portfolios are constructed as introduced in
table 2. The number of latent factors is three, and the estimation window is twelve months. The blue and
red lines represent the maximum and minimum weights. The grey-shadowed areas display the weights
ranked between maximum and 95%, and the weights ranked between minimum and 5%, respectively.
The dark-shadowed area represents weights ranked between 5% and 95%. The black line in the middle
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Figure 1: Distributions of Alpha Portfolio Weights

of the figure shows the median weights of individual options.
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Figure 2: Cumulative Returns of Option Alpha and Market Portfolios

These two figures exhibit the natural logarithm of the cumulative returns (in excess of one) of two alpha

and two market portfolios. The upper (lower) panel shows price path of portfolios of call (put) options.

The blue and orange lines represent the log prices of the alpha portfolios with one and three latent

factors, respectively. The estimation window is twelve months. The green and red lines are log prices of

call (put) options and stock market portfolios, respectively. The call (put) options market portfolio is

the equal-weighted average return of all one-month at-the-money call (put) options. The four portfolios

are adjusted to have the same standard deviation as the stock market portfolio.
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Figure 3: Alphas of Options Market Risk Factors with Varying K

This figure reveals the explanatory power of options market risk factors on the returns of alpha portfolios
with the varying number of latent factors K. The upper (lower) panel is for call (put) options. The esti-
mation window of the alpha portfolios is twelve months. We regress the returns of the alpha portfolios on
options market risk factors and report alphas. Excess return is the monthly return of the alpha portfolios
minus the risk-free rate. Level is the market portfolio that contains all call and put options. Karakaya
represents the level, maturity, and value factors constructed following Karakaya (2013). Illiquidity and
Idiosyncratic Risk are two factors constructed on Amihud’s illiquidity ratio and idiosyncratic volatility
of the underlying, respectively. Factors are constructed as the difference of extreme deciles of one-month

at-the-money options.
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Figure 4: Contributions of Characteristics to Call Options Factor Loadings

The heatmap displays the contributions of the firm characteristics on options factor loadings. The number
of latent factors is three, and the estimation window is twelve months. We estimate the options factor
loadings by PPCA and regress the estimated factor loadings on characteristics to uncover the mapping
from factor loadings to characteristics. The contribution of the firm characteristic is the summation of
the magnitude of the mapping. The contributions are scaled by maximum contribution each month, so
the range of contributions is zero to one. The heatmap shows the contributions of characteristics in each

month. Darker (lighter) the mark, the closer the contribution to one (zero).
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Figure 5: Contributions of Characteristics to Call Options Alphas

The heatmap displays the contributions of the firm characteristics on options alphas. The number of
latent factors is three, and the estimation window is twelve months. The contributions are measured by
6, the mapping from options alphas to characteristics. The contributions are scaled by maximum con-
tribution each month, so the range of contributions is zero to one. The heatmap shows the contributions

of characteristics in each month. Darker (lighter) the mark, the closer the contribution to one (zero).
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Figure 6: Contributions of Characteristics to Call Options Factor Loadings - Nonlinear
Case

The heatmap displays the contributions of the firm characteristics on options factor loadings. The number
of latent factors is three, and the estimation window is twelve months. We interact vol, illiquidity, size,
and so with rns9m, rnk9m, ivrv, and mfvu. Contributions are calculated as in figure 4. Darker (lighter)

the mark, the closer the contribution to one (zero).
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Figure 7: Contributions of Characteristics to Call Options Alphas - Nonlinear Case
The heatmap displays the contributions of the firm characteristics on options alphas. The number of
latent factors is three, and the estimation window is twelve months. We interact vol, illiquidity, size, and

so with rns9m, rnk9m, ivrv, and mfvu. Contributions are calculated as in figure 5. Darker (lighter) the

mark, the closer the contribution to one (zero).
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Internet Appendix

(not for publication)

Option Mispricing and Alpha Portfolios

Andras Fulop, Junye Li, and Mo Wang

I. Characteristics

Table A1 summarizes the firm and option characteristics used in the paper. The original
authors of the characteristics and years of the paper published are displayed. The details
of the construction of the characteristics can be found in Chen and Zimmermann (2022)
and Bali, Beckmeyer, Moerke, and Weigert (2022). The characteristics are divided into 10
categories according to Bali, Beckmeyer, Moerke, and Weigert (2022). If the characteristic
is not in Bali, Beckmeyer, Moerke, and Weigert (2022), we decide its category based on

Chen and Zimmermann (2022) or the category of similar characteristics.

