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Abstract

We introduce VolGAN, a generative model for arbitrage-free implied
volatility surfaces. The model is trained on time series of implied volatility
surfaces and underlying prices and is capable of generating realistic scenar-
ios for joint dynamics of the implied volatility surface and the underlying
asset. We illustrate the performance of the model by training it on SPX
implied volatility time series and show that it is able to learn the covariance
structure of the co-movements in implied volatilities and generate realistic
dynamics for the (VIX) volatility index. In particular, the generative
model is capable of simulating scenarios with non-Gaussian distributions
of increments for state variables as well as time-varying correlations.
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1 Introduction

Option prices are quoted in terms of their implied volatilities, which are obtained
by inverting the Black-Scholes formula given the market prices of options. The
implied volatility surface, which summarises the cross-section of option prices
across strikes and maturities, gives a snapshot of the state of the options mar-
ket. The dependence of implied volatility on moneyness and time-to-maturity,
which is referred to as the smile, skew and term structure have inspired the
development of alternative option pricing models [Gatheral, 2011, Heston, 1993,
Cont and Tankov, 2004]. Any such option pricing model implies a model for
the cross-sectional dependence of implied volatilities on strike and maturity,
as well as their dynamics across time. However, this dynamics is typically
intractable and there has been an interest from practitioners in directly mod-
elling the dynamics of implied volatility as a state variable [Schönbucher, 1999,
Babbar, 2001, Cont and da Fonseca, 2002, Cont et al., 2002, Durrleman, 2010,
Cont and Vuletic, 2023, Avellaneda et al., 2020]. Such ’market models’ of im-
plied volatility should appropriately capture the co-movements of implied volatil-
ities across moneyness and time-to-maturity, reproduce the empirically observed
dynamics of implied volatilities [Cont and da Fonseca, 2002], be able to cap-
ture the smile, skew, and term structure, and satisfy arbitrage constraints
[Davis and Hobson, 2007, Gerhold and Gülüm, 2020].

Given the high dimensionality of the volatility surface and the complexity
of its dynamics, it is challenging to capture all these properties in a parametric
model. It is therefore of interest to examine whether a data-driven approach can
be used to overcome these modelling challenges.

In the present work we propose VolGAN, a fully data-driven generative
model for the dynamic simulation of arbitrage-free implied volatility surfaces.
Our model is trained on a time series of market-quoted implied volatilities
and is capable of generating realistic dynamic scenarios for implied volatility
surfaces. We illustrate the performance of the model by training it on SPX
implied volatility time series and show that it is able to learn the covariance
structure of co-movements in implied volatilities and generate realistic dynamics
for the (VIX) volatility index [CBOE, 2022]. In particular, the generative model
is capable of simulating scenarios with non-Gaussian distributions of increments
for state variables as well as time-varying correlations.

Our model builds on a line of previous work on the use of generative ad-
versarial networks (GANs) for scenario simulation in finance, starting with
[Takahashi et al., 2019] and [Wiese et al., 2020] for price dynamics. More re-
cently, GAN methods have been deployed for scenario simulation in options
markets. [Wiese et al., 2019] and [Wiese et al., 2021] use a classical GAN ap-
proach. [Cuchiero et al., 2020] and [Cohen et al., 2022] use a ”neural SDE” to
parameterize volatility surface dynamics. [Cao et al., 2020] use a supervised
learning approach to extract information from historical implied volatility dy-
namics, while [Ning et al., 2023] combines SDEs with Variational Autoencoders
[Kingma et al., 2019].

In contrast with the aforementioned approaches which deploy the classical
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GAN methodology of [Goodfellow et al., 2014] using binary cross-entropy (BCE)
as a training objective, VolGAN uses a bespoke loss function adapted to the fi-
nancial application at hand, as advocated in [Cont et al., 2022, Vuletić et al., 2023],
combined with a scenario reweighting approach based on [Cont and Vuletic, 2023].

Outline. Section 2 summarizes properties of implied volatility surfaces and
outlines some desirable requirements for a dynamic model of implied volatility.
Section 3 describes VolGAN, our proposed generative model for implied volatil-
ity surfaces. Section 4 presents the results obtained by training VolGAN on
SPX implied volatility data and discusses the model’s ability to produce realistic
scenarios for implied volatility co-movements and the VIX index.

2 Implied volatility surfaces: shape constraints
and dynamics

Denoting the price of the underlying asset by St, the implied volatility may be
parameterized in terms of moneyness m = K/St and time to maturity τ = T − t
of the option. The implied volatility associated with a call option with moneyness
m and time-to-maturity τ on a non-dividend paying asset S is the unique value
σt(m, τ) such that the Black-Scholes price CBS(St,K, τ, σt(m, τ)) matches the
market price Ct(m, τ) of the call:

Ct(m, τ) = CBS(St,K, τ, σt(m, τ)) = StN(d1)−Ke−rτN(d2)

d1 =
− lnm+ τ(r + σ2

2 )

σ
√
τ

d2 =
− lnm+ τ(r − σ2

2 )

σ
√
τ

,

where N is the c.d.f of a N (0, Id) random variable. The implied volatility
surface σt(m, τ) at date t provides a snapshot of options prices in the market
[Gatheral, 2011]: specifying the implied volatility surface is equivalent to speci-
fying the prices of all European calls and puts available in the market, given the
current term structure of interest rates and dividends.

