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Abstract. We study statistical arbitrage problems accounting for the nonlinear and tran-
sient price impact of metaorders observed empirically. We show that simple explicit trading
rules can be derived even for general nonparametric alpha and liquidity signals, and also
discuss extensions to several impact decay timescales. These results are illustrated using
a proprietary dataset of CFM metaorders, which allows us to calibrate the levels, concav-
ity, and decay parameters of the price impact model and analyze their effects on optimal
trading.

1. Introduction

Trading costs play a central role in designing and implementing quantitative trading
strategies. Indeed, Loeb (1983) refers to them as the “critical link between investment
information and results”; 40 years later Harvey et al. (2022) still write that “market impact
costs are a crucial component of strategy performance – yet these costs are routinely ignored
in most academic research studies.”

For sizable funds, the crucial concern is their trades’ adverse price impact.1 It is well
known that impact is concave in trade sizes, in that large trades have a smaller impact than
predicted by a linear model and are instead better described by a “square-root law”.2 Price
dislocations are also not static but gradually dissipate over time.3
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1For instance, Frazzini, Israel, and Moskowitz (2018) use proprietary data of AQR, a major quantitative

fund, to estimate their trades’ price impact. They find price impact costs to be an order of magnitude
larger than other costs such as the effective bid-ask spread. These results align with many other practitioner
studies. For instance, Nasdaq’s “Intern’s Guide to Trading” (Mackintosh, 2022) also finds price impact for
institutional trades to be an order of magnitude larger than spreads.

2Cf., e.g., Loeb (1983); Hasbrouck (1991); Hasbrouck and Seppi (2001); Lillo et al. (2003); Bouchaud et al.
(2004); Almgren et al. (2005); Gabaix et al. (2006); Bershova and Rakhlin (2013); Frazzini et al. (2018) or
the textbooks Bouchaud et al. (2018); Webster (2023) and the references therein.

3Cf., e.g., Biais et al. (1995); Coppejans et al. (2004); Degryse et al. (2005); Bouchaud et al. (2009); Bacry
et al. (2015); Brokmann et al. (2015) and the references therein.
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2 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

A key practical challenge is how to make these robust statistical findings “actionable” by
embedding them into a consistent stochastic control problem. There is a large and active
literature that studies optimal trading with price impact but, for tractability, these studies
typically either assume price impact to be linear (Gârleanu and Pedersen, 2013, 2016) or to
decay instantaneously (Almgren, 2003). In contrast, for models with nonlinear and transient
price impact, even basic qualitative properties such as the absence of price manipulation are
typically poorly understood (Gatheral, 2010). A notable exception is the model of Alfonsi,
Fruth, and Schied (2010) (henceforth AFS), where an optimal execution problem is solved
explicitly.

The present study shows that the AFS model, with nonlinear price impact and im-
pact decay, also admits closed-form solutions for general statistical arbitrage problems with
arbitrary alpha signals and stochastic liquidity parameters.4 For capacity- rather than
risk-constrained traders,5 this yields simple and intuitive trading rules that apply to gen-
eral nonparametric price and liquidity forecasts in a straightforward manner, bypassing the
need for any brute-force optimization. We also show how to fit models of this type to a pro-
prietary dataset of metaorders. This bridges the gap to the empirical literature by allowing
to capture the main stylized facts present in the data while retaining inherent tractability
of optimal trading strategies.

We derive our theoretical results by a change of variables to “impact space”, where the
trader’s control variable is the aggregate impact of their current and past trades rather
than the position held. This change of perspective was pioneered by Fruth, Schöneborn,
and Urusov (2013) for linear impact models. Here we show that this approach also allows
one to reduce the analysis of general AFS models to simple pointwise optimizations, that in
turn lead to closed-form expressions for the optimal trading rules. An auxiliary benefit of
the method is the derivation of sharp conditions to rule out price-manipulation strategies.6
Finding such practical, measurable, and implementable conditions guaranteeing the good
behavior of live trading algorithms is another core concern of execution teams at major
financial institutions.

The passage to impact space is crucially tied to the existence of a one-to-one map be-
tween holdings and the corresponding impact. This is guaranteed when impact decays at
a constant exponential rate as in Obizhaeva and Wang (2013). However, many empirical
studies find price impact to decay over multiple timescales not captured by a single expo-
nential rate, cf., e.g., Bacry et al. (2015); Brokmann et al. (2015). To incorporate this,
we show that our approach can be extended to price impact models with multiple decay
timescales. The core idea is to switch to impact space and optimize pointwise separately
on each timescale, but simultaneously enforce a consistency constraint that the respective
impacts correspond to the same trades. The optimal impact state is then again available in
closed form, up to solving an autonomous “decoupling” ODE for the constraint’s Lagrange
multiplier.

4Stochastic liquidity parameters are a tractable proxy for the “local concavity” of the price impact of
individual trades (Muhle-Karbe et al., 2023), which can in turn be aggregated into the analysis of impact’s
“global concavity” at the metaorder level in the present study.

5Busse et al. (2020) show that capacity constraints are a concern even for mutual funds, forcing them to
reduce their rebalancing frequencies and shift investments to more liquid instruments.

6Gatheral (2010) first defined and studied price manipulation conditions for a class of price impact models.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 3

To illustrate the relevance of our modeling choices and explore the implications of our
results for optimal trading strategies, we complement this theoretical analysis with a de-
tailed empirical study on proprietary Capital Fund Management (CFM) metaorder data.
Specifically, we fit impact levels, concavities, and magnitudes for AFS models across multi-
ple decay timescales. This bridges the gap between sophisticated nonparametric empirical
studies (which are difficult to translate into optimal trading strategies) and the stochastic
control literature (which often studies models lacking empirical foundation). A model with
two impact timescales (one fast and one slow) generally offers the best tradeoff between ac-
curacy and parsimony. For the corresponding concavities, the best power-law specification
is close to a square-root law across all timescales.

Using our theoretical results, optimal trading strategies taking into account all of these
empirical features can be derived in a straightforward manner. Figure 1 illustrates this. The
left panel plots the optimal peak impact IT at the end of the trading interval [0, T ] against
the corresponding optimal order size QT . This illustrates that square-root concavities in the
AFS model indeed generate the square-root law for metaorder impact observed empirically.
The right panel of Figure 1 displays the temporal evolution of the optimal impact state It

during and after the completion of the trading period [0, T ]. During the trading period,
impact builds up as the alpha signal at hand is gradually exhausted. For the fast and slow
impact decay timescales calibrated in our empirical analysis, a substantial proportion of the
peak impact at the end of the trading period then decays very quickly, but the remaining
long-term impact lingers much longer.

QT

I T

0 T 2T

I
∗ t

Figure 1. Optimal impact for constant alpha signals as a function of opti-
mal traded volume (left panel) and time (right panel).

Metaorder data is proprietary and often difficult to access for academic researchers or
small trading firms. Therefore, we also analyze to what extent our fitting results can
be recovered from the public trading tape, using “proxy metaorders” constructed from
the aggregate order-flow imbalance. These proxy metaorders generally underestimate the
magnitude of price impact. For models with a single timescale for impact decay, the public
tape allows to recover similar values for decay timescales and concavities, but proprietary
metaorders are required to correctly pin down multiple decay timescales correctly.
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4 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

Application to Transaction Cost Analysis (TCA). To give a non-technical introduc-
tion to our optimal trading rules and illustrate the ease with which these can be implemented
in practice, we now discuss a concrete application, “Transaction Cost Analysis” (TCA).7

The primary purposes of TCA are to establish, ex-post, whether a set of orders traded
optimally and to investigate inconsistent behavior. The European Commission (2014) de-
fines MiFID II requirements for best execution in Article 27: “Obligation to execute orders
on terms most favourable to the client”:

“[Regulators] require investment firms who execute client orders to monitor
the effectiveness of their order execution arrangements and execution policy
in order to identify and, where appropriate, correct any deficiencies.”

TCA uncovers incorrect model assumptions, algorithm implementation errors, or poorly
calibrated alpha signals. Moreover, researchers and traders must communicate TCA to
stakeholders, including investors, clients, and regulators:

“[Regulators] require investment firms to be able to demonstrate to their
clients, at their request, that they have executed their orders in accordance
with the investment firm’s execution policy and to demonstrate to the com-
petent authority, at its request, their compliance with this Article.”

Therefore, TCA must streamline communication, conveying core algorithm trade-offs with-
out getting lost in implementation details, or conversely, obfuscating best execution require-
ments.

