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Abstract

This paper synthesizes the quantum machine learning literature, focusing on quantum Support Vector

Machine (SVM). Although its efficiency is recognized theoretically, it has limitations in practice, for

instance, it is not mature enough for financial applications. Therefore, empirically, this study provides

two experiments in which the quantum-enhanced SVM, using the quantum kernel estimator, is compared

with the classical SVM. According to standard performance metrics, the current quantum-enhanced SVM

does not show superior performances in forecasting the movement direction of stock market indexes. To

the best of my knowledge, this study is a pioneer attempt applying this quantum algorithm in stock

market index forecasting which provides insight to financial researchers and practitioners.
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1 Introduction

Machine learning aims at predicting and identifying patterns from data sets within a reason-

able time. Data sets’ size and dimension gradually increase over time, inexorably leading to

calculation slowdown. An efficient solution to circumvent this issue potentially arises from an

emerging technology: quantum computing. Specifically, quantum computers are expected to

surpass the computational capabilities of classical computers during this decade (Pistoia et al.,

2021).

Along with universities and research institutions, in the industry, there are several prominent

companies in the rivalry of quantum computing development, such as IBM, Google, Alibaba,

Microsoft, D-Wave, Rigetti Computing, IonQ, Xanadu, Fujitsu, etc., and, more recently, Hon-

eywell (Arute et al., 2019; Zhong et al., 2021; Zhu et al., 2022b; Madsen et al., 2022). Google

reaching quantum supremacy (Arute et al., 2019) in the sense of Preskill (2012) is criticized

by Pednault et al. (2019) and Zhou et al. (2020). More recently, the enriching debate between

classical and quantum supremacy continues with dynamic and intense exchanges (Kim et al.,

2023; Tindall et al., 2023; Begušió and Chan, 2023).

The governments also show a growing interest in quantum technologies. France announced

in January 2021 an investment plan of 1.8 billion euros over five years1. More recently in

August 2022, the United States signed the CHIPS and Science Act 2022 that authorizes new

investments in core quantum research programs2. And China is by far the biggest investor

in quantum computing with USD 15 billions3. These investments play the role of incentives

that promote the development of quantum computing, for instance, startup companies such as

Alice&Bob compete in raising venture capital financing4. However, the investors are cautious in

the rapid growth stage of industry lifecycle and await the shakeout stage where uncompetitive

companies are eliminated in the rivalry, which puts pressure on quantum computing companies.

For instance, some unicorn startups, namely Rigetti Computing, IonQ and D-Wave witnessed

significant market capitalization drop by early 2023. Facing these pressures, Rigetti Computing

is at the risk of being delisted5. Additionally, quantum supremacy threatens the security of

the financial system. Consequently, JPMorgan Chase hired quantum cryptography scientists to

1https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan
2https://www.quantum.gov/quantum-in-the-chips-and-science-act-of-2022
3https://www.mckinsey.com/featured-insights/sustainable-inclusive-growth/chart-of-the-day/

betting-big-on-quantum
4https://pitchbook.com/newsletter/quantum-computing-startup-alicebob-raises-27m
5https://www.hpcwire.com/2023/02/03/quantum-computing-firm-rigetti-faces-delisting
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develop quantum-resistant communication networks6. In July 2023, HSBC joined a quantum-

secure network anticipating quantum-enabled cyber-threats7.

Pistoia et al. (2021) state that finance is projected to be the first industry sector to reap

the advantages of quantum computing for effective solutions. According to Nurdin (2019),

randomness is implicit at the atomic scale and the measurement of a quantum mechanical system

yields a random result. Financial studies shed the spotlight on capitalizing on the inherent

stochastic properties of quantum mechanics (Montanaro, 2015; Rebentrost et al., 2018; Orùs

et al., 2019; Alcazar et al., 2020). In addition, academics are motivated by another property

which is the exponential speed-ups enabled by quantum machine learning (Lloyd et al., 2013;

Rebentrost et al., 2014; Li et al., 2015; Biamonte et al., 2017; Rebentrost and Lloyd, 2018; Egger

et al., 2020).

But in practice, beyond the need for financial practitioners’ training, the technology itself

is not yet mature enough for wide-scale industrial usage. Quantum computing is currently in

the “noisy intermediate-scale quantum” (NISQ) era (Schuld and Petruccione, 2018; Park et al.,

2020b). Access to actual NISQ devices is granted by IBM via its cloud solution. Thus, as

in many recent papers, this study conducts financial experiments through the IBM Quantum

Experience (Hebenstreit et al., 2017; Harper and Flammia, 2019; Martin et al., 2021; Mugel

et al., 2022; Wilkens and Moorhouse, 2023).