II. Additional Figures and Tables

Figure A1l presents how the alpha estimates (risk-adjusted returns) resulting from the
different stock factor models vary with respect to the number of the latent factors in
PPCA. Figure A2 presents how the alpha estimates resulting from the latent option
factor models vary with respect to the number of the latent factors in PPCA.

Figures A3 and A4 present the cross-sectional and temporal contributions of char-
acteristics to beta and alpha, respectively. The number of latent factors is three, and
the estimation window is twelve months. The contribution of the firm characteristic is
the summation of the magnitude of the mapping. The contributions are scaled by the
maximum contribution each month, so the range of contributions is zero to one. The

heatmap shows the contributions of characteristics in each month.



Figures A5 and A6 present the average ranks of characteristics in the long and short
legs of the call and put alpha portfolios, respectively. The number of latent factors is
three, and the estimation window is twelve months. The ranks of characteristics range
from -0.5 to 0.5. The long and short legs contain options with positive and negative
weights in the put portfolios, respectively. The light blue line represents the short leg,
while the orange line represents the long leg.

Figures A7 and AS present the cross-sectional and temporal contributions of charac-
teristics to beta and alpha, respectively, when we take into account interaction terms of
characteristics.

Table A2 reveals the explanatory power of option latent factors on the alpha portfo-
lios” returns. We extract latent factors from options by PCA or RP-PCA (Risk Premium
PCA). We regress the monthly returns of the alpha portfolios on the latent factors and
report the alpha (in percentage) and factor loadings. PCA (RP-PCA) factors are con-
structed by applying PCA (RP-PCA) to at-the-money options. The A in RP-PCA is set

to 10.

III. Results from Single Equity Options Data

II1.1. Overall Performance

Table A3 shows the performances of alpha portfolios built on single equity options. The
estimation window is six months. We choose six months instead of twelve months because
the underlying that satisfies the liquidity filter becomes insufficient when extending the
estimation window. Although we normalize the in-sample annualized standard deviation
of alpha portfolios to 20%, the standard deviations of the alpha portfolios are notably
high, which may be due to the small number of options used. The annualized Sharpe
ratios of the alpha portfolios for call options range from 1.66 to 2.23, and those for
put options range from 1.26 to 1.79. Sharpe ratios are lower for put options than call
options, which may step from the smaller sample size of put options. These Sharpe ratios

are higher than those of volatility surface options. Annualized mean returns of alpha



portfolios with three latent factors are 69% for call options and 62% for put options,
which are approximately twice as large as those for volatility surface options. When
K = 3, the kurtosis is 1.88 for call options and 4.26 for put options, indicating that the
performances of the alpha portfolios are not driven by outliers. The ranges of portfolio
returns also support this argument.

We investigate the impact of the length of estimation windows on the performance of
alpha portfolios in the entire sample and post-2004 sample. Table A4 displays the results.
Like the empirical pattern of the volatility surface options, the annualized Sharpe ratios
decrease when prolonging the estimation window in the whole sample. The decrease
is significant for call options: extending the estimation window from 6 months to 12
months leads to a decrease in the Sharpe ratio from 2.22 to 1.13. Sharpe ratios of put
options are relatively low in general but still have a decreasing pattern when the length
of the estimation window increases. Two issues may be responsible for the decreasing
Sharpe ratios. The first one is the assumption of the constant characteristics discussed
previously. When extending the length, assuming that the characteristics are unchanged
within the estimation window becomes implausible. The second issue is the decreasing
number of options used each month, as shown in the last columns of Table A4. PPCA
requires sufficient options to get a consistent estimator. Given that the sample size of
single equity options is limited, the loss of options caused by extending the estimation
window hurt the Sharpe ratio more severely than that in volatility surface options. No
matter the length of estimation windows, the put options available for PPCA are less
than the call options, which is an important reason why the Sharpe ratios of put options
are lower than that of call options.