2.1 Static arbitrage and shape constraints

It has been empirically observed that implied volatilities of call and put op-
tions in listed options markets exhibit a dependence on exercise price K and
maturity date T [Cont and da Fonseca, 2002, Dumas et al., 1998, Dupire, 1994,
Gatheral, 2011] (or, alternatively, on the moneyness m = K/St and time-
to-maturity τ = T − t). However not every cross-sectional profile for the
function (m, τ) 7→ σt(m, τ) is admissible, as the resulting call/put option
prices should satisfy certain static arbitrage constraints [Davis and Hobson, 2007,
Gerhold and Gülüm, 2020]. In particular call option prices should be:

• increasing in time to maturity: ∂τCBS(St,K, τ, σt(m, τ)) ≥ 0,

• decreasing in moneyness: ∂mCBS(St,K, τ, σt(m, τ)) ≤ 0,
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• convex in moneyness: ∂2
mCBS(St,K, τ, σt(m, τ)) ≥ 0.

These constraints translate to nonlinear inequalities involving σt, ∂mσt, ∂
2
mσt,

∂τσt [Cont et al., 2002], which in turn impose constraints on the possible shapes
of the implied volatility surface σt(m, τ).

Given a fixed grid in moneyness and time to maturity

(m, τ ) = (mi, τj)i=1,...,Nm;j=1,...Nτ ,

with mi < mi+1 and τj < τj+1, we define the relative call prices

c(m, τ) :=
1

S
CBS(S,K, τ, σ) = N(d1)−me−rτN(d2). (1)

Static arbitrage constraints [Davis and Hobson, 2007] are then equivalent to

Φ(σ(m, τ )) = 0,

where Φ(σ(m, τ )) is the arbitrage penalty associated with the (discretely sampled)
volatility surface σ(m, τ ) [Cont and Vuletic, 2023]:

Φ (σ(m, τ )) = p1(σ(m, τ )) + p2(σ(m, τ )) + p3(σ(m, τ )). (2)

The quantities p1, p2, p3 correspond to violations of calendar, call and butterfly
arbitrage constraints, respectively:

p1(σ(m, τ )) =

Nm∑
i=1

Nτ∑
j=1

(
τj
c(mi, τj)− c(mi, τj+1)

τj+1 − τj

)+

, (3)

p2(σ(m, τ ) =

Nm∑
i=1

Nτ∑
j=1

(
c(mi+1, τj)− c(mi, τj)

mi+1 −mi

)+

, (4)

p3(σ(m, τ )) =

Nm∑
i=1

Nτ∑
j=1

(
c(mi, τj)− c(mi−1, τj)

mi −mi−1
− c(mi+1, τj)− c(mi, τj)

mi+1 −mi

)+

.

(5)

2.2 Dynamics of implied volatility co-movements

Static arbitrage constraints on the shape of the implied volatility surface are
a necessary but not sufficient requirement for a good model of implied volatil-
ity dynamics: one also needs the model to capture the statistical properties
of implied volatility co-movements, a crucial point for any hedging and risk
management task. Here we summarise some of the empirically observed sta-
tistical properties of implied volatilities on various exchange-traded indices
[Cont and da Fonseca, 2002, Avellaneda et al., 2020, Cont and Vuletic, 2023]:

• The implied volatility has a non-flat cross-section, with dependence in
strike and maturity.
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• Implied volatilities display high positive autocorrelation and mean-reverting
behavior.

• Daily variations in the implied volatilities can be satisfactorily explained
with a small number of principal components.

• The first principal component corresponds to a level, whereas the second
principal component corresponds to a skew factor.

• The returns of the underlying are negatively correlated with the projections
of log-increments of implied vol on the level and skew principal components,
which is a more precise formulation of the so-called ’leverage effect’.

We now describe a data-driven approach for the simulation of implied volatility
dynamics designed to account for the above properties.

3 A generative model for implied volatility sur-
faces

VolGAN is a customised conditional generative adversarial network with a
smoothness penalty incorporated into the generator’s loss function, combined
with scenario re-weighting applied to the output scenarios [Cont and Vuletic, 2023].

VolGAN receives as input

• the implied vol surface at the previous date,

• the two previous underlying returns,

• the realized volatility from the previous period,

and outputs (joint) scenarios for

• the return of the underlying asset and

• the implied volatility surface

for the next period, along with a set of weights (probabilities) associated with
these scenarios. We now discuss the methodology in more detail.

