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Abstract. The price impact of large meta orders is well known to be a concave function
of their size. We discuss how to extend models consistent with this “square-root law” to
multivariate settings with cross impact, where trading each asset also impacts the prices
of the others. In this context, we derive consistency conditions that rule out price manip-
ulation. These basic requirements make risk-neutral trading problems tractable and also
naturally lead to parsimonious model specifications that can be calibrated to historical
data. We illustrate this with a case study using proprietary CFM meta order data.
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1. Introduction

Price impact is the main source of trading costs for large institutional investors. The
impact of large meta orders builds up over time and then gradually decays (Biais et al.,
1995; Hasbrouck, 1991). Crucially, the magnitude of this effect is not linear, but better
described by a “square-root law” (Loeb, 1983; Hasbrouck, 1991).

When trading several securities simultaneously, it is natural to expect that trades in one
asset do not only affect its own price (“self impact”) but also shift the prices of other related
securities (“cross impact”). In particular, for assets that are closely linked – such as futures
on the same underlying with different maturities – cross impact is bound to play a major
role. For example, rolling over futures positions appears costly if one considers each trade’s
impact separately. However, accounting for cross impact reduces the trading costs for such
strategies significantly, as selling one contract partially offsets the impact of buying the
other.

Over the last decade, a number of studies have investigated linear cross impact models.1
In contrast, nonlinear cross impact models consistent with square-root self impact are vir-
tually uncharted territory, both in terms of theory and empirical analysis. A key reason
for this is that with several traded assets, guaranteeing the absence of “price manipulation”
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becomes highly nontrivial. Ruling out the existence of such strategies that turn price im-
pact into profits is a basic consistency requirement any price impact model needs to satisfy.
Otherwise, numerical optimizers naturally converge towards extreme strategies that seek to
exploit these inconsistencies in the model, but are unlikely to be effective in practice.

Similarly as for no-arbitrage conditions in option pricing models (Schönbucher, 1999),
the absence of price manipulation is relatively easy to characterize for a single traded as-
set (Fruth et al., 2013, 2019; Hey et al., 2023). In particular, no conditions are required
when the price impact parameters do not change over time. In contrast, nontrivial condi-
tions are required for multivariate models with linear cross impact already with constant
parameters (Alfonsi et al., 2016; del Molino et al., 2020; Tomas et al., 2022b; Rosenbaum
and Tomas, 2022; Abi Jaber et al., 2024). This raises the natural question if and how these
consistency conditions can be extended to nonlinear models compatible with the univariate
square-root law.

On the empirical side, a first basic question is whether cross impact can be reliably
measured from price and trading data, and whether it displays the same nonlinear form as
self impact. The next key challenge in turn is to build parsimonious models for cross impact
that guarantee the absence of price manipulation and can be fitted efficiently to data.

The present study breaks new ground in all of these directions using a multi-asset version
of the nonlinear price impact model of Alfonsi, Fruth, and Schied (2010). By considering
suitable parametric families of trading strategies as in Gatheral (2010), we derive necessary
conditions for the absence of price manipulation that substantially narrow down the pa-
rameter space. Once these conditions are imposed, risk-neutral optimal trading problems
can in fact be reduced to simple pointwise maximizations by “passing to impact space” as
in Fruth et al. (2013). More specifically, switching control variables from positions held to
impact caused does not directly lead to a pointwise problem here due to some intractable
cross terms. However, as in Bilarev (2018), absence of price manipulations dictates that
these intractable terms have to vanish. Whence, for all well behaved models, risk-neutral
optimization problems can be solved by pointwise maximization. This in turn allows one
to detect whether a given model indeed guarantees that price manipulation is not possible.

In particular, we find that there is a natural subclass of models for which the multivariate
optimal trading problem decouples into simple one-dimensional subproblems, for which
wellposedness and optimal trading strategies are well understood (Hey et al., 2023). Even
though the optimal impact states for each asset do not depend on the magnitude of cross
impact in this case, the corresponding optimal trades evidently do. Indeed, with positive
cross impact, much less trading in the same direction is needed to create the same amount
of impact, but much bigger trades of opposite signs can be implemented.

The relevance and applicability of this model class is in turn illustrated by an empirical
case study based on proprietary meta order data from Capital Fund Management (CFM).
We first perform a simple comparison of the arrival prices at the beginning of each meta order
to the peak impact incurred at their completion. As illustrated in Figure 1 this demonstrates
that for highly correlated assets,2 cross impact measurements are highly significant and
depend on meta order sizes in the same concave manner as for self impact. Moreover, the
figure clearly illustrates the impact of different trading scenarios. Indeed, when both assets
are traded in the same direction, then self and cross impact compound, whereas they largely
offset each other when traded in opposite directions.

2Here, we focus on futures contracts with the same underlying but different maturities so that the average
return correlation is more than 90%.



CONCAVE CROSS IMPACT 3

−4 −2 0 2 4
Qi

√
V iV j

×10−2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

I
ij

(
Q
i

√
V
i V

j
)

×10−1

Traded in same direction

No simultanous trade

Traded in opposite direction

Figure 1. Average differences between the prices of asset j at the beginning
and end of meta orders for asset i, plotted against the size of the meta orders
(normalized by the geometric mean of the average daily trading volumes of
assets j and i). The shaded regions are bootstrap confidence intervals.
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Figure 2. Parameter estimates for a bivariate cross impact model. The
common impact concavity c, impact decay rate β and proportion wS(c, β) of
total impact caused by self impact is plotted against the correlation between
the assets.

Building on this proof of principle, we then show that it is also possible to fit our dynamic
cross impact model to the data. To this end, the consistency conditions derived in the
theoretical part of the paper play a key role. On the one hand, these hard code the absence
of price manipulation strategies. On the other hand, they substantially narrow down the
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parameter space and thereby lead to much more parsimonious models that can be calibrated
efficiently.

We validate the feasibility and flexibility of this approach by fitting bivariate impact
models to pairs of assets. Figure 2 displays how the fitted model parameters depend on the
return correlation of the assets. We see in the top panel that the concavity of the impact
function is largely insensitive to the correlation parameter and in line with other studies
corroborating the square root law. The middle panel shows that impact decay tends to
become slower for highly correlated assets. The intuition for this is that many of the highly
correlated assets are commodity futures contracts, which are not as liquid as the index
futures that make up many of the less correlated asset pairs. The bottom panel of Figure 2
plots the proportion of total impact accounted for by self impact. We see that for assets
with low correlation, cross impact play only a minor role but, for highly correlated assets,
self and cross impact become almost interchangeable.