At the beginning of the single equity options sample, the number of options available
for PPCA is minimal, preventing the PPCA from consistently estimating the parameters.
After dropping the alpha portfolios before 2004, the annualized Sharpe ratios of alpha
portfolios with three latent factors and six-month estimation windows increase to 2.62
for single equity call options and 2.25 for single equity put options. The Sharpe ratios

still decrease with the length of the estimation window, while the magnitudes of Sharpe



ratios are broadly larger than those in the entire sample for call and put options.

I11.2. Factor Analysis

We explore if the returns of alpha portfolios can be attributed to option factors docu-
mented in the literature. Option factors are constructed similarly as before, except we
use single equity options instead of volatility surface options in construction. Table A5
displays the results. For the single equity call options, the coefficient of the value factor
is highly significant. The alpha of the alpha portfolios decreases from 5.73% (t=9.58) to
3.82% (t=4.77) when introducing all five factors. No factor is significant in explaining
the alpha portfolio returns of single euqity put options. We aggregate all the factors in
the last columns, and the risk-adjusted return of the alpha portfolio for single equity call
options is 3.82% (t=4.77) and that for single equity put options is 4.91% (t=4.30). Over-
all, option factor models cannot explain the performances of alpha portfolios on single

equity options.

II1.3. Mispricing, Systematic Risks, and Characteristics

We explore the association of characteristics with alpha and with factor loadings. We
compute the contributions of the characteristics as in section 4.3. Table A6 shows the top
20 essential characteristics in their contribution to alpha and factor loadings. Character-
istics that contribute to systematic risks also contribute to mispricing. This phenomenon
is common in both single equity call and put options and is consistent with the findings
in volatility surface options. We divide the most characteristics into a group related to
options liquidity and a group linked to higher moments risks. The characteristics of the
two groups are similar to those of volatility surface options. The ranks of the liquidity-
related characteristics decline compared with their ranks in the results of volatility surface
options, indicating that risk-related characteristics are more important in measuring sys-
tematic risks and mispricing among single equity options. The possible reason may be
that the single equity options we used are highly liquid and have less variation in liquidity,

so the liquidity characteristics are not as important as in the volatility surface options.



We also construct alpha portfolios using subsamples of single equity options to explore
the impact of the characteristics. Table A7 in the appendix shows the Sharpe ratios of the
high and low alpha portfolios on single equity options. The high and low alpha portfolios
are constructed the same as those in Table 6. The results are similar to those for call and
put options, except that the Sharpe ratio differences between risk-related characteristics
subsamples are larger on average than those between liquidity-related subsamples. The
decreases in the importance of liquidity-related characteristics are as expected since the

single equity options we used are very liquid.

II1.4. Liquidity and Transaction Cost

To explore the impact of option liquidity on alpha portfolio performance, we estimate
the portfolio weights using all options, and construct portfolios using only liquid options.
We define liquid options as options with positive trading volume, positive open interest
and the bid-ask-spread below its 75% quantile (0.15 for call and 0.13 for put). The alpha
portfolios are summarized in table A8. With only liquid options, the performances of
alpha portfolios are even higher than those in table A3. When the number of latent
factor equals 3, the annualized Sharpe ratio of single equity call (put) alpha portfolio
increase from 2.22 (1.68) to 2.44 (2.45). Table A8 suggests that mispricing we document
in the options market is not restricted to illiquid options.

To shed light on the transaction cost, we introduce the effective bid-ask spread. We
consider effective bid-ask spread of 0, 10%, 20% and 40% of quoted bid-ask spread. The
effective bid (ask) is the average of quoted bid and ask price minus (plus) one-half of the
effective bid-ask spread. Given the single equity options in our sample are short-lived, to
be more realistic, we hold the options to maturity when we construct the alpha portfolios.
The portfolio weights are estimated by one-month single equity option returns as before.
Table A9 displays the results. As we expected, the annualized Sharpe ratios of single
equity options decrease with transaction cost. We find that when effective spread is 40%-
60% of quoited bid-ask spread, the annualized Sharpe ratios of single equity option alpha

portfolios are close to zero.
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Table A2: Explanatory Power of Options Latent Factors