3.1 Architecture

We design a Conditional GAN [Mirza and Osindero, 2014], composed of two
neural networks, a generator and a discriminator. Suppose we have observations
at times t = 1, . . . , T , with St the price of the underlying, and σt(m, τ ) the
implied volatility surface on the grid (m, τ ) at time t. Denote by gt(m, τ ) the
log-implied vol surface at time t:

gt(m, τ ) = log σt(m, τ ), ∆gt(m, τ ) = gt+1(m, τ )− gt(m, τ ). (6)
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Let rt be the log-return of the underlying:

rt = log

(
St+1

St

)
, (7)

and denote by γt the one-month realized volatility:

γt =

√√√√ 21

252

20∑
i=0

r2t−i. (8)

We aggregate rt−1, tt−2, γt−1, gt(m, τ ) into a condition/input vector at:

at = (rt−1, tt−2, γt−1, gt(m, τ )). (9)

The generator G takes as input this condition at and i.i.d. noise zt ∼ N (0, Id) and
outputs simulated values r̂t(z),∆ĝt(m, τ ) for the return and implied volatility
(log-)increments:

G(at, zt) = (r̂t(zt),∆ĝt(m, τ )(zt)). (10)

We denote by G(at, z)|2: = ∆ĝt(m, τ )(z) the second component of the generator’s
output which corresponds to the simulated log implied vol increment.

The discriminator is a classifier, taking as input a value (r,∆g) representing
either the output of the generator or the corresponding data realization, together
with a condition vector at as in (9).

It outputs a value D(at, (r,∆g)) between 0 and 1, interpreted as the prob-
ability that the input is compatible with the condition i.e. the probability
that (r,∆g) it is drawn from the conditional distribution of (rt,∆gt) given at
originating from the data rather than from the generator.

The generator G and the discriminator D are feed-forward neural networks,
whose respective parameters (weights) we denote by θg and θd. The architecture
of the generator is displayed in Figure 1, and the architecture of the discriminator
is shown in Figure 2.
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Figure 1: VolGAN generator architecture.

Figure 2: VolGAN discriminator architecture.
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3.2 Training objective

The core component of VolGAN is a customised loss function catering to the de-
sired properties of the output volatility surface, as advocated in [Cont et al., 2022,
Vuletić et al., 2023]. A classical GAN trained using binary cross-entropy (BCE)
loss [Goodfellow et al., 2014] would result in irregular surfaces. In order to
generate smooth surfaces, we use smoothness penalty terms (discrete Sobolev
semi-norm) in m and τ (on the grid (m, τ )), defined as

Lm(g) =
∑
i,j

(g(mi+1, τj)− g(mi, τj))
2

|mi+1 −mi|2
≃ ∥∂mg∥2L2 , (11)

Lτ (g) =
∑
i,j

(g(mi, τj+1)− g(mi, τj))
2

|τj+1 − τj |2
≃ ∥∂τg∥2L2 . (12)

These terms are included in the training objective J (G)(θd, θg) for the gener-
ator:

J (G)(θd, θg) = −1

2
E
[
log (D (at, G(at, z; θg); θd))

+ αmLm (gt(m, τ ) +G(at, zt; θg)|2:)
+ βτLτ (gt(m, τ ) +G(at, zt; θg)|2:)

]
,

(13)

where at = (rt−1, tt−2, γt−1, gt(m, τ )), as defined in Equation (9). The first term
is a binary cross-entropy for the output of the discriminator. αm > 0 and ατ > 0
are regularisation parameters; iid Gaussian noise input zt ∼ N(0, Id), at is the
input ”condition” (Eq. (9)); θg and θd are respectively the parameters (weights)
of the generator and the discriminator networks. The smoothness penalties Lm

and Lτ are applied to the simulated log-implied volatility surfaces:

gt(m, τ ) +G(at, zt; θg)|2: = gt(m, τ ) + ∆ĝt(m, τ )(zt) = ĝt(m, τ )(zt).

The discriminator is trained to minimise the binary cross-entropy loss:

J (D)(θd, θg) =− 1

2
E [log (D(at, (rt,∆gt(m, τ )); θd)]

− 1

2
E [log (1−D(at, G(at, zt; θg); θd)] ,

(14)

where at is the input condition (Eq. (9)), rt and ∆gt(m, τ ) are the corresponding
data observations.

Here P represents the law of the process (rt, gt) generating the data. We
assume this process to be ergodic, so given a long enough sample we can
approximate the expected values above by sample averages:

E[f(rt, gt)] ≃
1

T

T∑
t=1

f(rt, gt).
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Remark 1 (Inclusion of the arbitrage penalty in the loss function). It is possible
to incorporate the arbitrage penalty (2) into the loss function of the generator
(13). However, both the smoothness penalty (11)-(12) and the arbitrage penalty
(2) impose restrictions on discrete derivatives. Our numerical experiments showed
insignificant performance gain when incorporating the arbitrage penalty into the
loss function, not justifying the additional computational cost.

3.3 Scenario re-weighting

The outputs of the generator described above are not guaranteed to satisfy
the static arbitrage constraints described in Section 2.1. To correct for this we
apply the methodology described in [Cont and Vuletic, 2023] to re-weight the
one-day-ahead scenarios generated by the GAN.