The optimal trading formula in this paper fulfills these requirements by expressing the
optimal strategy as a balance between impact, alpha, and alpha decay. To illustrate this,
first suppose for simplicity that liquidity is constant over the trading horizon. If

(a) price impact decays over a timescale τ ,
(b) price impact is a power function of order size with exponent c ∈ (0, 1], and
(c) the trader’s alpha signal is αt with alpha decay −α′

t,
then the impact It of the optimal trading strategy satisfies the linear relationship

(1.1) It = 1
1 + c

(
αt − τα′

t

)
.

At any given time, an algorithm thus reacts to signals by trading in a direction that balances
these three core variables. For instance, an execution algorithm accelerates when detecting
larger alpha decay. Concavity of the impact function (c < 1) simply implies that alpha
signals can be traded more aggressively than for linear impact. For example, the optimal
impact state with square root impact exhausts two thirds of the alpha signal, rather than
half in the linear case.

We now outline how to use the simple relationship (1.1) for TCA; throughout, we focus
on the empirically most relevant case c = 1/2 where the impact function is consistent with
the square-root law.

The Baseline Scenario. First consider a trader executing orders with a constant alpha signal
αt = α. For instance, a long-term trader determines their alpha signal at the start of the

7Another important application, the opportunity costs of misspecified price impact models is discussed
in the companion paper of the present study (Hey et al., 2023), based on a preview of some of the results
derived in the present study.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 5

day and does not update the signal intraday. In particular, the long-term trader assumes
no intraday alpha decay, α′

t = 0. In this scenario, the optimal execution strategy satisfies

(1.2) It = 2
3α.

α I
Strategy (bps) (bps)

A (Macro) 60 40
B (Technicals) 45 30

C (News) 60 50

Table 1. Mock TCA report for three strategies under the baseline scenario.

Consider Table 1 under this baseline scenario providing the average alpha and impact of
three different trading strategies A, B, and C. From an execution perspective, the trader’s
first-order question is:8

Are the strategies correctly balancing alpha and impact?
Given our baseline assumptions, strategy C did not balance correctly its alpha and impact:
it paid too much impact and should have traded more slowly because I > 2

3α.
Of course, traders should take care when translating such inconsistencies into actions.

Indeed, the model quickly and intuitively detects inconsistencies within a trading strategy.
However, without further analysis, it is unclear which of the trader’s assumptions is false:

(a) Did the strategy experience alpha decay during the execution?
(b) Is the price impact model incorrect? For example, did liquidity vary during the

execution?
(c) Is there a code or data error in the execution algorithm’s implementation?

The next sections apply our impact formula to dig deeper into Strategy C.

News α −τα′ I
Trigger (bps) (bps) (bps)

Earnings news 90 30 80
Other news 45 0 30

Table 2. TCA breakdown of Strategy C across alpha triggers

Adding Alpha Decay. Given strategy C’s focus on news, a trader may investigate which news
event triggers their trading strategy and if some events experience alpha decay. Table 2
explains the abnormal behavior in Row C of Table 1.

8From an alpha research perspective, an earlier question to answer of course is: Are the alpha signals
correctly calibrated? This leads to the distinction between the strategies’ predicted and realized alpha. We
assume in this study that all alphas are correctly calibrated and that predicted and realized alphas match
in expectation.
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6 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

Indeed, while most news events in strategy C experience no alpha decay, the earnings
news signal decays during the execution. Therefore, the trading strategy behaved correctly
and accelerated into the alpha decay to capture more alpha, raising impact costs:

It = 2
3
(
αt − τα′

t

)
.

In this scenario, the trader cannot blame the execution strategy for the high impact costs.
If they wish to increase strategy C’s profitability (net alpha capture after transaction costs),
the trader must reduce the strategy’s alpha decay, for instance, by improving or removing
the signal triggered by earnings news.

Liquidity α −τα′ I
Condition (bps) (bps) (bps)

Constant liquidity 90 30 80
Dropping liquidity 90 30 84

Rising liquidity 90 30 75

Table 3. TCA breakdown of Strategy C on earnings news across liquidity
conditions.

Adding Dynamic Liquidity Conditions. A trader that is unhappy with strategy C’s low
profitability during earnings events, 10bps on 90bps of alpha, may nevertheless not want
to completely turn off the strategy. Therefore, they may further decompose the strategy’s
performance to determine when it may recover a more comfortable profitability.

Table 3 breaks down the earnings news bucket considering whether liquidity was con-
stant, rising, or dropping. Section 4.2 extends the balancing formula (1.1) to consider such
dynamic liquidity conditions. The table is consistent with the formula, quantifying the
following trading intuition:

(a) The strategy’s alpha level matters more when liquidity decreases.
(b) The strategy’s alpha decay matters more when liquidity increases.

Therefore, if the trader wishes to improve strategy C’s profitability, one option is to only
respond to earnings news events when forecasting increasing liquidity, where the profitability
rises from 10bps to 15bps on 90bps of alpha.

Outline. This paper is organized as follows. Section 2 introduces the price impact model,
and Section 3 formulates the corresponding risk-neutral stochastic control problems. Sec-
tion 4 describes the explicit optimal strategies that can be obtained by changing variables
to “impact space”, and Section 5 extends this method to multiple impact decay timescales.
These theoretical results are complemented by the empirical analysis in Section 6, where
the models are fit to proprietary trading data. For better readability, the derivations of the
results are collected in the appendix.

Notation. Throughout, we fix a filtered probability space (Ω, F , (Ft)t∈[0,T ],P) with finite
time horizon T > 0.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 7

2. Price Impact Model

Price impact models describe how prices causally depend on trades. To formalize this,
let (St)t∈[0,T ] be the “unaffected” (or “fundamental”) mid-price process in the absence of
trading. If (Qt)t∈[0,T ] denotes the holdings of one (or several) large trader(s), the observed
market mid-price is

Pt(ω, Q) = St(ω) + It(ω, Q).
Here, the notation stresses that St(ω) describes price changes that happen independent of
the large trader’s actions, e.g., due to external news. In contrast, the price impact term
It(ω, Q) can depend both on external randomness and large traders’ present and past ac-
tions (Qs)s∈[0,t]. (We now suppress the dependence on the random state ω ∈ Ω as usual.)

Alfonsi, Fruth, and Schied (2010) (henceforth AFS) proposed a price impact model that
captures the nonlinear and transient nature of price impact (cf. the references in the intro-
duction) while remaining analytically tractable:9

Definition 2.1 (AFS price impact model). The price impact of a strategy (Qt)t∈[0,T ] is
It = h(Jt).

Here, the impact function h ∈ C2 is increasing, odd, and concave on [0, ∞). Its argument

dJt = − 1
τt

Jtdt + λtdQt, J0 = 0,

is an exponential moving average of current and past trades. The timescale (τt)t∈[0,T ] over
which impact decays and the push factor (λt)t∈[0,T ] can be time dependent and random.

When the price impact function is the identity (h(x) = x), this recovers the model of
Obizhaeva and Wang (2013), where each trade causes linear price impact proportional to
“Kyle’s lambda” λt, and subsequently decays at a timescale governed by τt.

If, more generally, the price impact function h is smooth and concave on [0, ∞), then
small trades dQt still have approximately linear impact dIt = h′(Jt)λtdQt, but the overall
impact of large trades Qt is sublinear in line with the crossover from linear to square-root
impact documented empirically by Bucci et al. (2019b). Indeed, as trades and in turn the
moving average Jt accumulate, the linear impact h′(Jt)λtdQt becomes smaller by concavity
of the impact function h(x). This also leads to sublinear impact for metaorders that are
executed gradually over time (large block trades evidently have a direct sublinear impact).
Remark 2.2. Obizhaeva and Wang (2013) motivated their linear price impact model with
a flat limit-order book. Analogously, nonlinear price impact functions can be derived from
a limit order book with non-constant density (Alfonsi et al., 2010; Carmona and Webster,
2019).

The connection between the order book and price impact is that the order book maps prices
to marginal trading volumes. When one derives the price impact model from an order book
shape, J measures a trade’s volume impact on the order book. The exponential moving
average corresponds to the “resilience” of the order book, which gradually recovers due to
new incoming limit orders. One then uses the order book shape to map this volume impact
back to a price impact.

9Alfonsi et al. (2010) leverage this tractability to solve an optimal execution problem. In the present study
we show that statistical arbitrage problems with general alpha signals and stochastic liquidity parameters
also admit closed-form solutions.
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8 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

Note, however, that the impact function h(x) cannot simply be read off the cumulated
state of the current order book. Instead, at lower frequencies, it is a reduced form model
for the latent order book (Tóth et al., 2011; Donier et al., 2015), which encodes the latent
portion of the demand and supply curve that has not yet materialized into the visible order
book.
Example 2.3. As a concrete example, fix x0 > 0 and suppose that

h(x) =

x, |x| ≤ x0,

sgn(x)
√

2|x|x0 − x2
0, |x| > x0.