This table reveals the explanatory power of option latent factors on the returns of alpha portfolios. We
regress the monthly returns of the alpha portfolios on the option latent factors and report the alpha
(in percentage) and factor loadings. PCA (RP-PCA) factors are constructed by applying PCA (RP-
PCA) to at-the-money options. The X in RP-PCA is set to 10. Newey-West (1987) adjusted t-statistics

are reported in the parathesis. ***/**/* indicate the significant at 1%, 5% and 10% confidence level,

respectively.
Panel A: Alpha Portfolio of Call Options
PCA 1F PCA 3F RP-PCA 1F RP-PCA 3F
Alpha 2.20%** 2.19%%* 2.20%** 2. 24%%*
(7.80) (8.23) (7.80) (7.71)
PCA1 0.00 0.00
(1.46) (1.56)
PCA2 0.02%*
(2.37)
PCA3 0.00
(-0.13)
RP-PCA1 0.00 0.00
(1.45) (1.27)
RP-PCA2 0.02%*
(2.37)
RP-PCA3 -0.01
(-0.64)
Adj. R? 0.01 0.12 0.01 0.12
Num. obs. 298 298 298 298
Panel B: Alpha Portfolio of Put Options
PCA 1F PCA 3F RP-PCA 1F RP-PCA 3F
Alpha 2.00%** 1.99%** 1.99%** 2.09%**
(7.53) (7.92) (7.48) (6.74)
PCA1 0.01%** 0.01%**
(4.05) (4.86)
PCA2 0.02%**
(2.86)
PCA3 -0.01
(-0.97)
RP-PCA1 0.017%** 0.01%**
(4.05) (4.16)
RP-PCA2 0.027%**
(3.02)
RP-PCA3 -0.01
(-1.04)
Adj. R? 0.11 0.23 0.11 0.22
Num. obs. 298 298 298 298




Table A3: Alpha Portfolios of Single Equity Options

This table shows the summary statistics of the alpha portfolios built on single equity options. The alpha
portfolios are constructed in the way introduced in table 2. The number of latent factors K ranges from
one to ten. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and
the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Alpha Portfolio of Single Equity Call Options

K Mean SD SR Skew Kurt Min Max
1 0.66 0.30 2.21 1.00 2.73 -0.19 0.45
2 0.65 0.29 2.23 0.56 1.35 -0.18 0.37
3 0.69 0.31 2.22 0.98 1.88 -0.17 0.39
4 0.60 0.31 1.93 0.86 2.98 -0.25 0.46
5 0.48 0.29 1.66 0.57 3.72 -0.37 0.38
6 0.59 0.32 1.86 0.28 1.74 -0.36 0.38
7 0.58 0.32 1.79 0.48 1.34 -0.27 0.39
8 0.60 0.31 1.89 0.44 2.28 -0.34 0.43
9 0.59 0.32 1.85 0.42 1.41 -0.31 0.38
10 0.56 0.33 1.72 -0.07 3.38 -0.48 0.36
Panel B: Alpha Portfolio of Single Equity Put Options
K Mean SD SR Skew Kurt Min Max
1 0.54 0.40 1.34 -2.86 34.71 -1.11 0.64
2 0.57 0.34 1.67 0.23 3.56 -0.36 0.47
3 0.62 0.37 1.68 0.51 4.26 -0.37 0.51
4 0.56 0.35 1.62 0.16 4.25 -0.43 0.45
5 0.51 0.38 1.33 -0.98 12.52 -0.77 0.54
6 0.56 0.34 1.63 -0.42 3.65 -0.44 0.42
7 0.57 0.32 1.79 -0.24 2.62 -0.41 0.36
8 0.46 0.37 1.26 -0.52 2.25 -0.40 0.35
9 0.52 0.34 1.52 -0.09 1.48 -0.29 0.36
10 0.53 0.32 1.64 -0.40 1.64 -0.32 0.29
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Table A4: Alpha Portfolios of Single Equity Options with Different Estimation Windows

This table shows the summary statistics of the alpha portfolios of single equity options with different
estimation windows. The estimation windows are 6, 9, 12, 15, and 18 months. We set the number of
latent factors K equal to three. We report the summary statistics of alpha portfolios in the entire and
post-2004 samples. Mean, SD, and SR shows the annualized mean return, annualized standard deviation,
and the annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and
kurtosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample

period. Num. Obs. reports the monthly average number of options used to construct the alpha portfolios.