In summary, this paper proposes a general consistent framework for modeling the concave
cross impact of trading multiple assets simultaneously. In this setting, the absence of price
manipulation can be guaranteed, risk-neutral trading problems can be solved in closed form,
and the resulting models can be estimated efficiently from data.

The remainder of this article is organized as follows. Section 2 introduces our multivariate
extension of the nonlinear price impact model introduced by Alfonsi et al. (2010). Subse-
quently, in Section 3 we formulate risk-neutral optimal trading problems in this context
and then reformulate these “in impact space” in Section 4. In Section 5, we in turn derive
necessary conditions for the absence of price manipulation and then show in Section 6 that
these conditions allow to reduce the risk-neutral trading problems to simple pointwise opti-
mizations. Finally, our empirical case study is described in Section 7. For better readability,
the derivations of the no-price-manipulation conditions are delegated to the appendix.

2. Modeling Concave Cross Impact

We consider a financial market with 1 + d assets. The first one is safe, with price nor-
malized to one. The other d assets are risky: their unaffected prices are modeled by an
Rd-valued Itô process St. This process describes price changes due to exogenous events
such as news or the trades of other market participants.

The focus of the present study is how the transactions of a large trader shift these baseline
prices, both directly through the “self impact” on the securities purchased or sold, but also
through the “cross impact” trades in one asset have on the prices of the others. Self impact
is well known to be a nonlinear function of trade sizes, and gradually decays from its peak
value (Hasbrouck, 1991; Hasbrouck and Seppi, 2001). These stylized facts are captured in a
parsimonious manner by the model of Alfonsi, Fruth, and Schied (2010) (henceforth AFS),
where the price impact of the trades (dQs)s≤t until time t is a nonlinear function h(Jt) of an
exponentially weighted moving average dJt = − 1

τ Jt+λdQt of current and past trades.3 Here,
the exponential smoothing captures impact decay, whereas a nonlinear impact function h(·)
allows to account for a concave relationship between impact and executed volume.

3An apparently similar but fundamentally different phenomenon is the nonlinear price impact of individual
child orders documented empirically in Bouchaud et al. (2004), for example. Muhle-Karbe et al. (2024) show
that such “local concavities” can be proxied by a linear price impact model on a mesoscopic scale in line
with empirical results of Patzelt and Bouchaud (2018). In contrast, there is no such effective linear model
for the “global concavities” observed at the meta order level and described by the AFS model.
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We extend this model to a multi-asset setting with cross impact as follows.4 Trading
strategies are described by the trader’s holdings Qt = (Q1

t , . . . , Qd
t )⊤ in the d risky assets.

These in turn drive a multivariate exponential moving average Jt = (J1
t , . . . , Jd

t )⊤:

(2.1) dJt = −BJtdt + ΛdQt, B, Λ ∈ Rd×d.

For a scalar function h : R → R that is increasing, odd, as well as positive and concave on
R+, the price impact It = (I1

t , . . . , Id
t )⊤ of the large trader is in turn given by

(2.2) It =
d∑

a=1
Lah(Ja

t ), where La ∈ Rd for a = 1, . . . , d.

This means that the price impact in each asset i = 1, . . . , d is a linear combination Ii
t =∑d

a=1 Liah(Ja
t ) of concave functions of the liquidity factors Ja

t , a = 1, . . . d. The liquidity fac-
tors can be the moving averages of the individual assets, for example, or also moving averages
of portfolio trades, e.g., in the overall market. With the matrix of factors L = (L1, . . . , Ld) ∈
Rd×d and writing, with a slight abuse of notation, h(Jt) = (h(J1

t ), . . . , h(Jd
t ))⊤ ∈ Rd, we

can then represent the price impact concisely in matrix-vector notation as

It = Lh(Jt).

Remark 2.1. Suppose the price impact function is of the standard power form h(x) =
sgn(x)|x|c, c ∈ (0, 1]. Then, for a single asset, its homotheticity implies that changing the
outside multiplier L has the same effect as rescaling the push factor Λ by an appropriate
power of the same factor. In contrast, in the multi-asset case, sums of powers and powers
of sums generally lead to different models.

A key question for the cross impact model (2.2) is whether it can guarantee the absence of
“price manipulation”. These are trading strategies that produce positive expected profits not
because of accurate forecasts about the unaffected price, but by combinations of purchases
and sales that turn price impact into profits. Such strategies are highly model dependent
and unlikely to be effective in practice. Ruling them out therefore is a basic requirement
any price impact model should satisfy, similar to the absence of arbitrage for option pricing
models.

For a single asset, the AFS model with constant impact parameters does not allow price
manipulation (Hey et al., 2023). However, with several assets, avoiding price manipulation
becomes much more delicate already when impact is linear (Alfonsi et al., 2016; del Molino
et al., 2020; Tomas et al., 2022b; Rosenbaum and Tomas, 2022; Abi Jaber et al., 2024;
Muhle-Karbe and Tracy, 2024). In addition to understanding how to turn price forecasts
into trades, characterizing the absence of price manipulation strategies in turn is another
major motivation for studying the risk-neutral optimization problems that we turn to next.

3. Risk-Neutral Goal Functional

We now derive the trader’s profits and losses (PnL) when trading with nonlinear price
impact of the form (2.2). To this end, we first focus on smooth trading strategies dQt =
Q̇tdt, for which the trade at time t is executed at St + It, the unaffected price shifted by

4Our model is a special case of the general framework proposed by (Bilarev, 2018, Chapter 5), where
impact can also depend on the level of the unaffected price but no concrete nonlinear models are specified
for multiple assets.
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the price impact accumulated so far.5 If the trader’s position QT at the terminal time T is
evaluated with the unaffected price to avoid illusionary profits, then the PnL accumulated
over the trading interval [0, T ] is

YT = Q⊤
T ST −

∫ T

0
(St + It)dQt.

Writing
αt = Et [ST − St]

for the trader’s price forecast at time t (“alpha”) and integrating by parts, the expected PnL
then is

(3.1) E
[∫ T

0
(αt − It)⊤dQt

]
.

That is, each trade earns alpha and pays impact. The PnLs are simply added across assets,
but interact through the cross impact that trades in one asset may have on the execution
prices of the others.

Remark 3.1. Suppose the alpha signal

αt = Et[Sτ − St]

forecasts price changes until a time τ larger than the endpoint T of the trading interval. A
typical example is a long-term alpha signal that does not change at all over a trading day.
Then, the risk-neutral goal functional (3.1) remains unchanged if the terminal position is
valued with the forecast ET [Sτ ] at time T .

4. Passage to Impact Space?

For single-asset models, the risk-neutral goal functional (3.1) can be optimized by a
straightforward pointwize maximization after “passing to impact space”, i.e., switching the
control variable from the risky positions Qt to the corresponding moving averages Jt (Fruth
et al., 2013; Bilarev, 2018; Ackermann et al., 2021; Hey et al., 2023).