Then, volume impacts smaller than the threshold x0 shift prices linearly, whereas the price
impact of large trade imbalances scales with the square root of the volume impact. The
location and scale parameters in the square root function are chosen to ensure value matching
and smooth pasting between these two regimes, compare Figure 2.

−4 −2 0 2 4
x

−4

−2

0

2

4

h
(x

)

Figure 2. The price impact function h(x) from Example 2.3 for x0 = 1
(solid blue) and the identity function h(x) = x (dashed red) from the linear
impact model of Obizhaeva and Wang (2013).

3. A Stochastic Control Problem for Trading

We now turn to optimal trading with concave price impact. For simplicity, we focus on a
single large trader who controls the holdings (Qt)t∈[0,T ]. Additional “external flow” of other
market participants could be added similarly as in Muhle-Karbe et al. (2023), but we do
not spell this out here to not overload the notation.

3.1. Self-Financing Equation. When the large trader’s holdings vary smoothly, that is
Qt =

∫ t
0 Q̇sds for a finite “trading rate” Q̇t = dQt/dt, then trades dQt = Q̇tdt are settled

at St + h(Jt + dQt) = St + h(Jt) + O(dt). Accordingly, the trader’s cash balance from
continuous trading on [0, t] is given by10

Yt = −
∫ t

0
(St + It)dQt = −QT ST +

∫ t

0
QtdSt −

∫ t

0
h(Jt)dQt.

10Here, the second equality follows from integration by parts. Note that for smooth trades the distinction
between the price impact before and after their execution vanishes. This differs for discrete block trades
or holdings “wiggling like Brownian motion”. Section 4 avoids the corresponding cumbersome bookkeeping
equations by directly approximating the performance of such strategies “in impact space”.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 9

Here, the first integral describes the standard gains and losses from frictionless continuous-
time trading. The second integral accounts for additional price impact costs.11

3.2. Risk-Neutral Objective Function. The most tractable objective function in this
context is to maximize expected returns net of transaction costs. Note that superlinear
price impact costs automatically impose an endogenous capacity constraint. Therefore,
such risk-neutral optimization problems are typically well-posed.

Definition 3.1 (Risk-neutral intraday trading). A risk-neutral intraday trader solves the
stochastic control problem

(3.1) sup
Q

E [YT + QT ST ] = sup
Q

E
[∫ T

0
QtdSt −

∫ T

0
h(Jt)dQt

]
.

Here, the trader values their end-of-day position at the unaffected price rather than the mar-
ket price. This avoids illusory gains caused by pushing up prices when entering a position.
Such illusory mark-to-market gains due to price impact are studied by Caccioli et al. (2012);
Kolm and Webster (2023). To avoid such misleading profits, traders minimize arrival slip-
page and ignore mark-to-market P&L, in line with (3.1).

A helpful statistic to simplify (3.1) is the so-called intraday alpha signal

αt = Et [ST − St] = Et[ST ] − St.

This signal predicts intraday returns the trader doesn’t cause. For a risk-neutral trader,
an alpha signal is a sufficient statistic of the unaffected price St. Indeed, an integration by
parts and αT = 0 yield E[

∫ t
0 QsdSs] = E[

∫ t
0 αsdQs] for smooth strategies dQt = Q̇tdt. The

risk-neutral intraday objective (3.1) in turn can be written as

(3.2) sup
Q

E
[∫ T

0
(αt − h(Jt))dQt

]
.

That is, in expectation, each trade earns alpha but pays price impact.

A long-term trader may also have views on returns beyond the trading day. The risk-
neutral objective (3.1) can be extended to incorporate such long-term views as follows:

Definition 3.2 (Risk-neutral long-term trading). A risk-neutral long-term trader solves
the stochastic control problem

sup
Q

E [YT + Sτ QT ] for some time τ > T .

A risk-neutral long-term trader still tracks an alpha signal
αt = E [Sτ − St| Ft] ,

but the end-of-day constraint αT = 0 no longer applies in this case. With this notation, the
representation (3.2) of the risk-neutral goal functional still applies. The only difference is
that the long-term alpha does not vanish at the end of the trading day.

11This budget equation assumes that trades settle at the mid-price and thus neglects the contribution of
bid-ask spreads to transaction costs. As discussed in the introduction, this is justified for large, capacity-
rather than risk-constrained actors, for which impact costs dominate spread costs.
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10 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

For simplicity, we henceforth assume that the alpha signal αt is an Itô process and denote
its drift rate by µα

t . Traders typically refer to αt as the alpha level and to −µα
t as the alpha

decay. Examples 3.3 and 3.4 below specify standard parametric alpha signals. Example 3.5
covers the increasingly common non-parametric case. In particular, this applies to modern
machine-learning approaches to alpha research and showcases the advantage of our explicit
trading formulas from Theorem 4.2 for general non-parametric signals.

Example 3.3 (Deterministic alpha). The trading signal αt can be deterministic even if the
fundamental price St is stochastic. For instance, a constant drift rate of the fundamental
price dSt = µdt + σdWt translates to the deterministic intraday alpha signal αt = µ(T − t).
In the long-term case, the alpha signal equals αt = µ(τ − t).

Example 3.4 (Ornstein-Uhlenbeck alpha). If the unaffected price process has Itô dynamics
dSt = µtdt + σtdWt, then the alpha decay −µα

t equals the drift rate µt. The most common
specification is to model this as an Ornstein-Uhlenbeck process dµt = −θ−1µtdt + ηdWt.12

Then, the intraday alpha is

αt =
∫ T

t
Et[µs]ds =

∫ T

t
e−(s−t)/θµtds = (1 − e−(T −t)/θ)θµt.

For a long-term trader predicting the steady-state alpha (τ → ∞), we have αt = θµt.

Example 3.5 (Non-parametric alpha). Examples 3.3 and 3.4 are convenient to derive
analytical results. However, practitioners rarely fit two-parameter alpha signals. Instead,
they increasingly rely on non-parametric models with hundreds or thousands of features.
In particular, the last decade saw the rise of machine learning models for alpha research.
For example, cf. Cont et al. (2021); Kolm et al. (2023) for applications of various neural
network architectures to build alpha signals from limit order book events.

Therefore, most quantitative strategies treat alpha signals as generic functions or pro-
cesses. For instance, a portfolio optimization or trading algorithm may abstract away an
alpha model’s parameters and rely on a stream of alpha levels αt and decays −µα

t . Solving
control problems in this non-parametric regime therefore is a crucial differentiation between
toy models and practical algorithms.

4. Solution by Mapping to Impact Space

We now turn to the solution of the risk-neutral trader’s optimization problem (3.2).
Section 3.2 derives the objective function (3.2) for smooth strategies Qt =

∫ t
0 Q̇sds. This

is sufficient when trading signals αt vary smoothly over time. However, diffusive trading
signals as in Example 3.4 naturally lead to diffusive trades. Moreover, bulk trades also
naturally appear unless the trader’s initial holdings perfectly align with the initial signal.

At first glance, it seems appealing to approximate the P&L of such more general strategies
by the P&Ls (3.2) of an approximating sequence of smooth strategies. However, the trading
rates Q̇t = dQt/dt blow up in any such approximation. Consequently, one can no longer
neglect the impact of the current trades on the corresponding execution price. Therefore,
without a more precise micro-description of price impact, the classic self-financing equation
breaks down for such approximating sequences. However, the approximation argument
carries through without problems if one first recasts the problem in “impact space”:

12For example, such specifications are used by Gârleanu and Pedersen (2013) and many other academic
and practitioner papers.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 11

Theorem 4.1 (Mapping to impact space). Assume the push factor is of the form λt = eγt

for a smooth process γt. The trader’s stochastic control problem (3.2) in holdings Qt is
equivalent to the following control problem in “volume impact” Jt:

sup
(Jt)t∈[0,T ]

E
[ ∫ T

0
e−γt

(
−µα

t Jt + (τ−1
t + γ′

t)αtJt − τ−1
t h(Jt)Jt − γ′

tH(Jt)
)

dt

+ e−γT (αT JT − H(JT ))
]
.

(4.1)

(Here, H(x) =
∫ x

0 h(y)dy is the antiderivative of the price impact function h(x).) For a
volume impact process (Jt)t∈[0,T ], one recovers the corresponding holdings via the one-to-one
map

(4.2) Qt =
∫ t

0

1
λs

dJs +
∫ t

0

1
τsλs

Jsds.