Panel A: Alpha Portfolio of Single Equity Call Options (Full Sample)

K Window Mean SD SR Skew Kurt Min Max Num.Obs.
3 0.69 0.31 2.22 0.98 1.88 -0.17 0.39 309.44
3 0.41 0.24 1.70 -0.22 0.38 -0.16 0.24 255.78
3 12 0.32 0.28 1.13 0.15 0.99 -0.23 0.33 219.28
3 15 0.34 0.26 1.31 0.33 0.59 -0.16 0.32 192.76
3 18 0.37 0.25 1.46 0.41 1.84 -0.26 0.30 171.67
Panel B: Alpha Portfolio of Single Equity Call Options (2004-2021)
K Window Mean SD SR Skew Kurt Min Max Num.Obs.
3 6 0.77 0.29 2.62 0.92 1.86 -0.11 0.38 365.14
3 0.43 0.24 1.74 -0.27 0.34 -0.16 0.24 307.36
3 12 0.36 0.29 1.23 0.15 0.99 -0.23 0.33 266.61
3 15 0.34 0.27 1.28 0.36 0.58 -0.16 0.32 236.14
3 18 0.32 0.26 1.25 0.41 2.10 -0.26 0.30 211.34
Panel C: Alpha Portfolio of Single Equity Put Options (Full Sample)
K Window Mean SD SR Skew Kurt Min Max Num.Obs.
3 0.62 0.37 1.68 0.51 4.26 -0.37 0.51 233.03
3 9 0.47 0.30 1.56 -0.51 4.19 -0.48 0.30 192.98
3 12 0.39 0.29 1.35 0.31 1.18 -0.25 0.34 165.95
3 15 0.28 0.25 1.13 0.60 1.62 -0.17 0.35 146.33
3 18 0.31 0.25 1.21 0.19 1.45 -0.22 0.31 130.83
Panel D: Alpha Portfolio of Single Equity Put Options (2004-2021)
K Window Mean SD SR Skew Kurt Min Max Num.Obs.
3 0.82 0.36 2.25 0.77 4.26 -0.32 0.51 292.55
3 9 0.57 0.31 1.83 -0.79 5.97 -0.48 0.30 244.12
3 12 0.47 0.30 1.59 0.25 1.03 -0.25 0.34 210.53
3 15 0.31 0.25 1.22 0.64 1.58 -0.14 0.35 185.62
3 18 0.32 0.26 1.26 0.04 1.56 -0.22 0.31 165.76
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Table A5: Explanation Power of Options Market Risk Factors on Single Equity Options
Alpha Portfolios

This table reveals the explanatory power of risk factors in the options market on the returns of the
alpha portfolios of single equity options. We regress the monthly returns of the alpha portfolios on the
common risk factors in the options market and report the alpha (in percentage) and factor loadings.
Options market risk factors are introduced in table 3, but are constructed by single equity options.
Newey-West (1987) adjusted t-statistics are reported in the parathesis. *** /** /* indicate the significant
at 1%, 5% and 10% confidence level, respectively.

Panel A: Alpha Portfolio of Single Equity Call Options

Level + Iliq. Karakaya +
Excess Ret. Level Karakaya + IdioRisk Illigq. + IdioRisk
Alpha 5.73¥** 5.96%** 3.99%** 5.53*H* 3.82%H*
(9.58) (9.40) (5.89) (6.59) (4.77)
Level 0.78%* 0.49 0.90* 0.60
(1.87) (0.98) (1.91) (1.01)
Maturity 0.62 0.56
(0.69) (0.60)
Value 1.51%** 1.517%%*
(3.11) (3.00)
Mliquidity -0.73 -0.01
(-1.39) (-0.03)
IdioRisk -0.16 0.18
(-0.27) 0.34
Adj. R? 0.00 0.02 0.07 0.02 0.06
Num. obs. 292 292 292 292 292

Panel B: Alpha Portfolio of Single Equity Put Options

Level + Iliq. Karakaya +
Excess Ret. Level Karakaya + IdioRisk Illiq. + IdioRisk

Alpha 5.20%%* 5.427%%* 5.07HF* 5.23%%* 4.91%%*
(7.17) (6.79) (4.86) (5.77) (4.30)

Level 0.76 0.24 0.87 0.34
(1.16) (0.43) (1.13) (0.47)

Maturity 1.38 1.33
(1.12) (1.06)

Value 0.28 0.34
(0.55) (0.65)