Let P0 be the law of the generator’s output i.e. the joint dynamics of the
underlying return and the implied volatility surface (rt, σt(m, τ ); t = 1, . . . , T ).
To adjust for static arbitrage, [Cont and Vuletic, 2023] apply the change of
measure:

dPβ

dP0
(ω) =

exp (−βΦ(σ(m, τ ;ω)))

Z(β)
(15)

where Z(β) is a normalization factor:

Z(β) = EP0 [exp (−βΦ (σ(m, τ ;ω)))] . (16)

VolGAN samples from this target distribution (15) using a Weighted Monte
Carlo approach. Given N samples from the generator (r̂i, σ̂i), i = 1, . . . , N ,
we compute the arbitrage penalty Φ(σ̂i) corresponding to each output scenario
(r̂i, σ̂i) using (2) and assign to this scenario a probability

wi =
exp(−βΦ(σ̂i))∑N
j=1 exp(−βΦ(σ̂j))

. (17)

VolGAN samples the scenarios (r̂i, σ̂i) with probability wi. These weighted
scenarios may then be used to compute expectations and quantiles of various
quantities of interest under Pβ .

Let X be a function of the state variables, and let xi be its value in scenario
i. Denote by FX,β the law of X under Pβ and by Eβ [X] its expectation.

We can then estimate Eβ [X] by

Êβ [X] =

N∑
i=1

wixi, (18)

while the quantiles of X are estimated as

F̂−1
X,β(q) = x(k), where k = min{j ∈ {1, . . . , N} :

j∑
i=1

w(i) ≥ q}, (19)
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where x(1) ≤ x(2) ≤ · · · ≤ x(N) are the order statistics of x1, . . . , xN . Quantile
estimates allow us to estimate appropriate confidence intervals and tail behaviors,
without making any distributional assumptions.

3.4 Numerical implementation

The generator G is a three-layer feedforward dense neural network, with the first
two activations softplus, and the final layer an affine layer. The random input is
(standard) i.i.d Gaussian noise with dimension d = 32. The first layer consists of
H = 16 neurons, whereas the second layer contains 2H = 32 neurons. Similarly,
the discriminator D is a two-layer feedforward neural network, with softplus
and sigmoidal activation functions and layer sizes of H = 16 and 1, respectively.
The discriminator has a simpler architecture than the generator, as it is of the
utmost importance to keep the two neural networks in balance. The architecture
of the discriminator is shown in Figure 2, and the architecture of the generator
is displayed in Figure 1.

The hyperparameters αm, ατ > 0 are chosen by gradient norm matching.
We first train VolGAN for ngrad = 25 epochs by performing optimisation via
the binary cross-entropy loss only (classical GAN setting). At each update, we
calculate the gradient norms of each of the three loss function terms in (13):
BCE, Lm, Lτwith respect to θg. We then set αm and ατ , to be the means of
observed ratios of the gradient norms of the BCE term to the gradient norms
of the Lm and Lτ , respectively. The gradient norms of the BCE,Lm, Lτ terms
with respect to θg during this stage are shown in Figure 3. We note that all
three gradients behave similarly, that they stabilise over time, and that there is
no gradient explosion or vanishing gradient phenomena.

We then restart training VoLGAN (from the same initialisation used for the
start of the gradient norm matching procedure) with the loss function defined by
Equation (13) for nepochs = 10000 epochs, using an alternating direction method
i.e. one discriminator update for each generator update. The optimiser used
is RMSProp [Hinton et al., 2012], and the learning rates of both networks are
set to 0.0001. We use β = 1000 and take N = 10000 raw samples from the
generator. The mini-batch size is nbatch = 100.
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(a) BCE term. (b) Lm term.

(c) Lτ term.

Figure 3: Norm of gradient of the BCE term, Lm term, and Lτ term with respect
to θg during the first stage of VolGAN training. Updates are performed via the
BCE loss only.

Remark 2 (Data normalization). One should avoid data normalization when
training VolGAN. It is not uncommon to do so if there are additional penalty
terms placed in the loss function, for example in Wasserstein GANs with Gradient
Penalty [Arjovsky et al., 2017, Gulrajani et al., 2017]. If the input condition
is normalized, numerical experiments show that the generator converges to a
collapsed market, i.e. it outputs implied vols and the underlying equal to zero.
normalization places all information contained in the input condition on the
same scale as the noise, rendering the problem of differentiating between different
input components more challenging for the generator. However, mode collapse
does not occur if the data is not normalized prior to training.
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4 Learning to simulate SPX implied volatility
scenarios

In this section, we demonstrate VolGAN’s ability to generate realistic scenarios
for SPX implied volatility dynamics. We train VolGAN on the daily time series
of market data directly, without making any modelling assumptions. The same
approach might be applied to other equity options.

4.1 Data

We consider the SPX implied volatility surface from the Implied Volatility Surface
File from OptionMetrics on WRDS. The training period is from 2000-01-03 to
2017-08-08, and the testing period is from 2017-08-09 to 2019-10-21. We fix
the grid (m, τ ) in moneyness and time to maturity such that the moneyness
consists of 10 equispaced values between 0.6 and 1.4 and the times to expiry
are 30, 60, 91, 122, 152, 182, 273, 365 calendar days. In order to reach the
values on the (m, τ ) grid, we interpolate linearly first in moneyness, and then in
times to maturity. Other methods of interpolation are also possible, for example,
[Kahalé, 2004]. The Implied Volatility Surface File contains pre-processed data,
which we interpolate further, resulting in non-zero arbitrage penalties in both
the training and the testing set [Cont and Vuletic, 2023]. The historical VIX
closing prices are available on the CBOE website. For simplicity, we set the
interest rate r = 0 in the arbitrage penalty computation.