In our multi-asset setting, as long as the push factor Λ is invertible (which we assume from
now on), positions Qt and the corresponding moving averages Jt are still in a one-to-one
correspondence:

(4.1) dQt = Λ−1BJtdt + Λ−1dJt.

Using this identity to replace the trades dQt in (3.1), the expected PnL becomes

E
[∫ T

0
(αt − Lh(Jt))⊤

(
Λ−1BJtdt + Λ−1dJt

)]
.

Via integration by parts, this can be rewritten as

(4.2) E
[∫ T

0

(
ᾱ⊤

t Jt − h(Jt)⊤ζJt

)
dt −

∫ T

0
h(Jt)⊤θdJt + α⊤

T Λ−1JT

]
.

5In contrast, discrete block trades require a delicate specification of where they need to be settled between
the pre- and post-trade prices to be consistent with approximations of the block trade by smooth strategies.
We sidestep this technical issue by first focusing on smooth strategies only and then reformulating the
corresponding expected PnL’s “in impact space”, where the extension to general strategies is straightforward.
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Here (assuming invertibility of L), we have defined

(4.3) ζ = L⊤Λ−1B, θ = L⊤Λ−1, and ᾱt = ζ⊤L−1αt − θ⊤L−1µα
t ,

for the drift rate µα
t (“alpha decay”) of the alpha signal αt.

Remark 4.1. The transformations (4.3) describe a change of variable from physical space
to liquidity factor space. More specifically, L−1 maps prices into factor space; θ in turn
is the push factor in these new coordinates and ζ accounts for the contribution of impact
decay.

For a single risky asset, one can replace the term h(Jt)dJt in the PnL (4.2) by applying
Itô’s formula to the antiderivative H(JT ) of the impact function. The integrand of the
dt-terms and the terms associated with the terminal time T can in turn each be maximized
pointwise in a straightforward manner (Hey et al., 2023). In the multi-asset version of the
model we consider here, this trick no longer works, as one cannot replace the cross terms
h(Ja

t )dJb
t for a ̸= b in this way.

We therefore first approach the problem from a somewhat less ambitious angle. To wit,
in the spirit of Gatheral (2010); Bilarev (2018); Schneider and Lillo (2019), we consider
some concrete parametric families of trading strategies and analyze what restrictions need
to be imposed on the matrices θ and ζ from (4.3) to rule out price manipulation, i.e., trades
for which a positive expected PnL is generated by price impact rather than the presence of
an alpha signal.

5. Necessary Conditions for the Absence of Price Manipulation

To derive necessary conditions for the absence of price manipulation, we suppose there
is no alpha signal and focus on smooth deterministic trading strategies, for which the
associated moving averages also are smooth. Then, the expected impact cost simplifies to

(5.1) CT =
∫ T

0

(
h(Jt)⊤ζJt + h(Jt)⊤θ

dJt

dt

)
dt.

The principle of “no-dynamic-arbitrage” (Gatheral, 2010) states that price manipulation
is not possible, in that this cost of trading indeed is positive for any nontrivial round-trip
strategy. Unlike for a single risky asset, many different combinations of buying and selling
actions need to be considered in the present context. To derive separate conditions on the
elements of the matrices θ and ζ, we design strategies in the space of liquidity factors Ja

t

for a = 1, . . . , d, for which either the first or the second term (5.1) becomes negligible.
More specifically, to isolate the role of the matrix ζ, we consider trading strategies that

are symmetric around a time point T⋆/2 > 0. These allow to cancel the θ-term in (5.1)
and in turn yield conditions on the matrix ζ. Indeed, consider a trading strategy where
all impact states are symmetric around some time T⋆/2, in that Ja

T⋆/2−ϵ = Ja
T⋆/2+ϵ for

0 ≤ ϵ ≤ T⋆/2.6 Then, by construction:
dJa

T⋆/2−ϵ

dt
= −

dJa
T⋆/2+ϵ

dt
.(5.2)

6Note that this does not mean that the corresponding trades are symmetric. This provides another
illustration how the passage to impact space simplifies calculations – not just for pointwise maximization
but also to construct convenient test strategies.
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Figure 3. Symmetric strategy (5.4) (left panel) and impulsive strat-
egy (5.8) (right panel).

The θ-terms in the cost functional (5.1) in turn vanish on each interval [T⋆/2 − ϵ, T⋆/2 + ϵ]
around the point T⋆/2.

Conversely, to focus on the matrix θ, we can consider “impulsive” strategies that quickly
build up and liquidate positions in pairs of the assets. Indeed, for such fast trading strategies
the derivatives dJa

t /dt of the impact factors states become larger and larger and therefore
dominate the impact costs (5.1).

In the next two sections, we consider specific examples for such symmetric and impulsive
strategies (illustrated in Figure 3),for which the impact costs can be computed in closed
form. This in turn allows us to derive explicit conditions that are necessary to rule out
price manipulation.

5.1. Symmetric strategies. For a single risky asset, gradually building up a target posi-
tion and then reverting the trade always leads to positive trading costs (Gatheral, 2010).
With multiple risky assets, however, price manipulation can be possible even with such a
simple strategy. To rule this out, nontrivial conditions have to be imposed on the matrix ζ.

To derive such conditions, we think of the two liquidity factors a and b as virtual assets
that are traded using a strategy (Ja

t , Jb
t ) with the symmetries illustrated in the left panel

of Figure 3:
• On [0, T⋆], impact in one of the assets is first built up and then reversed in a sym-

metric manner. The other asset is traded in exactly the opposite direction.
• On [T⋆, T ], the pattern is the same but the direction of trade is reversed.

Observe that by (4.1) and (4.3),

L⊤QT =
∫ T

0
L⊤Λ−1BJtdt +

∫ T

0
L⊤Λ−1dJt = ζ

∫ T

0
Jtdt + θ

∫ T

0

dJt

dt
dt.(5.3)

Due to the symmetry (5.2), the θ-term vanishes. We can therefore always choose a suitable
magnitude of the trade reversal for which the round-trip condition 0 = QT = (L⊤)−1L⊤QT

holds. A particularly convenient parametrization to compute the corresponding impact costs
in closed form is

(5.4) (Ja
t , Jb

t ) = (ja sin(t), −jb sin(t)), 0 ≤ t < 2π.