Only the volume impact states Jt appear in the reformulation (4.1) of the objective
function, but not their derivatives. Hence, this representation of the trader’s expected P&L
naturally extends to general strategies with jumps and/or nontrivial quadratic variation.13

Moreover, switching the control variable from the trader’s holdings Qt to the corresponding
impact state Jt massively simplifies the trading problem. Indeed, in impact space, the
goal functional can simply be optimized pointwise, circumventing the need for dynamic
programming or other advanced methods.14

Theorem 4.2 (Pointwise maximization in impact space). Suppose the integrand in (4.1) is
strictly concave in volume impact Jt. Then, pointwise maximization determines the optimal
J∗ as h(J∗

T ) = αT and

(4.3) 0 = −µα
t + (τ−1

t + γ′
t)αt − (τ−1

t + γ′
t)h(J∗

t ) − τ−1
t h′(J∗

t )J∗
t , for t ∈ [0, T ).

The corresponding optimal holdings can be recovered via (4.2).

4.1. No Price Manipulation. We now discuss the wellposedness of the pointwise max-
imization (4.1). More specifically, we link the concavity of the integrand in (4.1) to the
absence of “price manipulation” (i.e., round trip trades with a positive expected cost). For
linear price impact, this link was first established by Fruth et al. (2013), who observed:

“Time-dependent liquidity can potentially lead to price manipulation. In
periods of low liquidity, a trader could buy the asset and push market prices
up significantly; in a subsequent period of higher liquidity, he might be
able to unwind this long position without depressing market prices to their
original level, leaving the trader with a profit after such a round trip trade.”

The same intuition also applies in the present context with concave price impact. Indeed,
differentiating twice shows that the integrand in (4.1) is strictly concave in Jt if

(4.4) 2τ−1
t + γ′

t > max
x

{
−h′′(x)x

h′(x)

}
.

13For linear price impact models, this extension argument first appears in Ackermann et al. (2021). The
self-financing condition for general strategies can in turn be backed out in a second step, see Corollary A.2.

14For linear price impact models, this approach has been pioneered by Fruth et al. (2013, 2019). A related
change of variable to integrated impact is used by Gârleanu and Pedersen (2016); Isichenko (2021).
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12 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

If this condition is satisfied and the first-order condition (4.3) admits a solution,15 then the
latter identifies the unique optimizer of (4.1).

When the impact function h is the identity as in Obizhaeva and Wang (2013), then the
right-hand side of (4.4) is zero, and this wellposedness condition reduces to the no price
manipulation condition from Fruth et al. (2013). For general concave impact functions h,
the zero lower bound is replaced by the curvature of the impact function, measured by the
“Arrow-Pratt measure of relative risk aversion” of h. This lower bound makes it harder to
avoid price manipulation. For example, if h follows a power law ∝ xc, c ∈ (0, 1), then the
lower bound in (4.4) is 1−c rather than 0. The condition’s interpretation remains: liquidity
cannot increase faster than price impact decays: τtγ

′
t > −(1 + c).

Remark 4.3 (Necessary condition). If the impact function is a pure power law (h(x) = xc

for x ≥ 0), then Condition (4.4) is both necessary and sufficient. Indeed, if (4.4) is not
satisfied then an explicit price manipulation strategy can be constructed just as in the linear
case (Muhle-Karbe et al., 2023, Section 4.3).

For general concave impact functions h(x) the global concavity condition (4.4) is only
sufficient to rule out price manipulation but not necessary. For example, if the integrand
fails to be strictly concave everywhere, then it may still have a unique global maximum,
unlike for power law functions.
4.2. Examples. We now discuss the properties of the optimal policies implied by Theo-
rem 4.2.
Corollary 4.4. Consider the case where the price impact function is a pure power law
h(x) = xc for x ≥ 0.16 Under the no price manipulation condition (1 + c)τ−1

t + γ′
t > 0, the

optimal impact state then is

(4.5) I∗
t = τ−1

t + γ′
t

(1 + c)τ−1
t + γ′

t

αt − 1
(1 + c)τ−1

t + γ′
t

µα
t .

The Baseline Scenario. First assume the general alpha signal to be constant over [0, T ].
For instance, the long-term trader determines their alpha signal at the start of the day
and does not update the signal intraday. In particular, the long-term trader assumes no
intraday alpha decay. The optimal impact state then equals

I∗
t = α

1 + c
, t ∈ (0, T ); I∗

T = α.

The corresponding smooth trades are

dQ∗
t = α1/c

λτ(1 + c)1/c
dt, t ∈ (0, T ),

and the initial and terminal bulk trades are

∆Q∗
0 = α1/c

λ(1 + c)1/c
; ∆Q∗

T = ((1 + c)1/c − 1)α1/c

λ(1 + c)1/c
.

Unsurprisingly, the optimal trades are a complex non-linear function of the model and
the alpha because the price impact model is non-linear. In contrast, when expressed in
impact, the optimal trading strategy is a surprisingly concise linear function of alpha.

15In particular, such a solution always exists in the empirically relevant case where the price impact
functions behave like a power function xc, c ∈ (0, 1] for large x.

16Due to lack of smoothness one cannot apply Theorems 4.1 and 4.2 in this case. However, one can first
apply these results to a smoothed impact function as in Example 2.3 and then send the mollification to zero.
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 13

This pattern repeats itself in the following sections. Every time one adds model features,
both the optimal trades and the optimal impact increase in complexity. However, the trades’
complexity increases massively. While numerically implementable, these trade formulas are
challenging to grasp and communicate concisely. In contrast, the impact formulas increase
only mildly in complexity and remain intuitive as one adds model features.

Adding Alpha Decay. To illustrate this, now assume that αt is an Itô process with drift µα
t .

The optimal impact state then equals

I∗
t = 1

1 + c
(αt − τµα

t ) , t ∈ (0, T ); I∗
T = αT .

Therefore, a trader considering a dynamic alpha signal only needs to correct their strategy
in impact space by the alpha’s decay, measured by µα

t , relative to the impact decay rate.
Furthermore, this adjustment remains linear.

Contrast this simple expression for the optimal impact to the corresponding trading speed
over (0, T ). For simplicity, assume α is deterministic, so that µα

t = α′
t. The optimal trading

speed then is

dQ∗
t = (αt − τα′

t)
(1−c)/c

λτ(1 + c)1/c
(αt − τ2α′′

t )dt.

Not only does the formula in trade space depend on higher derivatives of the alpha signal,
the complexity increase also compounds with the non-linear relationship and leads to an
unwieldy trading formula.

Alpha Decay and Dynamic Liquidity. With alpha decay (−µα
t > 0), one must trade more

aggressively to exploit the trading signal before it disappears. We now discuss how this
tradeoff between alpha level and decay is modulated by changing liquidity conditions (recall
that γt = log λt, where λt is Kyle’s lambda, a measure of illiquidity):

(a) When liquidity changes are small, γ′
t ≪ τ−1

t , the optimal impact state simply adds
the alpha level αt and its decay −τtµ

α
t over the impact’s timescale:

I∗
t = 1

1 + c
(αt − τtµ

α
t ) .

(b) When liquidity decreases by a sizable amount, then the alpha level gains in impor-
tance. For instance, if γ′

t = τ−1
t , then

I∗
t = 2

2 + c
αt − 1

2 + c
τtµ

α
t .

(c) Conversely, when liquidity increases by a sizable amount, then alpha decay gains in
importance. For instance, if γ′

t = −1
2τ−1

t , then

I∗
t = 1

2 + 2c
αt − 2

1 + 2c
τtµ

α
t .

Remark 4.5 (Liquidity droughts and floods). The alpha level and decay tradeoff is agnostic
to the level of liquidity: only its changes matter. Therefore, practitioners should focus
on their trade’s alpha level during liquidity droughts and their trade’s alpha decay during
liquidity floods.
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14 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

Transition from Linear to Square-root Impact. Let us now discuss how the results above
adapt to more general price impact functions such as the crossover from linear to square-
root impact in Example 2.3. To this end, the crucial observation is that the optimality
condition (4.3) is local, in that that the optimal impact state only depends on the corre-
sponding local behavior of the price impact function. For example, if the impact functions is
a concatenation of power laws (up to smooth interpolation), then the corresponding optimal
impact state switches between the corresponding power law regimes as the alpha signal, its
decay, and the liquidity parameters vary over time.

0 1 2 3 4 5
α̃

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

I
∗

Figure 3. The optimal impact I∗
t as a function of the “adjusted alpha”

α̃t = αt − τtµ
α
t for the price impact function h(x) = sgn(x)

√
2|x|x0 − x2

0
from Example 2.3 (solid blue), for the linear model of Obizhaeva and Wang
(2013) (dashed red), and for a pure square-root model (dotted black).