4.2 Out-of-sample performance

As discussed in Section 2, the main goal of an implied volatility model is to
correctly capture the co-movements of implied volatilities, while satisfying static
arbitrage constraints. We can measure the latter by considering the distance
to arbitrage’ using the arbitrage penalty (2). In order to measure how well
VolGAN learns the dynamics and captures the co-movements of implied vols,
we perform PCA on the generated increments, and compare them with the
principal components of the data increments. Furthermore, we simulate the
CBOE volatility index VIX [CBOE, 2022], which is a non-linear combination of
tradable calls and puts. We compare the dynamics of the simulated and market
data.

4.2.1 Smoothness and arbitrage constraints

Before discussing arbitrage in simulated scenarios, we note that training via
the classical BCE loss [Goodfellow et al., 2014], using the same architecture,
hyperparameters, and the same number of training epochs, would result in
irregular surfaces. We compare the input, target (data realization), VoLGAN
and BCE GAN implied volatility sample surfaces in Figure 4. Incorporating the
smoothness penalty (11)-(12) into the loss function (13) is crucial for generating
smooth and realistic samples.
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(a) SPX input surface.
(b) SPX surface target (data realiza-
tion).

(c) Sample VolGAN output surface. (d) Sample BCE GAN output surface.

Figure 4: Sample generated implied volatility surfaces.

As the input surfaces might admit static arbitrage, it is not realistic for the
outputs to be completely arbitrage-free. What is plausible, however, is for the
outputs to have lower arbitrage penalties than the inputs. In Table 1 we compare
the out-of-sample arbitrage penalties in the input data and in the outputs of the
BCE GAN, raw VolGAN (prior to re-weighting), and VolGAN. As training
via the BCE loss results in irregular surfaces (Figure 4) it is unsurprising that
the arbitrage penalty in the BCE GAN samples is high. There is a notable
reduction in arbitrage penalty in the raw (before re-weighting) VolGAN outputs
compared to the input data, and a significant decrease in arbitrage levels in the
VolGAN samples (after scenario re-weighting). The mean arbitrage penalty
pre- and post-scenario re-weighting, alongside the arbitrage penalty of the inputs,
is displayed in Figure 5, where the reduction in arbitrage is clearly visualised.
The mean, standard deviation, and median values from Table 1 correspond to
the statistics of the time series displayed in Figure 5.
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Mean Std Median

SPX data 0.0059 0.0419 0

BCE GAN 0.2249 0.136 0.1893

Raw VolGAN 0.0048 0.034 1.13 · 10−5

(before reweighting)

VolGAN 0.0022 0.020 1.04 · 10−6

Table 1: Arbitrage penalties in SPX implied volatility market data (test set)
vs generated data via GANs trained using (i) BCE loss only (ii) VolGAN
loss (iii) VolGAN re-weighted scenarios (β = 1000). Standard deviation and
median for GAN outputs correspond to the standard deviation and the median
of (re-weighted) average outputs given 10000 samples.

Figure 5: Distance to static arbitrage as measures by the arbitrage penalty (2) in
SPX implied volatility data (red) vs. mean arbitrage penalty of surfaces generated
via VolGAN, before (blue) and after (green) re-weighting with β = 1000.

4.2.2 Simulated vs realized values

We consider the daily simulated mean (VolGAN conditional expectation of the
variable given the history/condition) and the central 95% confidence interval
obtained by considering the 2.5% and 97.5% quantiles for the following quantities
of interest:

• three-month at-the-money (ATM) implied vol σt(1, 0.25),
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• three-month out-of-the-money (OTM) implied vol σt(1.25, 0.25),

• three-month in-the-money (ITM) implied vol σt(0.75, 0.25),

• SPX price St,

• VIX price σV IX
t .

In Figure 6 we compare the realized and the simulated ATM implied vol,
and note that the simulated confidence intervals capture the observed data
realizations well. We find analogous results for the OTM implied vol and for the
ITM implied vol, displayed in Figures 7 and 8, respectively. We note that as
the value of the moneyness m increases, the confidence intervals become more
narrow.

Figure 6: realized and simulated implied volatility (m = 1, τ = 0.25) on the
test set. Market data (red), simulated mean (Eβ [σt(1, 0.25)|at−1]) and the 95%
confidence interval (blue). The confidence interval is calculated based on the
2.5% and 97.5% VolGAN quantiles.
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Figure 7: realized and simulated implied volatility (m = 1.25, τ = 0.25) on the
test set. Market data (red), simulated mean (Eβ [σt(1.25, 0.25)|at−1]) and the
95% confidence interval (blue). The confidence interval is calculated based on
the 2.5% and 97.5% VolGAN quantiles.

Figure 8: realized and simulated implied volatility (m = 0.75, τ = 0.25) on the
test set. Market data (red), simulated mean (Eβ [σt(0.75, 0.25)|at−1]) and the
95% confidence interval (blue). The confidence interval is calculated based on
the 2.5% and 97.5% VolGAN quantiles.