Mliquidity 0.03 0.17
(0.05) (0.32)

IdioRisk 0.24 0.24
(0.46) (0.46)

Adj. R? 0.00 0.01 0.01 0.00 0.00

Num. obs. 292 292 292 292 292
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Table A7: Alpha Portfolios of Single Equity Options Subsamples

This table shows the alpha portfolios constructed using the subsamples of single euqity options. The
options alphas are estimated using all single equity options, while the high (low) alpha portfolios are
constructed using option with the characteristic above (below) the median. We choose 3 latent factors
and a 6-month estimation window. abs(H — L) represents the absolute value of Sharpe ratio differences

between high and low alpha portfolios.

Single Equity Calls Single Equity Puts

Char. Cat. High Low abs(H-L) High Low abs(H-L)
rns9m Risk 1.94 0.77 1.17 1.81 0.23 1.59
rnk9m Risk 0.54 2.11 1.56 -0.12 1.77 1.89
rnsl2m Risk 2.05 0.69 1.35 1.69 0.32 1.36
rnk12m Risk 0.55 2.09 1.54 -0.03 1.69 1.73
mfvu Risk 2.03 0.35 1.68 1.73 -0.01 1.73
mfvd Risk 2.15 0.24 1.90 1.85 -0.28 2.13
ivry Risk 1.10 1.87 0.77 0.87 1.38 0.51
ivrv_ratio Risk 1.81 1.20 0.61 1.34 1.04 0.29
vol Liquidity 2.04 1.05 0.98 1.78 0.47 1.31
dvol Liquidity 2.00 1.08 0.92 1.83 0.46 1.37
VolMkt Liquidity 1.19 2.01 0.83 0.53 1.55 1.02
Tiquidity Liquidity 2.01 1.09 0.92 1.69 0.64 1.05
zerotrade Liquidity 0.95 2.00 1.04 0.63 1.58 0.95
DolVol Liquidity 1.85 1.28 0.57 1.52 0.86 0.67
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Table A8: Alpha Portfolios of Liquid Single Equity Options

This table reveals the performance of alpha portfolios constructed by liquid single equity options.
We relax the restriction that options should have positive trading volume, and estimate the options
alphas using all options. We then construct alpha portfolios only using liquid options. Liquid
call (put) options are defined as options with positive trading volume, positive open interest and
option bid-ask spread less than 0.15 (0.13). The number of latent factors K ranges from one to
ten. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and the
annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Alpha Portdolios of Single Equity Call Options

K Mean SD SR Skew Kurt Min Max
1 0.60 0.22 2.79 1.33 6.05 -0.13 0.45
2 0.60 0.23 2.66 1.30 4.51 -0.13 0.38
3 0.60 0.25 2.44 2.29 12.95 -0.12 0.60
4 0.54 0.23 2.40 1.83 7.52 -0.10 0.45
5 0.44 0.20 2.20 1.26 3.22 -0.12 0.31
6 0.51 0.21 2.40 1.82 9.32 -0.13 0.47
7 0.51 0.21 2.45 1.55 6.66 -0.12 0.41
8 0.50 0.21 2.38 1.69 8.09 -0.13 0.43
9 0.51 0.21 2.45 1.27 4.88 -0.14 0.36
10 0.51 0.22 2.35 1.93 10.10 -0.13 0.48
Panel B: Alpha Portdolios of Single Equity Put Options
K Mean SD SR Skew Kurt Min Max
1 0.50 0.20 2.55 0.92 1.86 -0.11 0.28
2 0.50 0.20 2.42 0.85 2.77 -0.20 0.31
3 0.48 0.20 2.45 1.21 2.39 -0.08 0.27
4 0.46 0.20 2.31 1.64 6.01 -0.08 0.40
5 0.32 0.17 1.91 1.36 5.12 -0.12 0.30
6 0.40 0.19 2.13 0.53 2.38 -0.18 0.21
7 0.40 0.19 2.15 0.54 2.47 -0.18 0.22
8 0.40 0.18 2.17 0.57 2.07 -0.16 0.21
9 0.39 0.18 2.15 0.57 2.23 -0.15 0.23
10 0.40 0.18 2.27 0.52 1.99 -0.16 0.23