To illustrate this, consider the price impact function from Example 2.3 and suppose for
simplicity that liquidity is constant (γ′

t = 0). Then, the first-order condition (4.3) simplifies
to

0 = α − τtµ
α
t − h(J∗

t ) − h′(J∗
t )J∗

t and in turn J∗
t = g(αt − τtµ

α
t ),

where g is the inverse of h(x)+h′(x)x. For weak “adjusted” alpha signals 0 ≤ αt−τtµ
α
t ≤ x0,

the relevant part of the price impact function from Example 2.3 then is the linear one, so
that the optimal impact is half of the alpha signal. For stronger adjusted alpha signals
αt − τtµ

α
t > x0, the nonlinear part of the impact function applies. For very large adjusted

alpha signals, the latter approaches a square root function so that the optimal impact state
tends to two thirds of the alpha signal. For intermediate values of the alpha signal, the
optimal impact state smoothly interpolates between these extreme cases, as illustrated in
Figure 3.

5. Optimal Trading with Multiple Decay Timescales

Empirical studies have shown that impact decay initially follows a power-law and even-
tually converges to a permanent level (Brokmann et al., 2015; Bucci et al., 2019a). To ap-
proximate such multiscale dynamics, we now consider a more general version of the model
from Section 2, where price impact decays at multiple different exponential timescales (and
each of the corresponding concavities can potentially also be different).
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TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY 15

5.1. Mapping to impact space. For simplicity, we focus on a smooth alpha signal
(αt)t∈[0,T ]. The price impact of a smooth trading strategy (Qt)t∈[0,T ] now is the convex
combination of N standard AFS models, with different time scales for impact decay and,
potentially, also different concavities:

(5.1) It =
N∑

n=1
wnhn(Jn

t ).

Here, the normalized weights satisfy wn ∈ [0, 1] with
∑N

n=1 wn = 1, the impact functions
hn are increasing, odd and concave on [0, ∞) (e.g., power laws), and their arguments Jn

t

are exponential moving averages of current and past trades with different decay timescales
τn > 0:

dJn
t = −τ−1

n Jn
t dt + λdQt, Jn

0 = 0.

As in Section 3.2, a risk-neutral trader maximizes alpha capture net of impact:

sup
(Qt)t∈[0,T ]

E
[∫ T

0
(αt − It) dQt

]
.

For simplicity, we focus on a deterministic alpha signal and constant impact parameters τn,
λ. Then there is no external randomness, so we can focus on deterministic trading strategies
without loss of generality. In view of (5.1), their expected P&L equals∫ T

0
(αt − It) dQt =

N∑
n=1

wn

∫ T

0
(αt − hn(Jn

t )) dQt.

For each term in this sum, we now switch to impact space using the change of variable
(5.2) dQt = λ−1τ−1

n Jn
t dt + λ−1dJn

t .

Then, just like for a single impact decay timescale in Section 4, integration by parts applied
separately for each time scale leads to a weighted sum of pointwise optimization problems:

(5.3) sup
J1,...,JN

λ−1
N∑

n=1
wnE

[ ∫ T

0

((
τ−1

n αt − α′
t

)
Jn

t − τ−1
n hn(Jn

t )Jn
t

)
dt + αT Jn

T − Hn(Jn
T )
]
.

(Here, Hn(x) =
∫ x

0 hn(y)dy is the antiderivative of the price impact function hn.) However,
we cannot simply optimize each term separately in (5.3). Instead, we also have to ensure
that the volume impacts Jn

t at each different timescale correspond to the same trades:

(5.4) λ−1
(
dJ1

t + τ−1
1 J1

t dt
)

= λ−1
(
dJn

t + τ−1
n Jn

t dt
)

, n = 2, . . . , N.

5.2. Solution. We enforce the linear constraints (5.4) using suitable Lagrange penalties ηn
t ,

n = 2, . . . , N (see Appendix A.1). For given ηn
t , the impact states Jn

t , n = 1, . . . , N decou-
ple, and the trading problem can once again be solved by myopic impact formulas computed
via pointwise maximizations. The Lagrange multipliers guaranteeing that the consistency
condition (5.4) also holds solve a nonlinear second-order ODE provided in Appendix A.1.

Theorem 5.1 (Optimal impact states). Given Lagrange multipliers ηn
t , n = 2, . . . , N the

optimal volume impacts are

(5.5) h1(J1
T ) = αT + 1

w1

N∑
n=2

ηn
T , hn(Jn

T ) = αT − 1
wn

ηn
T , n = 2, . . . , N,
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16 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

and, for t ∈ [0, T ):

J1
t = g1

(
αt − τ1α′

t + 1
w1

N∑
n=2

(ηn
t − τ1ηn′

t )
)

,(5.6)

Jn
t = gn

(
αt − τnα′

t − 1
wn

(ηn
t − τnηn′

t )
)

, n = 2, . . . , N.(5.7)

(Here, gn(x) is the inverse of h′
n(x)x + hn(x).) The trade consistency constraint (5.4) is

satisfied if ηn
t , n = 2, . . . , N solve the system of nonlinear second-order ODEs (A.4) with

boundary conditions (A.3)-(A.5).

5.3. Examples. By summing over the terminal volume impacts (5.5), we see that the
optimal impact generally fully exhausts the alpha signal at the terminal time (I∗

T = αT ). At
intermediate times t ∈ (0, T ) the representation from Theorem 5.1 simplifies considerably
when the price impact function follows the same power law across all decay time scales,
which is supported by our empirical results in Section 6:

Example 5.2 (Empirically relevant case). The data in Section 6 suggests that the concav-
ities at all impact timescales are similar and close to a square-root law (cn = 0.5). The
optimal impact state then becomes

(5.8) I∗
t = 2

3

(
αt − τwα′

t +
N∑

n=2
(τn − τ1)ηn

t
′
)

, I∗
T = αT ,

where τw =
∑N

n=1 wnτn. Thus, the trading strategy behaves as if it traded under the weighted
timescale τw, plus additional decay terms induced by the Lagrange multipliers.

For the special case of linear price impact (hn(x) = x), the ODEs from Theorem 5.1
become linear, leading to explicit solutions that can be applied to arbitrary alpha signals.17

The simplest case of two impact decay timescales and constant alpha already illustrates
several key effects:

Example 5.3 (OW model with two timescales). When price impact is linear (h1(x) =
h2(x) = x), then ηt satisfies a linear second-order ODE. Indeed, setting

τ̄w1 = w1τ1 + w2τ2, τ̄w2 = w2τ1 + w1τ2, τ̄w3 = (τ2 − τ1)w1w2, τ̄ =
√

τ1τ2,

the ODE for the Lagrange multiplier then simplifies to

τ̄2η′′
t − τ̄w1

τ̄w2
ηt = τ̄w3

τ̄w2

(
αt + τ̄2α′′

t

)
, η′

0 − 1
τ̄w2

η0 = τ̄w3

τ̄w2
α′

0, η′
T + 1

τ̄w2
ηT = τ̄w3

τ̄w2
α′

T .

For constant α, this equation has the explicit solution

η(t) = α

(
C+eCt + C−e−Ct − τ̄w3

τ̄w1

)
,

where

C =
√

τ̄w1

τ̄2τ̄w2
, C+ = τ̄ τ̄w3

τ̄w1 (τ̄(eCT + 1) +
√

τ̄w1 τ̄w2(eCT − 1)) , C− = C+eCT .

17Optimization problems with linear impact and general decay kernels are studied using other methods
by Gatheral et al. (2012); Abi Jaber and Neuman (2022).
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When the trading horizon is long (T → ∞), C+ → 0 and C− → τ̄ τ̄w3
τ̄w1 (τ̄+

√
τ̄w2 τ̄w3 ) > 0. The

optimal impact (5.8) in turn tends to

I∗
t = α

2 (1 − (τ2 − τ1)C−Ce−Ct).

Over time, this converges to the same stationary level α/2 obtained in models with a single
decay timescale. However, instead of moving the impact to this level using a single bulk
trade at time t = 0, the optimal policy with multiple decay timescales consists of a smaller
initial jump complemented by a subsequent smooth adjustment. Put differently, for multiple
decay timescales the optimal impact for a single time scale is smoothed out to a certain
extent. This “transient” build-up of the optimal impact state is required to satisfy the trade
consistency conditions (5.4), which depend both on the current levels and the histories of
the different volume impact Jn

t and whence would not be satisfied if the overall impact state
would immediately be moved to its stationary level by an initial bulk trade like for a single
impact decay timescale.

With a finite trading horizon T < ∞, a similar smoothening is applied near the terminal
time. This is illustrated in Figure 4 for different impact decay timescales and trade durations
T . One takeaway from Figure 4 is that two regimes can occur depending on T :

(a) If T is closer to the long timescale τ2, then the solution behaves like a smoothened
version of the optimal strategy on timescale τ2. The smoothening comes from the
temporary buildup of the much faster decaying impact on timescale τ1, and is rem-
iniscent of optimal impact profiles with instantaneous impact costs.