Apart from the end of 2018 and early 2019, the VolGAN confidence intervals
are able to appropriately capture the underlying. Figure 9 displays the simulated
and real SPX prices. The time period during which VolGAN does not capture
the data inside the confidence intervals coincides with a significant drop in SPX
and a period of high arbitrage penalty (Figure 5). Given the input of VolGAN,
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it is unsurprising that the simulations revert to more stable values faster than
the market does, as VolGAN is given only the recent history. Furthermore, the
arbitrage penalty being high implies that a small number of simulations hold
most of the weight, inducing very narrow confidence intervals. This behavior is
visible not just in the simulations for the underlying, but for the ATM, OTM,
and ITM vols (Figures 6, 7, 8 respectively). From Figure 10, we note that if
arbitrage is not penalized (β = 0), the forecasts are more accurate, including for
the early 2019 time period. However, choosing to use the raw generator induces
static arbitrage.

Lastly, in Figure 11 we compare the simulated values of VIX with the
historical closing prices on target days in the test set. Once again, VolGAN is
able to capture properties of the time series of interest appropriately, apart from
the end of 2017 when VIX was very low.

Figure 9: realized and simulated SPX price on the test set. Market data
(red), simulated mean (Eβ [St|at−1]) and the 95% confidence interval (blue).
The confidence interval is calculated based on the 2.5% and 97.5% VolGAN
quantiles.
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Figure 10: realized and simulated SPX price on the test set. Market data
(red), simulated raw mean (E0[St|at−1], with β = 0) and the 95% confidence
interval (blue). The confidence interval is calculated based on the 2.5% and
97.5% quantiles.

Figure 11: realized and simulated VIX on the test set. Market data (red),
simulated mean (Eβ

[
σV IX
t |at−1

]
) and the 95% confidence interval (blue). The

confidence interval is calculated based on the 2.5% and 97.5%VolGAN quantiles.

We further investigate the quality of simulated samples in Table 2 by consid-
ering the percentage of data realizations falling below the simulated 1%, 2.5%,
97.5%, and 99% quantiles. We note that the best fit of the right tail is for the
underlying, whereas the best fit for the left tail is for the 3-month ATM and
ITM vol. VolGAN underestimates the extremely high values of the implied vol
and VIX, whereas for the out-of-the-money vol, VIX, and the underlying, the
left-tail quantiles are too high. Given that the volatility index is a non-linear
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transformation of the state variables, it is not surprising that VolGAN un-
derestimates and overestimates the right and the left tails of the distribution,
respectively. The findings from Table 2 are in line with the previous observations:
VolGAN underestimates the highest volatility values and overestimates the low
SPX values, mainly stemming from the early 2019 and late 2018 period. It is
important to note that the observed behavior is out-of-sample, two years after
training.

Variable/Quantile 0.01 0.025 0.975 0.99

SPX 3.63% 4.36% 98.19% 99.09%

3-month ATM vol 0.91% 2.72% 81.49% 86.75%

3-month OTM vol 7.08% 9.80% 80.76% 84.94%

3-month ITM vol 1.45% 2.90% 78.58% 84.21%

VIX 13.61% 16.88% 74.95% 76.04%

Table 2: Percentage of data points below the simulated VolGAN quantiles on
the test set (two years after training).

As already observed in Figure 10, there are instances (of market turbulence)
where not correcting for the presence of static arbitrage (i.e. setting β =
0) actually improves forecasting performance. In Figure 12 we compare the
simulated 95% confidence intervals of VolGAN with β = 0 and β = 1000 for
SPX in late 2018 and early 2019.

Scenario penalization shifts the simulations towards higher returns of the
underlying in the early 2019 period compared to the raw generator. When the
arbitrage penalty is high, scenario re-weighting with β = 1000 very quickly
concentrates the weights on the few simulated points with low arbitrage penalty,
but away from the data realizations. However, we the raw generator (β = 0)
produces very stable confidence intervals.

A similar effect is observed in the simulations of the 3-month ATM vol.
In Figure 13 we compare the data realizations with the simulated confidence
intervals for β = 0 and β = 1000 in the last quarter of 2018 and the first quarter
of 2019. Once again, we note that when the arbitrage penalty is very low or zero,
the penalization has negligible or no impact on the simulated confidence intervals.
At the start of 2019, when the arbitrage penalty is high, the penalization favors
smaller values of volatility compared to β = 0, an opposite shift to that observed
in the simulations for the SPX returns (Figure 12). Once again, we note that
the generator (β = 0) is very stable.
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Figure 12: realized and simulated SPX returns in late 2018 and early 2019.
Market data (red) with the 95% symmetric confidence intervals produced by
the raw VolGAN generator (β = 0) (blue) and VolGAN (β = 1000) (purple).
The confidence interval is calculated based on the 2.5% and 97.5% quantiles.

Figure 13: realized and simulated ATM vol on the test set. Market data (red)
with the 95% symmetric confidence intervals produced by the raw VolGAN
generator (β = 0) (blue) and VolGAN (β = 1000) (purple). The confidence
interval is calculated based on the 2.5% and 97.5% quantiles.

To quantify the observations from Figures 12 and 13, we repeat the quantile
analysis from Table 2 in the case of β = 0. Indeed, choosing to use the raw
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generator improves the forecasts. The most significant improvement is visible in
the left-tail quantiles for the underlying, ATM vol, ITM vol, and the VIX. In
the SPX and ATM vol case, the percentage of data realizations before the 1%
and 2.5% quantiles are below those quantities, highlighting VolGAN’s stability
and that it does not require frequent re-calibration.