In the impact costs of the round-trip trade, the time-dependent terms factor out, and the
sign in turn only depends on the volume ratio ϕ = jb/ja. Varying this parameter in turn
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Figure 4. The constraints for linear price impact (c = 1, orange), and
square-root impact (c = 1/2, blue): admissible values of ζ̄aa need to lie above
the surface (left panel) and curve (right panel, for symmetric ζ), respectively.

leads to the following necessary conditions for the absence of price manipulation, derived
in Appendix A:

Lemma 5.1. Suppose the price impact function is of power form, h(x) = sgn(x)|x|c for
0 < c ≤ 1. Then, to avoid price manipulation, the entries of the matrix ζ need to satisfy:
(5.5) 0 < ζaa + ϕ1+cζbb − ϕcζab − ϕζba, for all ϕ ≥ 0 and a, b = 1, . . . , d.

Specialized to small values of ϕ, Condition (5.5) implies that the diagonal elements ζaa of
ζ all need to be nonnegative. For linear price impact (c = 1), the right-hand side of (5.5) in
turn is a quadratic function of ϕ whose unique minimum allows to simplify this constraint
to ζ̄ab, ζ̄ba > 0 as well as

ζ̄aa >
1
4(ζ̄ab + ζ̄ba)2,(5.6)

where ζ̄aa = ζaa/ζbb, ζ̄ab = ζab/ζbb, and ζ̄ba = ζba/ζbb. To wit, the off-diagonal elements
corresponding to cross impact have to be small enough relative to the diagonal elements
describing self impact (both in factor space).

For strictly concave price impact (c < 1), the constraint (5.5) is more involved but
qualitatively and quantitatively rather similar. Let us illustrate this for the case c = 1/2
corresponding to the “square-root law” that is well established for self impact. Then (in
addition to again requiring all elements to be positive), we need

(5.7) ζ̄aa >
2
27

((
3ζ̄ab + ζ̄2

ba

)3/2
+ ζ̄3

ba

)
+ 1

3 ζ̄abζ̄ba.

The left panel of Figure 4 visually compares the conditions for c = 1 and c = 1/2 by
plotting the surfaces that correspond to their right-hand sides. We see that the constraints
are qualitatively and quantitatively rather similar. In particular, in the symmetric case
ζ̄ab = ζ̄ba, the conditions are virtually the same as illustrated in the right panel of Figure 4.

5.2. Impulsive Strategies. Next, we derive conditions on the matrix θ. To this end, we
consider the following family of “impulsive” trading strategies:7

7Here, the trade direction is reverted at µ2 ≫ T∗ ≫ µ1 such that Ja,b
T∗

→ 0 and the two parts of the
strategy are smoothly pasted together. Alternatively, one could directly apply a mollification operator
around T∗.
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(5.8) (Ja
t , Jb

t ) =



 1√
2π(σa

1 )2 e
−

(t−µa
1 )2

2(σa
1 )2

, 1√
2π(σb

1)2 e
−

(t−µb
1)2

2(σb
1)2

 0 ≤ t < T∗, −1√
2π(σa

2 )2 e
−

(t−µa
2 )2

2(σa
2 )2

, −1√
2π(σb

2)2 e
−

(t−µb
2)2

2(σb
1)2

 T∗ ≤ t ≤ T.

As illustrated in Figure 3, we choose σa,b
1 ≪ σa,b

2 so that the “impulsive” trades corre-
sponding to the first humps dominate the overall trading costs (5.1). The smaller second
humps then correspond to a slower unwinding of the position built up in the first ones.

The necessary conditions to avoid price manipulation are derived in Appendix B and
they demand a strikingly strict shape of matrix θ when impact is strictly concave rather
than linear:

Lemma 5.2. To avoid price manipulation:
(1) For a linear impact function h(x) = x, the matrix θ must be symmetric;
(2) For a concave impact function h(x) = sgn(c)|x|c where 0 < c < 1, the matrix θ must

be diagonal.

For linear price impact models, condition (i) reproduces the results of Schneider and Lillo
(2019). However, when price impact is strictly concave, then the corresponding condition
in (ii) turns out to be much stronger, in that off-diagonal elements do not only have to be
symmetric but instead have to vanish. Whence, to avoid price manipulation the cross terms
that prevented us from rewriting the goal functional (4.2) in impact space in fact have to
vanish. Put differently, the models for which the optimization problem (4.2) is intractable
are ruled out already by imposing no price manipulation.

Remark 5.3. The intuitive meaning of restricting θ to be diagonal becomes apparent when
rewriting the dynamics of Jt in factor space:

(5.9) dJt = θ−1
(
−ζJtdt + dLT Qt

)
.

This shows that – in factor space – instantaneous cross-factor impact should be zero in order
to avoid price manipulation. It is important to note, however, that this does not mean that
there is no instantaneous cross impact (e.g., through the matrix L) in physical space.

Remark 5.4. In terms of modelling, ensuring that θ is diagonal imposes constraints on
the choice of the model parameters L and Λ. Indeed, as

Λ = θ−1L⊤,

we see that once the matrix L has been fixed, there are only d (rather than d × d) degrees
of freedom to be fixed when choosing Λ, corresponding to the diagonal elements of θ.

6. Solution of the Risk-Neutral Optimization

In view of Lemma 5.2, we henceforth assume that the matrix θ = L⊤Λ−1 is diagonal
to rule out price manipulation. Then, the cross terms θabh(Ja

t )dJb
t , a ̸= b disappear in the

risk-neutral goal functional (4.2). Using Itô’s formula to replace the terms h(Ja
t )dJa

t with
H(Ja

T ), where H(·) is the antiderivative of the price impact function h(·), (4.2) can therefore
can be reduced to a simple pointwise maximization just like in the single-asset case (Hey
et al., 2023):
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E
[∫ T

0

(
ᾱ⊤

t Jt − h(Jt)⊤ζJt

)
dt + α⊤

T Λ−1JT − 1⊤θH(JT )
]

.(6.1)

Remark 6.1. Unlike its counterpart (4.2) in trade space, the goal functional (6.1) in im-
pact space only depends on the liquidity factors Ja

t , but not their derivatives. Whence, as in
Becherer et al. (2019); Ackermann et al. (2021), it can easily be extended to general strate-
gies in a consistent manner, by defining their PnL as the limit of the PnLs of a sequence of
approximating smooth strategies. In trade space, such an approach does not work because
the derivatives of the approximating strategies typically blow up.

At the terminal time T – when neither impact on future trades nor alpha decay needs to
be considered anymore – one can check that the optimal impact state always exhausts the
entire available alpha signal (IT = αT ), just like in the single-asset version of the model.
The optimization at intermediate times t ∈ (0, T ) does not generally admit a closed-form
solution, but can be solved explicitly in an important special case that we consider first.