(b) If T is closer to the short timescale τ1, then the solution behaves like the optimal
strategy on the timescale τ1 with a linear offset to the impact. The latter stems
from the linear impact build-up of the (nearly) permanent second timescale τ2.

0 T/2 T
t

0.00

0.25

0.50

0.75

1.00

I
∗ t/
α

T1 T2 T3

t

I
∗ t/
α

Figure 4. Optimal impact I∗
t over time for linear impact h(x) = x and two

decay timescales with weights w1 = 2/3, w2 = 1/3. In the left panel the
order duration is T = 70d and the impact timescales (in days) are (τ1, τ2) =
(1,10) (green dashed), (1,100)(red dotted), and (0.5,65) (solid blue) in line
with our empirical estimates. In the right panel T is varied from T3 = 50d
to T2 = 30d and T1 = 10d, for (τ1, τ2) = (0.5,65).

If the price impact is a concave function such as h(x) =
√

x, then the ODE from Theo-
rem 5.1 needs to be solved numerically, but this can be easily implemented in any standard
solver. Figure 5 compares the optimal impact of the concave and linear models. We see
that the initial and terminal jumps of the optimal impact state are also partially absorbed
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18 TRADING WITH CONCAVE PRICE IMPACT AND IMPACT DECAY

into smooth trades for square-root impact across multiple timescales. However, the optimal
impact profile becomes much more asymmetric, in that the initial bulk trade is reduced
to a much larger extent than its counterpart at the end of the trading interval. Moreover,
whereas the average impact is the same for linear models with one or two timescales, the
presence of a second timescale considerably reduces the average impact with concave price
impact.

0 5 10 15 20 25 30
t

0.0

0.2

0.4

0.6

0.8

1.0

I
∗ t/
α

Figure 5. Optimal impact I∗
t over time for linear impact h(x) = x (solid

blue) and square-root impact h(x) =
√

x (dotted red), and the optimal
impacts It = α/(1 + c) for a single decay timescale and c = 1 and c = 0.5
(solid grey).

6. Empirical Results

We now turn to the empirical estimation of the models studied in the previous sections.
We seek to answer questions such as “What timescales does price impact decay over?” or
“Do all timescales share the same concavity parameter?” Given the difficulty of accessing
sufficiently large metaorder datasets for academic researchers or small trading firms, we also
quantify to what extent price impact models fit on proprietary data can be recovered using
the public trading tape alone.

6.1. Dataset. Researchers calibrate price impact models on various datasets to analyze
transaction costs at the order or portfolio level. Data may include proprietary orders at
large financial institutions (Almgren et al., 2005; Bershova and Rakhlin, 2013; Toth et al.,
2017; Frazzini et al., 2018), and public trades on the market tape (Bouchaud et al., 2004;
Cont et al., 2013; Chen et al., 2019; Muhle-Karbe et al., 2023). In this paper, we use a
proprietary dataset of meatorders provided by CFM that comprises roughly 105 metaorders
of future contracts traded over 2012-2022. The time at the start and the end of each meta-
order is indicated, as well as the mid-price and the number of child-orders. All meta-orders
were executed through at least three child-orders and accounted for a fraction between
0.01% and 10% of the average daily volume; the average order size was of the order of 0.1%.
No meta-order was traded longer than one day and the average execution time is 3h. In
line with Almgren et al. (2005), we normalize trade sizes dQt by the average daily traded
volume of the respective contracts.
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6.2. Fitting Methodology. Price returns are fitted against the increments of a power-law
price impact of the form

(6.1) It = σ
N∑

n=1
wnsgn(Jn

t )|Jn
t |cn ,

for concavities cn, (unnormalized) weights wn, and volume impacts Jn
t with decay timescales

τn.18 In line with Almgren et al. (2005), we normalize the coefficient for each timescale n
using the daily price volatility σ; recall the trade sizes have already been normalize by daily
trading volumes.19 In the following, we consider a grid of impact decays τn and concavity
parameters cn and denote the best point estimates by τ̂n and ĉn respectively.

Since i) no meta-order in the sample lasts more than one trading day, and ii) each of
them is executed with a profile close to a TWAP, the volume impacts Jn

t are computed
under the assumption that trades are executed uniformly during the execution time of each
meta-order, and there is no need to consider overnight effects.

To implement the fitting, for each value of the concavity cn and impact timescales τn on
the parameter grid, we then compute the respective volume impacts state hn(Jn

t ), and in
turn fit their coefficients wn by a linear regression. The optimal values of the concavity and
decay parameters are in turn determined by optimizing over the grid.20

Together with our results from the previous sections, this allows researchers to fit non-
linear, multi-timescale models while retaining inherently tractable solutions to statistical
arbitrage problems with general nonparametric alpha and liquidity signals. Furthermore,
this grid-search provides a sensitivity analysis across different parameter values as a byprod-
uct.

6.3. Summary of Results. Table 4 summarizes our parameter estimate across various
model specifications. The following sections then delve deeper into different aspects of this
analysis.

The main takeaways of our analysis of the “term structure of metaorder impact” are:
(a) Two timescales fit the data well. In order of economic importance, these are a fast

timescale measured in hours and a very slow timescale measured in weeks (resem-
bling permanent impact).

(b) Concavity is uniform across all of these timescales, in line with the square-root law.
When the aggregate order flow imbalance is used to create “proxy metaorders” from the
public trading tape (see Section 6.6 for more details), then the main takeaways are:

(a) When restricted to models with one timescale, public and proprietary data retrieve
the same concavities and similar decay parameters. However, the public trading tape
substantially underestimates the magnitude of price impact. Taken at face value,
this model misspecification can in fact turn the P&L of an otherwise profitable
strategy negative, compare Hey et al. (2023).

18For simplicity, we focus on constant liquidity parameters. See Cont et al. (2013); Min et al. (2022);
Muhle-Karbe et al. (2023) for empirical studies with dynamic liquidity parameters using the public trading
tape.

19For power impact functions, the push factor λn of each volume impact JN
t can be absorbed into the

unnormalized weights, so we set λn = 1 without loss of generality.
20A nonparametric approach for estimating general decay kernels for linear price impact is proposed and

studied by Neuman et al. (2023).
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(b) When fitting multiple timescales, both the impact parameters and the corresponding
decay timescales estimated from the public trading data do not match their coun-
terparts derived from metaorder data. The public trading tape still underestimates
the magnitude of price impact in this case.

(a) One timescale τ

Dataset c τ in days w

Metaorders only 0.5 0.5 1.7
Public market tape 0.5 0.3 1.1

(b) Multiple Timescales τ⃗ , single concavity c = 0.5
Dataset τ⃗ w⃗/||w⃗|| ||w⃗||

Metaorders only 0.5, 65, 7 0.6, 0.3, 0.1 2
Public market tape 0.3, 2, 14 0.55, 0.25, 0.2 1.3

(c) Two timescales τ⃗ and concavities c⃗

Dataset c⃗ τ⃗ w⃗/||w⃗|| ||w⃗||
Metaorders only 0.45, 0.5 0.5, 65 0.6, 0.4 1.75

Public market tape 0.65, 0.35 2, 0.3 0.75, 0.25 1.3

Table 4. Price impact parameter estimates across datasets and models.
The elements of the vectors τ⃗ = (τ1, ..., τN ) and c⃗ = (c1, c2, ..., cN ) are sorted
by descending weight wn in w⃗ = (w1, ..., wN ).

6.4. Understanding Multiple Timescales. We now look into the fitting of multiple
impact decay timescales in more detail.

Two timescales: To show that impact decays on multiple timescales, we start by fitting two
decay timescales τ1, τ2 while keeping the same concavity parameter c1 = c2 = 0.5 fixed.
Figure 6a displays a symmetric heatmap of the statistical sensitivity to (τ1, τ2). The R2

peaks at τ̂1 = 0.5 days, matching the one-dimensional decay fit in Hey et al. (2023).
Figure 6d fixes τ1 = τ̂1 and displays R2(ĉ, τ̂1, τ2). Three peaks appear at 7, 14 and 65

days, allowing to significantly increase the fraction of explained variance: despite the modest
absolute change (from 2.65% of price variance up to 2.75%), the change is significant – for
our sample size, the standard error of R2(ĉ, τ̂1, τ2) is 5 · 10−5. The largest improvement
obtains for the longest timescale τ̂2 = 65 days, with associated weight w2 = 0.3. (As for
principal component analysis, we henceforth sort the timescales by descending weights wn.)