15



Table A9: Alpha Portfolios of Liquid Single Equity Options

This table shows the performance of alpha portfolios when introducing the transaction cost. We
introduce transaction cost by considering effective bid-ask spread of 0, 10%,20% and 40% of quoted
bid-ask spread. The option returns used to estimate the alpha portfolio weights are one-month return,
and ones used to contruct the alpha portfolio are hold-to-maturity returns (about 50 days on average).
The number of latent factors in estimating portfolio weights is 3 and the estimatino window is 6
months. Mean, SD, and SR shows the annualized mean return, annualized standard deviation, and the
annualized Sharpe ratio of the alpha portfolios, respectively. Skew and Kurt are skewness and kur-

tosis. Min and Max are minimum and maximum returns of the alpha portfolios during the sample period.

Panel A: Single Equity Call Alpha Portfolio with Transaction Cost

K window Eff. Spread Mean SD Sharpe Skew Kurt Min Max
3 6 0 1.04 0.40 2.58 0.96 2.23 -0.32 0.60
3 6 10 0.86 0.39 2.20 0.86 2.16 -0.34 0.56
3 6 20 0.68 0.38 1.79 0.76 2.11 -0.37 0.53
3 6 40 0.32 0.36 0.87 0.54 2.00 -0.41 0.46
Pane B: Single Equity Put Alpha Portfolio with Transaction Cost
K window Eff. Spread Mean SD Sharpe Skew Kurt Min Max
3 6 0 0.91 0.47 1.94 0.81 3.19 -0.38 0.67
3 6 10 0.76 0.46 1.64 0.66 2.95 -0.40 0.64
3 6 20 0.60 0.45 1.32 0.50 2.73 -0.41 0.60
3 6 40 0.28 0.44 0.64 0.17 2.38 -0.45 0.53
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Figure A1l: Alphas of Stock Market Risk Factors with Varying K

The two figures reveal the explanatory power of stock market risk factors on the returns of alpha portfolios
with the varying number of latent factors K. The upper (lower) panel is for call (put) alpha portfolios.
The estimation window of the alpha portfolios is twelve months. We regress the returns of the alpha
portfolios on stock market risk factors and report alphas. Excess return is the monthly return of the
alpha portfolios minus the risk-free rate. Market is the market portfolio of stocks in the CAPM model.
FF5 is the market, size, value, investment, and profitability in Fama and French (2015). UMD is the
momentum factor in Carhart (1997). Q4 is the market, size, investment and profitability in Hou, Xue
and Zhang (2015). Q5 is Q4 augmented by expected investment growth in Hou, Mo, Xue and Zhang
(2021). MF4 is market, size, management and performance factors in Stambaugh and Yuan (2017).
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Figure A2: Alphas of Options Latent Factors with Varying K

This figure reveals the explanatory power of options latent factors on the returns of alpha portfolios with
the varying number of latent factors K. The upper (lower) panel is for call (put) options. The estimation
window of the alpha portfolios is twelve months. We regress the returns of the alpha portfolios on options
latent factors and report alphas. Excess return is the monthly return of the alpha portfolios minus the
risk-free rate. PCA (RPPCA) factors are constructed by applying PCA (RP-PCA) to option returns.
The A in RP-PCA is chosen to be 10.
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characteristics

Figure A4: Contributions of Characteristics to Put Options Alphas
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Figure A5: Ranks of Characteristics in the Long and Short Legs

The figures show the average ranks of characteristics in the long and short legs of the call options alpha
portfolios. The number of latent factors is three, and the estimation window is twelve months. The
ranks of characteristics range from -0.5 to 0.5. The long and short legs contain call options with positive
and negative weights in the alpha portfolios, respectively. The light blue line represents the short leg,
while the orange line represents the long leg.
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Figure A6: Ranks of Characteristics in the Long and Short Legs

The figures show the average ranks of characteristics in the long and short legs of the put options alpha
portfolios. The number of latent factors is three, and the estimation window is twelve months. The
ranks of characteristics range from -0.5 to 0.5. The long and short legs contain put options with positive
and negative weights in the alpha portfolios, respectively. The light blue line represents the short leg,
while the orange line represents the long leg.
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Figure A7: Contributions of Characteristics to Put Options Factor Loadings - Nonlinear
Case
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Figure A8: Contributions of Characteristics to Put Options Alphas - Nonlinear Case
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