Variable/Quantile 0.01 0.025 0.975 0.99

SPX 0.36% 0.91% 98.19% 99.27%

3-month ATM vol 0.73% 2.18% 86.03% 92.38%

3-month OTM vol 8.34% 11.80% 84.57% 88.38%

3-month ITM vol 1.27% 2.90% 84.57% 89.84%

VIX 7.09% 7.63% 69.70% 71.87%

Table 3: Percentage of data points below the simulated raw generator (β = 0
quantiles on the test set (two years after training).

4.2.3 Distributions and correlations learned by the generator

Denote by ρt the instantaneous correlation between the 1-month ATM vol returns
and the returns of the underlying at time t. We would like to explore whether or
not VolGAN learns constant correlations. Therefore, we perform the following
hypothesis test:

H0: ρt = ρ is constant, H1: ρt ̸= ρ is time-varying.
Under H0, the 95% confidence interval for ρt is given by [ρL, ρU ], where

[Bonett and Wright, 2000]

ρU =
exp(2zU )− 1

exp(2zU ) + 1
, ρL =

exp(2zL)− 1

exp(2zL) + 1
;

zr =
1

2
log

[
1 + r

1− r

]
, zU = zρ +

√
1

n− 3
z0.975, zU = zρ −

√
1

n− 3
z0.975,

where n is sample size. Estimating ρ by the sample mean of ρt on the test set,
in Figure 14 we plot ρt and the 95% confidence interval [ρL, ρU ]. We note that
ρt is away from the confidence interval of H0, indicating strong evidence against
H0. VolGAN learns time-varying instantaneous correlations which would be
very difficult to capture with a parametric model.
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Figure 14: (Instantaneous) Pearson correlation on the test set between the
simulated returns of the underlying and the 1-month ATM vol increments (blue),
with symmetric 95% confidence interval of constant correlation (red). Raw
generator (β = 0).

We explore the distributions of the simulated out-of-sample 1-month ATM
vol returns and of the returns of the underlying. We compare both distributions
with the distributions of the corresponding daily observations on the test set and
with the Gaussian distributions with the appropriate mean and variance. From
Figure 15, we note that VolGAN simulates returns of the underlying which
have exponentially decaying tails, with high degrees of asymmetry, and a fat
right tail. It is more conservative than the data, in the sense that it is able to
produce values outside of the range of the test set data realizations. The same
holds for the at-the-money vol returns in Figure 16, with the 1-month ATM
vol returns having both left and right fat tails, and higher degrees of symmetry
compared to the distribution of the simulated SPX returns. Such simulated
distributions cannot be captured in a model with Brownian increments.
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Figure 15: Simulated increments of the underlying (blue) on the test set compared
to the Gaussian distribution with the same mean and variance (solid black line)
and to the test set data (orange). Simulated returns have exponentially decaying
tails, with high degrees of asymmetry. The range of simulated values captures
the extreme values observed in the data. Raw generator (β = 0).

Figure 16: Simulated 3-month ATM vol increments (blue) on the test set
compared to the Gaussian distribution with the same mean and variance (solid
black line) and to the test set data (orange). Simulated returns have exponentially
decaying fat tails. The range of simulated values captures the extreme values
observed in the data. Raw generator (β = 0).
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4.2.4 Principal component analysis

In order to investigate VolGAN’s ability to appropriately capture the implied
volatility co-movements, we perform out-of-sample principal component analysis
on the simulated log-increments of implied vol. We compare the first three simu-
lated principal components with the corresponding PCs of the data realizations.
When performing PCA on two years of SPX implied vol data, the eigenvectors
change depending on the period of observation, but nonetheless correspond to
level, skew and curvature. In Table 4 we show variance explained by the first
three eigenvectors in the testing data and in the VolGAN simulations. The
significance of the first principal component is very similar in the test data and in
VolGAN. The second principal component is more significant in the simulated
data compared to the market data, and the third principal component explains
more variance in simulations than it does in the SPX data.

Rank Data VolGAN

First 47.5% 49.6± 3.4%
Second 20.2% 28.4± 2.5%
Third 2.7% 11.6± 1.3%

Table 4: Out-of-sample (two years after training) percentage of variance explained
by the top three principal components of the simulated and the data log implied
vol increments. The VolGAN column contains the average ±1.96× standard
deviation of the observed values, across 1000 VoLGAN samples.

The first principal components of the sampleVolGAN implied vol log-returns
and of the corresponding SPX data are displayed in Figure 17. Both surfaces
are consistently positive, indicating that they might have a level interpretation.
They also exhibit term-structure. The second eigenvectors of both SPX data
and of the simulated scenarios (Figure 18) can be interpreted as skew, while the
third eigenvectors (Figure 19) can be interpreted as curvature. Figures 17, 18,
19 reflect on the clear resemblance between the principal components of the SPX
market data and of the VolGAN simulations, showing that VolGAN is able
to dynamically learn the covariance structure of the co-movements.
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(a) SPX data. (b) Sample VolGAN output.