This slow impact decay effectively corresponds to permanent price impact. Using the
ANcerno database, Bucci et al. (2019a) show that permanent impact is about 1/3 of peak
impact. Our study matches this since w1(ĉ, τ̂1 = 0.5, τ̂2 = 65) = 0.7, cf. Figure 6c and the
inset of Figure 6d.

Three timescales: When the first two timescales are fixed, one fits the third timescale by
scanning across candidate τ3. Figure 7 displays this procedure. R2(ĉ, τ̂1, τ̂2, τ3) peaks at
τ3 = τ̂3 = 7 days, in line with the intermediate peak displayed in Figure 6d. The inset of
Figure 7 plots the estimated weights w3 for different τ3. For the optimal value τ̂3 = 7 days,
τ̂1, τ̂2 contribute about 60% and 30% to the total impact. In contrast, τ̂3 only contributes
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(d) R2(ĉ, τ̂1, τ2), ||w⃗||(ĉ, τ̂1, τ2), and
w2/||w⃗||(ĉ, τ̂1, τ2).

Figure 6. Calibration results for two decay timescales τ1 and τ2 with fixed concavity pa-
rameter ĉ = 0.5. Panel (A) shows the statistical fit; Panel (B) depicts the model’s prefactor
across τ1, τ2. Panel (C) displays the normalized weight of the faster timescale. Panel (D)
shows the model fit across τ2 when the first timescale is fixed to τ̂1 = 0.5 days (green), as
well as the corresponding overall prefactor ||w⃗||(c, τ1, τ̂2) (blue) and the normalized weight
w2/||w⃗|| of the second timescale (inset).

10%. The improvement of R2 also is only 5 · 10−5, i.e., similar to the noise level. Given
the third timescale’s low statistical improvement on our data, we henceforth focus on two
timescales.
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Figure 7. Calibration results for third decay timescale τ3, when the concavity ĉ = 0.5
and the first two decay timescales τ̂1 = 0.5 days and τ̂2 = 65 days are fixed. The main
plot shows the statistical fit. The inset panel displays the normalized weights of the third
timescale.

6.5. Understanding Multiple Concavities. We now lift the assumption that ĉ1 = ĉ2 =
0.5 and explore arbitrary combinations of concavity parameters (c1, c2). The essential take-
away is that varying concavity over timescales does not significantly improve the model for
metaorder data.

More specifically, we now fix the two timescales τ̂1, τ̂2 with the largest weights obtained
above, but vary the corresponding concavities c1, c2. Figure 8 displays the statistical fit for
different concavity parameters in the left panel. The heatmap is asymmetric:

(a) For the longer timescale, ĉ2 = 0.5 regardless of the choice for c1.
(b) For the shorter timescale, ĉ1 < 0.5. For example, for ĉ2 = 0.5 we obtain ĉ1 = 0.45,

cf. Subfigure 8b.
However, compared to the previous case where one chooses the same concavity parameter for
both decays, the statistical significance R2 increases only slightly by 5 ·10−5 from 2.752% to
2.759%, comparable to the standard error 5 ·10−5 of the R2. Therefore, multiple concavities
only lead to relatively minor improvements in the model fit.

6.6. Understanding the Public Trading Tape. Metaorders are proprietary data and
are not typically available to academic researchers. Trading firms (especially small ones)
may also wish to compare their proprietary trades with the market. Therefore, we now
assess to what extent similar results as in the previous section can also be derived from the
public trading tape alone.

Many trades on the public tape belong to metaorders and, thus, are expected to have
the same price impact. However, the challenge is that the public tape lacks additional
metaorder information such as start and end times or even average durations.

To gain a better understanding of how the impact of the aggregate public orderflow
compares to metaorders, the aggregate impact IT can be computed over a bin of length
T conditional on the orderflow imbalance

∑NT
t=1 ∆Qt where ∆Qt is the traded quantity

(normalized by average daily volume) of the tth trade out of NT total trades in the respective
bin. Webster (2023) calls this approach “imbalance as an order size proxy”. The intuition
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(b) R2(c1, ĉ2, τ̂1, τ̂2), ||w||(c1, ĉ2, τ̂1, τ̂2), and
w1/||w||(c1, ĉ2, τ̂1, τ̂2).

Figure 8. Calibration results in the multi-concavity case for metaorders where τ̂1 = 0.5
days and τ̂2 = 65 days. Panel (A) shows the statistical sensitivity in terms of c1 and
c2; Panel (B) shows the values for the model’s prefactor and the statistical sensitivity for
ĉ2 = 0.5. ĉ1 shifts to the left, as ĉ1 = 0.45, and the weight w1 = 0.6.

is that sizable orderflow imbalances can serve as a proxy for metaorders when these are
not directly available. The proxy metaorders cover the same assets as the proprietary
metaorder. We construct them to last for 3 hours each to match the average proprietary
metaorder length. We also experimented with 30s metaorders, but find that this leads to
quite different results.

Figure 9 collects calibration results for the public trading tape. The essential takeaway
is that, when fitting a single timescale using comparable metaorder durations, the public
trading tape recovers the same concavity and a similar decay timescale as the proprietary
dataset. The public trading tape substantially underestimates the magnitude of price im-
pact, which is problematic for implementing trading strategies. Nevertheless, for academic
research, these results suggest that proxy metaorders allow one to obtain parameter esti-
mates of a reasonable magnitude.

This is no longer the case when fitting multiple timescales and concavities:
(a) The public trading tape struggles to capture long-term decay. Therefore, the ad-

ditional metaorder information crucially matters when discussing permanent (or
slowly decaying) price impact.

(b) For the public trading tape, different timescales seem to have different concavities.
In particular, the square-root law does not hold universally, but shorter timescales
appear more linear and longer timescales more concave, unlike for metaorder data.

Indeed, for a single concavity but with two decay timescales, we fix ĉ = 0.5. Figure 10a
displays the statistical fit. The peak occurs at τ̂1 = 0.3 days and τ̂2 = 2 days (with
corresponding normalized weights w1/||w|| = 0.55 and w2/||w|| = 0.45). The next timescale
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(a) R2(ĉ, τ1, τ2).

10−1 100 101 102

τ2

1.10

1.15

1.20

1.25

1.30

1.35

1.40

||w
||(
ĉ,
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(b) R2(ĉ, τ̂1, τ2), ||w||(ĉ, τ̂1, τ2), and w2(ĉ, τ̂1, τ2).
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(c) R2(ĉ, τ̂1, τ̂2, τ3) and wi/||w||(ĉ, τ̂1, τ̂2, τ3).

Figure 9. Timescale calibration results for the public trading tape. Panel (A) shows the
statistical fit across impact timescales τ1, τ2. Panel (B) fixes the point estimate τ̂1 = 0.3
days for the first timescale and displays the statistical fit, weights, and overall level for
different values of the second time scale τ2. Panel (C) fixes the point estimates τ̂1 and
τ̂2 = 2 days for the first two timescales and plots the statistical fit, weights and overall
prefactor for different values of the third time scale τ3. The price impact function is fixed
to a square-root law throughout (ĉ = 0.5).

is τ̂3 = 14 days. The three timescales then contribute 55%, 25%, and 20% to the total price
impact, a more balanced account than for the metaorder data.

Figure 10 explores a model with two timescales and concavities. The two timescales are
fixed to τ̂1 = 2 and τ̂2 = 0.3 days matching the descending order of weights w1/||w|| = 0.75
and w2/||w|| = 0.25; the corresponding concavities are in turn estimated as ĉ1 = 0.65 and
ĉ2 = 0.35. The asymmetric graph indicates a strong dependence between the concavity,
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Figure 10. Concavity calibration results for the public trading tape. Panel (A) displays
the statistical fit across different values of the concavities c1 and c2. Panel (B) fixes the
point estimate ĉ2 = 0.35 for the concavity of the timescale τ̂2 = 0.3d with the smaller weight
ŵ2/||w⃗|| = 0.35 and plots the fit together with the overall prefactor against the concavity
c1 of the first decay timescale. The impact decay timescales are fixed to τ̂1 = 2 days and
τ̂2 = 0.3 days throughout.

weights, and timescale parameters. The longer timescale contributes 75% to the total price
impact on the public tape.

6.7. Conclusion. In summary, our empirical study based on metaorders suggests that a
model with square-root impact across two timescales presents a good compromise between
parsimony and accuracy. In order of importance, the decay timescales are of the orders of
hours and weeks.

For models with a single timescale, the public trading tape recovers the correct concavity
and a reasonable estimate of the fast impact decay but underestimates the magnitude of
the price impact. The longer-term impacts are difficult to extract from public data, and the
public data also points towards deviations from the square-root law that cannot be found in
the metaorder data. This clarifies the scope and the limitations of using publicly available
trading data as a proxy for proprietary metaorders.