6.1. Decomposition into Univariate Subproblems. Suppose that the matrix ζ =
L⊤Λ−1B is also diagonal, e.g., because not just θ = L⊤Λ−1 is diagonal (as required
for the absence of price manipulation) but the impact decay matrix B is diagonal as well.
Then, the multivariate optimization problem (6.1) decomposes into d separate univariate
subproblems. Each of these can in turn be solved as in the single-asset case (Hey et al.,
2023, Theorem 4.2). In particular, the necessary conditions from Lemmas 5.1 and 5.2 indeed
suffice to rule out price manipulation in this case.

Crucially, assuming the matrices θ = L⊤Λ−1 and ζ = L⊤Λ−1B to be diagonal does
not mean that the model has no cross impact. Indeed, if Λ and L are multiples of the
same symmetric matrix (e.g., the covariance matrix of asset returns as in (Gârleanu and
Pedersen, 2013, Assumption 1) or its square root) and the decay matrix is diagonal (as
in Gârleanu and Pedersen (2016)), then both θ and ζ are clearly diagonal. However, the
price impact Ii

t =
∑d

a=1 Liah(Ja
t ) in asset i then still depends on all the liquidity factors,

because the matrix L does not have to be diagonal. In the case where L and Λ are both
multiples of the covariance matrix of positively correlated assets (or its square root), this
leads to positive cross impact through two channels: on the one hand, trades in one asset
not only affect the corresponding liquidity factor but also shift the other ones in the same
direction (though the matrix Λ). The impact on each asset then is obtained as a positive
combination of the positively correlated impact factors (through the matrix L).

As a concrete example, suppose both θ = L⊤Λ−1 and ζ = L⊤Λ−1B are diagonal
and the impact function h(x) = sgn(x)|x|c, c ∈ (0, 1] is of power form. Then, pointwise
maximization of (6.1) yields an explicit formula for the optimal impact state

I∗
t =

 1
1+c

(
αt − Lζ−1θ⊤L−1µα

t

)
, t ∈ (0, T ),

αT , t = T.

In particular, without alpha decay (µα
t = 0), we recover the same optimal impact states

as in a collection of single asset versions of the model: a first bulk trade pushes the optimal
impact state to a fraction 1/(1 + c) of the corresponding alpha signal at the initial time
t = 0. Subsequently, one trades to maintain this impact state (by continuing to trade in
the same direction to offset impact decay) until the terminal time T , where the remaining
signal is exhausted with another bulk trade. These optimal impact states do not change
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Figure 5. Comparison of optimal trading speeds at time t ∈ (0, T ) without
cross impact (solid lines) and with cross impact (dashed lines), with param-
eters estimated for assets with correlation 0.6 in Section 7. In the left panel,
the (constant) alpha signals for both assets are the same (αt = (1, 1)bps),
so less trading is possible with the same optimal impact state. In the right
panel, the signal of the alpha signals are opposite (αt = (1, −1)bps), so that
cross impact increases the optimal trading volumes.

here due to the presence of cross impact, but the same is not true for the corresponding
trades. Indeed, at time t ∈ (0, T ), the optimal trading rate depends on the matrix L and
the alpha signals in all d assets:

dQ∗
t

dt
= 1

(1 + c)1/c
(LT )−1ζh−1(L−1αt),(6.2)

where the inverse h−1(x) = sgn(x)|x|1/c of the impact function is applied componentwise.
Figure 5 illustrates the implications of this formula for d = 2 assets with parameters es-
timated from asset pairs with return correlation 0.6 in Section 7. More specifically, we
compare the optimal trading rates in the calibrated model with cross impact (i.e., with a
nondiagonal matrix L) to the optimal trading rate in an otherwise identical model where
the off-diagonal elements of L are set to zero. We see that for aligned alpha signals cross
impact reduces the trading speed substantially. Conversely, for anti-aligned signals, the
optimal trading rate is substantially larger with cross impact.

6.2. The Bivariate Case. When the risk-neutral problem (6.1) does not decompose into
separate univariate subproblems, it remains easy to solve numerically via pointwise max-
imization of the integrand. However, its analytical analysis becomes considerably more
involved. Indeed, simple numerical examples show that already for two risky assets (d = 2),
the goal functional (6.1) generally is not a concave function of the controls (J1

t , J2
t ). Whence,

there is little hope to establish uniqueness in general.

Example 6.2. As the alpha signal does not affect the concavity of the goal functional,
we focus on the impact terms in (6.1). For square-root impact h(x) = sgn(x)|x|1/2 and
ζ11 = ζ22 = 1, ζ12 = 0.1, ζ21 = 0.9, the constraint (5.7) is satisfied so that price manipulation
is not possible with the symmetric strategies from Lemma 5.1.

The left panel of Figure 6 plots the integrand −h(Jt)⊤ζJt of the goal functional (6.1) as
a function of the liquidity factors J1

t , J2
t . This function clearly has a unique maximum at

J1
t = J2

t = 0, consistent with the absence of price manipulation. However, it is not globally
concave. This is illustrated in the right panel of Figure 6, which plots (J1

t , J2
t )H(J1

t , J2
t )⊤

for the Hessian matrix H of the integrand at the point (J1
t , J2

t ) = (15, 3). This function
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Figure 6. Panel (A): the integrand −h(Jt)⊤ζJt of the goal functional (6.1) plotted against
the liquidity factors J1

t , J2
t . Panel (B): (J1

t , J2
t )H(J1

t , J2
t )⊤ for the Hessian matrix H of

the integrand at the point (J1
t , J2

t ) = (15, 3), plotted against the liquidity factors. Model
parameters are chosen as in Example 6.2.

takes some positive values, so the integrand is not a globally concave function of the impact
states.

However, for two risky assets, it is easy to check that when the price impact function
is of power form (h(x) = sgn(x)|x|c, c ∈ (0, 1]) then the constraint (5.5) from Lemma 5.1
is exactly what is needed to guarantee that the goal function (6.1) is bounded from above
and becomes negative for sufficiently large absolute values of J1

t or J2
t .8 As a consequence,

a global optimum always exists in this case, but may not be unique.9

With some algebraic manipulations (cf. Appendix C.1), the first order conditions that
any maximum (J1

t , J2
t ) must satisfy can be reduced to a single autonomous equation for the

ratio J2/J1
t :

0 = ϕt + sgn(ϕt)|ϕt|ck1
t + sgn(ϕt)|ϕt|c−1k2

t + k3
t ,(6.3)

where

k1
t = 1

c
− 1 + c

c

ᾱ1
t

ᾱ2
t

ζbb

ζab
, k2

t = ᾱ1
t

ᾱ2
t

ζba

ζab
, k3

t = ᾱ1
t

cᾱ2
t

ζba

ζab
+ ζaa

ζab

(1 + c)
c

.(6.4)

(The product J1
t J2

t and in turn the individual impact states are pinned down by Equa-
tion (C.1) in Appendix C.1.) In the empirically most relevant case of square-root impact
(c = 1/2), changing variables to a power 1/c of ϕ leads to a cubic equation for positive ϕt,
and another for negative values of ϕt. The three roots of each of these equations then need
to be compared directly to the points where one or both of the variables vanish.