Figure 17: Out-of-sample (two years after training) first principal component of
the daily log implied vol increments.

(a) SPX data. (b) Sample VolGAN output.

Figure 18: Out-of-sample (two years after training) second principal component
of the daily log implied vol increments.
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(a) SPX data. (b) Sample VolGAN output.

Figure 19: Out-of-sample (two years after training) third principal component
of the daily log implied vol increments.

In order to quantify the similarity between the PCs of the simulated and the
market data, we calculate the inner product between them (as vectors) over 1000
i.i.d. VolGAN samples. A value of one would indicate perfect alignment of the
eigenvectors. From Table 5 we note that the first two inner products (PC1 with
PC1, and PC2 with PC2) are very close to one, especially considering that the
quantities are for the out-of-sample data. The inner product between the third
eigenvectors of simulations and data realizations is lower than for the first two
PCs, but it is nevertheless high. Therefore, VolGAN is able to learn the most
important eigenvectors both qualitatively and quantitatively, showing the ability
to learn the covariance structure of the SPX implied vol co-movements.

Rank Mean Standard deviation

First 0.943 0.015
Second 0.934 0.013
Third 0.714 0.015

Table 5: Out-of-sample inner products of eigenvectors of the covariance matrices
of daily log-returns of SPX implied volatility and the corresponding eigenvectors
of the covariance matrix of VolGAN implied vol increments.

4.2.5 Correlation structure of variables

We further investigate VolGAN’s ability to simulate realistic scenarios by
considering Pearson correlation between several variables of interest. First, we
consider the relationship between the projections of the log-implied vol increments
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onto the first three principal components and the log-returns of the underlying.
In Table 6 we compare the correlations in SPX data with those in scenarios
simulated by VolGAN. The correlation between the first projection process
and the simulated log-returns of SPX is close to that of market data, whereas
the projections on the second and the third principal component have stronger
correlations with the returns of the underlying in VolGAN than they do in
the market data. We note that the observed data correlations are different on
the test set and the training set (performing PCA on the entire training set).
[Cont and Vuletic, 2023] show that the corresponding SPX data correlations
over a 2-year window vary significantly, but do not change the sign. VolGAN
is able to reproduce the correct relationships between the projection processes
and the returns of the underlying: the correlations between the returns of the
underlying and the projections of the log implied vol increments onto the level
and skew principal component are negative, whereas the correlation with the
projection onto the curvature principal component is positive.

PC rank Data (test) VolGAN (test) Data (train)

First −0.63 −0.56± 0.088 −0.34
Second −0.15 −0.53± 0.079 −0.32
Third 0.26 0.53± 0.055 0.28

Table 6: Pearson correlation between (simulated) SPX log-returns and the projec-
tions of the (simulated) log-implied vol increments on the principal components.
The VolGAN column contains the mean ±1.96× standard deviation of the
observed Pearson correlations across 1000 samples.

In order to correctly capture joint dynamics of implied volatilities and the
underlying index, we are interested in the relationship between the log increments
of the index (∆ logSt), the projection of the log-implied vol increments onto
the first principal component (∆X1

t ), the log increments of the 1-month at-the-
money implied volatility (∆ log σATM

t ), and the log increments of VIX (∆ log vt).
Table 7 contains average Pearson correlations for VolGAN simulations (blue)
vs the market data (red) on the test set. VolGAN simulations exhibit similar
correlations between the volatility variables (∆X1

t , ∆ log σATM
t , ∆ log vt) and

as previously discussed, between ∆ logSt and ∆X1
t . The correlations between

∆ logSt and the log increments of at-the-money vol and VIX are lower in
VolGAN scenarios than in the data observation on the test set. They are
of the correct sign, and as we note once again from [Cont and Vuletic, 2023],
the correlation between ∆ logSt and ∆ log σATM

t became significantly higher in
magnitude in the period used for testing compared to the period used for training.
Correlation between ∆ logSt and ∆ log vt in VolGAN simulations is similar to
that produced by the PCA-based four-factor model with fixed correlations in
[Cont and Vuletic, 2023].
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∆ logSt ∆X1
t ∆ log σATM

t ∆ log vt

∆ logSt 1.00 −0.56 −0.63 −0.18 −0.58 −0.35 −0.81

∆X1
t −0.56 −0.62 1.00 0.87 0.94 0.68 0.74

∆ log σATM
t −0.18 −0.57 0.87 0.94 1.00 0.53 0.70

∆ log vt −0.35 −0.81 0.68 0.74 0.53 0.70 1.00

Table 7: Out-of-sample (2 years after training) average Pearson correlation for
simulated vs real values of log-returns of SPX (∆ logSt), implied vol level factor
(∆X1

t ), 1-month ATM vol (∆ log σATM
t ) and VIX (∆ log vt). Average VolGAN

outcome (blue) and data (red).

Our results demonstrate that VolGAN is able to simulate realistic co-
movements for implied volatilities across a range of moneyness and maturities,
as well as the underlying index and VIX: in particular we are able to reproduce
time-varying correlations between increments of these variables.

Code availability

VolGAN code is available on GitHub: https://github.com/milenavuletic/VolGAN/.

Data availability
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from CBOE (www.cboe.com/ ).

Funding
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