Appendix A. Proofs for Section 4

We first establish the myopic representation of the goal functional in impact space from
Theorem 4.1. Recall that we are still focusing on smooth trading strategies Qt =

∫ t
0 Q̇sds

at this stage.
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Proof of Theorem 4.1. With the one-to-one change of variables dQ = τ−1
t e−γtJtdt+e−γtdJt,

the goal functional to be maximized in (3.2) can be rewritten as

(A.1) E
[∫ T

0
(αt − h(Jt))τ−1

t e−γtJtdt

]
+ E

[∫ T

0
(αt − h(Jt))e−γtdJt

]
.

The first term is already in a form that can be maximized pointwise in Jt. We now recast
the second term in such a form, too. To this end, notice that Itô’s formula gives

e−γT αT JT = −
∫ T

0
e−γtγ′

tαtJtdt +
∫ T

0
e−γtαtdJt +

∫ T

0
e−γtJtdαt

(because J0 = 0 and Qt as well as Jt and γt are smooth). Moreover, Itô’s formula, J0 = 0
and the smoothness of Jt yield

e−γT H(JT ) =
∫ T

0
e−γtγ′

tH(Jt)dt +
∫ T

0
e−γth(Jt)dJt.

By substituting these two identities, the second term in (A.1) can be rewritten as

E
[
−
∫ T

0
e−γtJtdαt +

∫ T

0
γ′

tαtJtdt −
∫ T

0
e−γtγ′

tH(Jt)dt + e−γT αT JT − e−γT H(JT )
]

= E
[∫ T

0
e−γt

(
−Jtµ

α
t + γ′

tαtJt − γ′
tH(Jt)

)
dt + αT JT − H(JT )

]
.

Together with the first term in (A.1), this yields the asserted myopic representation (4.1)
of the goal functional in impact space. □

The next step is the observation of Ackermann et al. (2021) that, in impact space, the
goal functional can be readily extended continuously to the impacts generated by general,
not necessarily smooth strategies.

Proposition A.1 (Continuity of the objective function in impact space). The functional
in impact space∫ t

0
e−γs

(
(τ−1

s + γ′
s)(St − Ss)Js − τ−1

s h(Js)Js − γ′
sH(Js)

)
ds +

∫ t

0
e−γsJsdSs − e−γtH(Jt).

is continuous in the volume impact (Jt)t∈[0,T ] generated by general semimartingale strategies
with respect to the Hilbert norm

||J ||2 = E
[∫ T

0
e−γtJ2

t dt + e−γT J2
T

]
.

Having constructed the goal functional for general non smooth trading strategies in im-
pact space by continuous extension, one can back out the corresponding self-financing con-
dition in a second step. Unlike for smooth strategies, bulk trades or holdings with nontrivial
quadratic variation are no longer settled at the impact before the trade. Instead, additional
Itô and jump correction terms appear.

Corollary A.2 (Continuous extension of the self-financing equation). For general semi-
martingale trading strategies (Qt)t∈[0,T ] with volume impact (Jt)t∈[0,T ], the goal functional (4.1)
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in impact space corresponds to the self-financing equation

Yt + QtSt =
∫ t

0
Qs−dSs −

∫ t

0
h(Js−)dQs −

∫ t

0

λs

2 h′(Js−)d[Qc]s

−
∑
s≤t

(
1

λs
H(Js) − 1

λs
H(Js−) − h(Js−)∆Qs

)
.

Here, the first term corresponds to the usual gains and losses due to exogenous price
changes. The second term takes into account that all (even smooth) trades incur the price
impact already in place when they are executed. The third term is an Itô correction for
diffusive trades.21 The last term takes into account the extra impact of bulk trades.22

A.1. Proofs for Section 5.

Proof of Theorem 5.1. The trade consistency constraints (5.4) correspond to the Lagrange
penalties

λ−1
∫ T

0
ηn

t

(
dJ1

t + τ−1
1 J1

t dt − dJn
t − τ−1

n Jn
t dt

)
,

where ηn
t , n = 2, . . . , N are Lagrange multipliers to be determined. Assuming the Lagrange

multipliers ηn
t are smooth and, in particular, do not jump at the initial or terminal time,23

we can rewrite the Lagrange penalties using another integration by parts as

(A.2) λ−1ηn
T (J1

T − Jn
T ) + λ−1

∫ T

0

(
(Jn

t − J1
t )η′

t + (τ−1
1 J1

t − τ−1
n Jn

t )ηt

)
dt.

Maximizing the goal functional in its Lagrangian form over J1
T , . . . , JN

T directly yields (5.5).
Maximizing over J1

t , . . . , JN
t for t ∈ [0, T ) gives

h′
1(J1

t )J1
t + h1(J1

t ) = αt − τ1α′
t + 1

w1

N∑
n=2

(ηn
t − τ1ηn′

t ),

h′
n(Jn

t )Jn
t + hn(Jn

t ) = αt − τnα′
t − 1

wn
(ηn

t − τnηn′
t ), n = 2, . . . , N.

This in turn leads to (5.6) as well as (5.7).
We now turn to the characterization of the Lagrange multipliers that guarantee that the

trade consistency constraints (5.4) hold. To ease notation, set

g1
t = g1

(
αt − τ1α′

t + 1
w1

N∑
m=2

(
ηm

t − τ1ηm
t

′)) ; gn
t = gn

(
αt − τnα′

t − 1
wn

(
ηn

t − τnηn
t

′))

21This corresponds to execution at the average between the prices St + h(Jt−) before and St + h(Jt− +
λtdQt) ≈ St + h(Jt−) + h′(Jt−)λtdQt after the trade. Locally, this is analogous to the accounting in the
linear model of Obizhaeva and Wang (2013), but with a smaller extra price impact when price dislocations
are already large.

22The third component of this term cancels the jumps of the stochastic integral
∫

h(Js−)dQs. The extra
impact cost of a bulk trade ∆Qt thus is the average 1

λt

∫ Jt

Jt−
h(x)dx along the price impact function. One

can show that this coincides with the costs for such jump trades in the limit-order book model of Alfonsi
et al. (2010).

23This is a conjecture a priori as the optimal strategy jumps at these times, but turns out to be correct.
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for n = 2, . . . , N and similarly for the derivative and inverse functions gn
t

′, (gn
t )−1, e.g.,

g1
t

′ = g′
1

(
αt − τ1α′

t + 1
w1

N∑
m=2

(
ηm

t − τ1ηm
t

′)) .

By (5.2), the jumps ∆Jn
T of all volume impacts must match the optimal strategy’s final bulk

trade. To achieve this, the Lagrange multiplier have to be chosen to satisfy the terminal
conditions (here, we have used that αt is smooth and the ηn

t are also smooth by assumption):

(A.3) h−1
1

(
αT + 1

w1

N∑
m=2

ηm
T

)
− g1

T = h−1
n

(
αT − 1

wn
ηn

T

)
− gn

T .

For intermediate times t ∈ (0, T ), the Lagrange multiplier needs to ensure that

τ−1
1 J1

t dt + dJ1
t = dQt = τ−1

n Jn
t dt + dJn

t , n = 2, . . . , N.

Equivalently:
τ−1

1 J1
t + J̇1

t = τ−1
n Jn

t + J̇n
t .

After plugging in (5.6) and (5.7) and their derivatives, we see that this is tantamount to

g1
t

τ1
+
(

α′
t − τ1α′′

t + 1
w1

N∑
m=2

(ηm
t

′ − τ1ηm
t

′′)
)

g1
t

′ = gn
t

τn
+
(

α′
t − τnα′′

t − 1
wn

(ηn
t

′ − τnηn
t

′′)
)

gn
t

′.

After rearranging, this leads to the N − 1 coupled nonlinear second-order ODEs:

τn

wn
gn

t
′ηn

t
′′ + τ1

w1
g1

t
′

N∑
m=2

ηm
t

′′ − 1
wn

gn
t

′ηn
t

′ − 1
w1

g1
t

′
N∑

m=2
ηm

t
′

= τ−1
1 g1

t − τ−1
n gn

t +
(
g1

t
′ − gn

t
′
)

α′
t −

(
τ1g1

t
′ − τngn

t
′
)

α′′
t , for t ∈ (0, T ).

(A.4)

The initial condition for this equation is now pinned down by the consistency requirement
that the initial jumps ∆Jn

0 = Jn
0 all have to match the initial bulk trade of the optimal

strategy. In view of (5.6) and (5.7), this requires the initial conditions
(A.5) g1

0 = gn
0 .

□
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