8Indeed, this is clear when J1
t and J2

t have the same sign. When they have opposite signs, this follows
from (5.5) by changing variables from J2

t to κtJ
1
t and using the homotheticity of the power function.

9In the symmetric case (ζ11 = ζ22, ζ12 = ζ21, θ11 = θ22, ᾱ1 = ᾱ2, and µ̄1 = µ̄2), any maximizer then
needs to be symmetric by a classical result of Bouniakovsky (1854) when the first order condition is a cubic
polynomial for square-root impact (c = 1/2). This again reduces the problem at hand to a one-dimensional
optimization, for which uniqueness follows from concavity.
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6.3. The General Case. For more than two risky assets, both existence and uniqueness
for the maximization of (6.1) are challenging open problems for further research. On the
one hand, it is not clear whether the necessary conditions derived by considering pairs of
liquidity factors in Lemma 5.1 are sufficient to guarantee that the goal functional remains
bounded from above in general. On the other hand, establishing uniqueness in the absence
of concavity also is a wide-open problem.

One regime that can be treated directly is the case of small off diagonal terms for which
the model is close to the decoupled case discussed in Section 6.1. Indeed, if the off-diaongal
elements of ζ are sufficiently small, then it is easy to check that any maximum must lie on a
compact set, and that the integrand of the goal functional is strictly concave on the latter.
Whence, there is a unique maximum characterized by the first-order conditions

ᾱa
t = (1 + c)ζaasgn(Ja

t )|J̄a
t |c +

d∑
b ̸=a

ζab

(
sign(J̄b

t )|Jb
t |c + cJb

t |Ja
t |c−1

)
.

These optimality equations are nonlinear and coupled, but can be solved in closed-form
using the implicit function theorem when the off-diagonal elements of ζ are small. Indeed,
if ᾱa

t ̸= 0, a = 1 . . . , d, then there exists a solution of the first-order conditions. In the case
where all of diagonal elements are the same to ease notation (ζab = ζ), the corresponding
optimal impact states have the leading-order asymptotics

It =
d∑

a=1
La

ᾱa
t

ζaa(1 + c)

1 −
d∑

b ̸=a

sgn(ᾱb
t)ζ

c(c + 1)
(
c
∣∣∣ ᾱb

t

ᾱa
t

∣∣∣1/c
+
∣∣∣ ᾱb

t

ᾱa
t

∣∣∣)
c

.(6.5)

If all alpha signals in the latent factor space have the same sign, then this implies that smaller
price impacts are optimal with cross impact. However, there are also other parameter
configurations the optimal impact states can be increased with cross impact.

7. Empirical Analysis

With a general consistent modeling framework at hand, we now turn to its empirical
validation. To implement this, the no-price-manipulation conditions derived in Section 5
play a key role. Indeed, by narrowing down the parameter space for sensible models, these
increase the robustness of the empirical calibration. Using proprietary meta-order data,
this allows us to reliably identify the concave structure of cross impact as well as its decay
patterns.

7.1. Data. In this paper, we use CFM’s proprietary meta-order dataset, cf. Hey et al.
(2023) for more details. Additionally, we use public data to determine the mid prices at the
start and end of each meta order and to estimate the volatilities, correlations, and average
daily traded volumes of all asset pairs.

Figure 7 displays the return correlations of a subset of various futures contracts included
in the proprietary dataset. The left panel focuses on agricultural futures, which are available
with four different maturities, separated by a quarter of a year each. The corresponding
returns have a high correlation, which typically decreases slightly as the distance between
maturities increases. In contrast, there is not much intra-product correlation.

As a complement, the right panel of Figure 7 plots the corresponding correlations for
energy contracts. These display much larger intra-product correlations, since they mostly
depend on the same underlying resources.
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Figure 7. Return correlations between different futures contracts.

Other future contracts in the data set include metals and indices that offer a wide range
of pairwise return correlations. This will allow us to study below how cross impact estimates
depend on the corresponding asset correlations.

7.2. Fitting Methodology. Price returns of pairs of assets are fitted against the cross
impact model (5.9). To obtain a system of decoupled equations as in 6.1, we assume that
θ−1ζ = β ·Id2 is a diagonal matrix with a single impact decay parameter β across all assets.
Then the following impact formula emerges:

(7.1) It =
2∑

a=1
Lah(θ−1

aa )h(Ja
t ), where Ja

t =
∫ t

0
e−β(t−s)d(LT Qs)a.

Even under these assumptions that hard code the absence of price manipulation, there
remains some freedom in how to choose the matrix L. In a static linear model, this problem
is studied by del Molino et al. (2020); a systematic extension of their results that link to our
dynamic nonlinear model is an important direction for future research. In the present study,
we focus on the simplest consistent extension of the typical normalizations for single-asset
models. To wit, we choose L = Σ1/2, so that impact scales with volatility for uncorrelated
assets. Moreover, the trades dQi

t of each asset are normalized by the geometric mean of the
average trading volumes of the asset pair.10

This bivariate impact model is in turn calibrated for eight equal-sized batches of about
100 product pairs each, sorted by correlations. The corresponding exponentially weighted
moving averages Ja

t are precomputed on a grid of values for the impact decay rates β. With
these moving averages at hand, we then calculate the terms Lah(Ja

t ) in (7.1) for a grid
10In the single-asset case, volumes are naturally expressed relative to the asset’s own average volume.

However, in the multivariate case, a normalization by individual volumes would typically not commute with
the matrix L and is therefore not guaranteed to be consistent with the absence of price manipulation. In
contrast, normalizing volumes by a single constant across both assets allows to ensure consistency with the
no-manipulation condition.
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of different concavity coefficients c. Finally, for each pair (c, β), we regress the predicted
returns from the cross impact model against the true observed returns. This allows us to
fit the remaining two parameters (h(θ−1

11 )(c, β), h(θ−1
22 )(c, β)) by maximizing the model fit

R2(c, β).11

To assess the relative contributions of self and cross impact, we consider the “self impact
weights” wi

S(c, β, ρ):

(7.2) wi
S(c, β, ρ) = ∇⃗Ii(c, β, ρ)2

i ||∇⃗Ii(c, β, ρ)||−2,

where ∇⃗ = (∂dQ1 , ∂dQ2)⊤ represents the gradient operator which acts on the price impact
function Ii of asset i and computes the partial derivatives of the price impact with respect
to the traded volumes dQ of both assets. It thereby captures the sensitivity of the price
impact to local changes in trading activity.12 These individual sensitivities are in turn
normalized by the aggregate sensitivity captured by the norm of the whole gradient.

7.3. Results. The key findings of the empirical analysis summarized above are:
i) Cross impact is highly concave: the concavity parameter varies between 0.5 and 0.7.
ii) Cross impact decays on a daily timescale: the decay rate β varies between 0.1 and

0.9 per day, corresponding to a half-life of 0.7 to 7 days.
iii) The importance of cross impact depends on correlation: as correlation increases,

the self impact weight decreases. In particular, for highly correlated asset pairs,
bivariate cross impact accounts for nearly 50% of the total measured impact.

To illustrate this, Figure 8a shows the R2 of the fitted cross impact model as a function of
impact concavity c and impact decay β for product pairs with an average return correlation
of ρ = 0.95. Figure 8b presents the R2 values considering only self impact, where the
matrix L is diagonal and each volume is normalized by its own daily volume. The maximum
R2 achieved with cross impact is approximately 9.5 · 10−2, which is 18% higher than the
maximum R2 for self impact only. The prefactors h(θ−1

11 )(c, β) and h(θ−1
22 )(c, β) in (7.1) are

plotted in Figures 8c and 8d, respectively.13

Figure 9 extends the analysis described in Figure 2 from the introduction, which examines
how the fitted model parameters depend on the return correlation ρ between the assets. In
addition to the results for cross impact fitting, Figure 9 includes the point estimates for
self impact-only fits. We see that these estimates for concavity c and impact decay β are
encouragingly consistent with their counterparts for the cross-impact version of the model.

11Due to the normalization of trading volumes, the regression coefficients are of order one. This simplifies
the fitting procedure and reduces the sensitivity to scaling issues.

12Unlike for impact models, the sensitivities (7.2) generally depend on the trade sizes at which they are
evaluated. However, this dependency turns out to be rather weak, in that the bottom panel of Figure 9 only
changes slightly if the evaluation point is changed from anti-aligned to aligned trades.

13These prefactors are not directly comparable to the single asset version of the model studied in Hey
et al. (2023), as each asset’s trading volume is normalized by the geometric mean of both assets’ average
trading volumes here, rather than just its own average volume.
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Figure 8. Calibration results of the cross impact model in 7.1 for a single decay timescale
β: Panel (A) shows the statistical sensitivity for an arbitrage-free cross impact model with
pairs that have a return correlation ρ = 0.95. At this correlation level, R2 peaks at c = 0.66
and β = 0.13 per day. For comparison, Panel (B) shows R2 for the self impact model.
The cross impact model fits the data better since the highest R2 in Panel (A) is by 18%
larger than the one in Panel (B). Panel (C) and (D) represent the calibrated parameters
h(θ−1

11 )(c, β) = 1.9 and h(θ−1
22 )(c, β) = 0.5, respectively that maximize the R2.
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Figure 9. The point estimates (c, β) and the corresponding self impact
weight wS(c, β) across ρ of the cross impact model (blue) and the self impact
model (orange). The point estimates remain roughly constant and the self
impact weight is inverse proportional to return correlations.

8. Conclusion

This paper introduces and studies a model for the concave cross impact induced by
simultaneous trades of multiple assets. This framework allows to consistently address several
crucially important but often conflicting requirements:

(i) The model can be used for optimization problems, whose stability hinges on ensuring
that the model does not allow price manipulation;

(ii) The model exhibits full analytical tractability in some empirically relevant cases,
where optimzation in impact space factorizes into univariate subproblems but cross
impact nevertheless plays a key role in the sizing of the corresponding trades;

(iii) The model makes it possible to calibrate the cross impact of meta-orders to empirical
data, for which non-linearity and impact decay are prominent features.

More broadly, a conceptual contribution of the paper is to illustrate the interplay between
model complexity and price manipulation conditions. To wit, when passing from self impact
to cross impact the parameter space of the model increases quadratically in the number of
assets. However, the space of manipulation strategies also grows, so that the absence of
price manipulation limits the number of genuinely free parameters. Further extending
this result is a key problem for future research. Indeed, any high-dimensional, possibly
machine-learned model of cross impact is bound to be unsuitable for practical applications
if the problem of dynamic arbitrage is not properly addressed.

Our first promising empirical results show that it is indeed possible to reliably measure
the concave cross impact of meta orders and its gradual decay. An important direction
for future research is to extend this proof of principle to higher-dimensional settings and
to account not only for (symmetric) return correlations but also for heterogeneous asset
characteristics such as the different decay rates and also the markedly different trading
volumes of many highly correlated and otherwise similar assets (e.g., futures with shorter
and longer maturities or on-the-run vs. off-the-run treasury bonds).



CONCAVE CROSS IMPACT 19

Appendix A. Proof of Lemma 5.1

To construct a roundtrip trade, we need

∫ T

0

dQi
t

dt
dt =

∫ T

0

(dJ i
t

dt
+ βJ i

t

)
dt = 0.(A.1)

Plugging in symmetric strategy (5.4) for asset a, we obtain

ja

∫ T

0
(sin(t) + β cos(t)) dt = ja (− cos(t) + β sin(t))

∣∣∣T
0

.

Whence, the integral vanishes if we choose T = 2nπ with for an integer n. The argument
for the strategy for asset b is analogous.

The impact costs (5.1) of the strategy (5.4) can be computed directly as

(A.2)

CT =
∫ T

0
[ja sin(t)ζaah (ja sin(t)) − jb sin(t)ζbbh (−jb sin(t))

+ ja sin(t)ζbbh (−jb sin(t)) − jb sin(t)ζbah (ja sin(t))] dt

= (jah(ja)ζaa − jbh(−jb)ζbb + jah(−jb)ζab − jbh(ja)ζba)
∫ T

0
sin(t)h(sin(t))dt.

As xh(x) ≥ 0 for all x, the integral term is always nonnegative, so the sign of the costs
depends only on the prefactor.

When the impact function is of power form h(x) = sign(x)|x|c, then to guarantee non-
negative trading costs we need

(A.3) 0 ≤ j1+c
a ζaa + j1+c

b ζbb − jajc
bζab − jbj

c
aζba.

For ja, jb > 0, we can divide this inequality by (jajb)c and rewrite it in terms of the fraction
ϕ = jb/ja. This finally leads to the necessary condition (5.5) from Lemma 5.1.

Appendix B. Proof of Lemma 5.2

The roundtrip condition for asset a requires

0 =β

∫ T∗

0
(2π(σa

1)2)−1/2e
−

(t−µa
1 )2

2(σa
1 )2

dt −
∫ T

T∗
(2π(σa

2)2)−1/2e
−

(t−µa
2 )2

2(σa
2 )2

dt


−
∫ T

T∗
(t − µa

1)(2π(σa
1)2)−1/2e

−
(t−µa

1 )2

2(σa
1 )2

dt +
∫ T

T∗
(t − µa

2)(2π(σa
2)2)−1/2e

−
(t−µa

2 )2

2(σa
2 )2

dt.

If we choose 0 ≪ T∗ ≪ T and µa
1 ∈ (0, T∗), µ2

a ∈ (T∗, T ) sufficiently far away from the end-
points of these intervals, then all the integrals tend to one, so that the roundtrip condition
is satisfied in the limit (which is sufficient for the necessary condition we derive below). The
argument for the strategy for asset b is analogous.
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When the impact function is of the power form h(x) = sgn(x)|x|c with 0 < c ≤ 1, then
the impact costs (5.1) of the strategy (5.8) are given by

CT =
2∑

i=1

∫
Ii

[(
ζaa − θaa

(t − µa
i )

(σa
i )2

)
e

−
(1+c)(t−µa

i
)2

2σ2
i√

2π(σa
i )2

1+c +
(

ζbb − θbb
(t − µb

i)
(σb

i )2

)
e

−
(1+c)(t−µb

i
)2

2(σb
i

)2√
2π(σb

i )2
1+c

+
(

ζab − θab
(t − µb

i)
(σb

i )2

)
eAab

i
e

−
(t−µ̄ab

i
)2

2(σ̄ab
i

)2√
2π(σb

i )2
√

2π(σa
i )2

c

+
(

ζba − θba
(t − µa

i )
(σa

i )2

)
eAba

i
e

−
(t−µ̄ba

i
)2

2(σ̄ba
i

)2√
2π(σa

i )2
√

2π(σb
i )2

c

]
dt,

where the integrals are computed over the intervals I1 = [0, T∗] and I2 = [T∗, T ], respec-
tively, and

(σ̄ab
i )2 = (σa

i )2(σb
i )2

c(σb
i )2 + (σa

i )2 , µ̄ab
i = µa

i c(σb
i )2 + µb

i(σa
i )2

(σa
i )2 + c(σb

i )2 ,

Aab
i = 1

2(σ̄ab
i )2

[
− (µ̄ab

i )2
(
c(σb

i )2 + (σa
i )2
)

+ (µa
i )2c(σb

i )2 + (µb
i)2(σa

i )2
]
.

Again using that almost all mass of the Gaussians is contained on respective intervals, the
impact costs become

CT =
2∑

i=1

[
1

√
1 + c

√
2π(σa

i )2
c ζaa + 1

√
1 + c

√
2π(σb

i )2
c ζbb

+
(

ζab − θab
(µ̄ab

i − µb
i)

(σb
i )2

)√
(σ̄ab

i )2

(σb
i )2

1√
2π(σa

i )2
c eAab

i

+
(

ζba − θba
(µ̄ba

i − µa
i )

(σa
i )2

)√
(σ̄ba

i )2

(σa
i )2

1√
2π(σb

i )2
c eAba

i

]
.

Now suppose that the variances (σa
1)2 and (σb

1)2 in the first interval are significantly smaller
than the ones in the second interval. Under this assumption, the terms associated with
ζ and the θ terms in the second part of the strategy become negligible. This assumption
allows us to focus solely on the contribution from the first term of the strategy 0 ≤ t ≤ T∗.
We therefore henceforth drop the subscript i to ease notation. If we assume that both
(σa

1)2 and (σb
1)2 are small enough, then the ζ terms become negligible and only the θ terms

remain. The no-price-manipulation condition in turn reduces to

0 < −θab
(µ̄ab − µb)

(σa)2

√
(σ̄ab)2

(σb)2
1√

2π(σa)2c eAab − θba
(µ̄ba − µa)

(σb)2

√
(σ̄ba)2

(σa)2
1√

2π(σb
i )2

c eAba
.

(B.1)
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After plugging in the definitions of µ̄ab, µ̄ba, σ̄ab, σ̄ba, we observe that Aba − Aab = 0 and,
after rearranging, (B.1) in turn simplifies to

0 < −θab(µa − µb) − θba(µb − µa)
(

σb

σa

)1−c((σa)2 + c(σb)2

c(σa)2 + (σb)2

)3/2

.(B.2)

Linear Impact: When the price impact function is linear(c = 1), the inequality (B.2)
further simplifies to:

0 ≤ −θab(µa − µb) − θba(µb − µa) = (θba − θab)(µa − µb).(B.3)
This needs to hold both for µa < µb and for µa > µb. Consequently, to prevent price-
manipulation, the matrix θ must be symmetric.

Concave Impact: We now turn to strictly concave impact functions with c < 1. In the
limit as σb → 0. the second term in the inequality (B.1) vanishes. Whence, to avoid price
manipulation, we need

0 ≤ −θab(µa − µb).(B.4)
As this has to hold for any choice of µa, µb, it follows that θab = 0. As the indices a, b were
arbitrary, the matrix θ therefore must be diagonal to avoid price manipulation.

Appendix C. Proof Section 6

C.1. Bivariate Solution. When the impact function is of power form with exponent c,
then the partial derivatives of the goal function with respect to J1

t and J2
t lead to the

first-order conditions

ᾱ1
t sign

(
γt

ϕt

) ∣∣∣∣γt

ϕt

∣∣∣∣− c
2

= (1 + c)ζaa + ζab (sign (ϕt) |ϕt|c + cϕt) ,(C.1)

ᾱ2
t sign

(
γt

ϕt

) ∣∣∣∣γt

ϕt

∣∣∣∣− c
2

= (1 + c)ζbbsign(ϕt)|ϕt|c + ζba

(
1 + csign(ϕt)|ϕt|c−1

)
.(C.2)

Here, we have introduced the new variables ϕt = J2
t /J1

t and γt = J1
t J2

t (tacitly assuming
J1

t ̸= 0). After multiplying the first equation with ᾱ2
t /ᾱ1

t , subtracting it from the second
equation and rearranging terms, we obtain an autonomous equation for ϕt:

0 = ϕt + sign(ϕt)|ϕt|ck1
t + sign(ϕt)|ϕt|c−1k2

t + k3
t ,

with the coefficients ki
t from (6.4). For square-root impact (c = 1/2), this leads to a cubic

equation after another change of variable, where the signs of the coefficients depend on the
sign of the variable. This in turn leads to six candidate solutions for the maximum of the
goal function. These in turn need to be directly compared to the points where one or both
variables are zero (so that the goal function is not differentiable).
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