This paper proposes two experiments forecasting the movement direction of stock market

indexes using a supervised learning algorithm. The algorithm chosen for these experiments

is the Support Vector Machine (SVM). This algorithm, robust to overfitting, can be used for

classification tasks, effectively solve linear and non-linear problems, and perform well even

with small data sets. Moreover, it finds extensive application in stock prediction (Gong et al.,

2016; Chen and Hao, 2017; Ismail et al., 2020; Akyildirim et al., 2022; Kang et al., 2023),

and recent research in forecasting (Richardson et al., 2021; Bas et al., 2021; Zhu et al., 2022a,

2023; Luo et al., 2023) and operations (Ben-Tal et al., 2015; Maldonado et al., 2017; Jiménez-

Cordero et al., 2021; Beńıtez-Peña et al., 2023) proposes customizations and applications of

this algorithm across various contexts. Besides, this study deals with a “quantum-enhanced”

version of the SVM in which the quantum device handles the application of the kernel function

to the data. In this case, the kernel function is referred as “quantum kernel estimator” (QKE).

6Cf. https://cde.nus.edu.sg/news-detail/cde-quantum-security-expert-charles-lim-joins-jpmorgan
7https://www.theregister.com/2023/07/06/hsbc_vodafone_quantum_security
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QKE has an interesting property in not requiring any γ hyper-parameter setting, compared to

the commonly used non-linear kernels. Indeed, the smaller the number of required parameters,

the smaller the risk of incorrect settings. Additionally, the quantum-enhanced SVM does not

require a choice among various non-linear kernels contrary to the SVM.

Besides the sensitivity to noise of quantum computers, disadvantages of the cloud-based

technology lie in the restricted number of freely publicly usable qubits and long waiting queues.

Therefore, the empirical experiments cannot be built on large samples, and they are limited

to binary classifications. With regard to these limitations, the study attempts a pilot work to

assess the level of performance that financial practitioners can expect using quantum-enhanced

SVM. To do so, I compare the current predictive power of the quantum-enhanced SVM, to the

predictive power of the SVM in practical financial contexts. So far, few empirical experiments

used quantum-enhanced SVM but mainly on separable data sets (Li et al., 2015; Havenstein

et al., 2018; Sarma et al., 2019; McRae and Hilke, 2020; Peters et al., 2021). In the first

experiment, this study proposes forecasting future movement direction of a stock market index

using its past returns along with those of another stock index and a currency. The second

experiment is more favorable in terms of separability, as it forecasts the present movement

direction of a stock market index using the present returns of indexes having many components

in common. By construction, the latter experiment generally leads to higher performance

metrics as the classes are more clearly split. However, using less easily separable and noisy

market finance data, this study contributes to expending our experimental knowledge.

This paper ultimately proposes a forward-looking research direction to evaluate whether

financial practitioners can already rely on quantum-enhanced SVM, for preparing a potential

transition. Based on the findings, the classical version continues to exhibit higher accuracy com-

pared to the quantum-enhanced counterpart. It is worth noting that the quantum metrics still

fall within an acceptable range. While the results maintain a consistent average performance,

there is some variability across different attempts that warrants attention. Furthermore, the

duration of execution can vary significantly. Given these nuances, practitioners should remain

cautious about immediate adoption while proactively empowering themselves to harness these

technologies effectively.

Section 2 introduces quantum computing and the applied quantum machine learning litera-

ture. Section 3 presents the data set and briefly explains the SVM and the quantum-enhanced

SVM algorithms. Then, the results, on both future and present forecasts of the movement
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direction of stock market indexes, are discussed in section 4. Finally, section 5 concludes this

study and suggests some prospective research potentials.

2 Literature review

Quantum computers remain sensitive to noise so that small changes in temperature or vibration

can make the qubits decohere. The technique to compensate for these imperfections is called

quantum error correction. For decades, there has been ongoing academic research on quantum

error correction (Cory et al., 1998; Knill et al., 2000; Chiaverini et al., 2004) and it remains highly

active at present (Krinner et al., 2022; Smith et al., 2023; Sivak et al., 2023). Researchers suspect

that reaching quantum advantage with uncorrected errors is impossible. But they remain unable

to prove it for all cases. Aharonov et al. (2023) have taken a major step toward comprehensive

proof that error correction is necessary for a lasting quantum advantage in random circuit

sampling. And quantum computing companies are making slow but steady progress toward

reducing the noise on both the hardware and software levels. For instance, IBM’s 65-qubit

systems from 2020 show twice the coherence time compared to when they first launched. IBM

also considers an approach that is more in line with near-term goals using available hardware,

the error mitigation techniques. The system is regularly checked for noise and then those noisy

circuits are inverted to enable the generation of virtually error-free results. According to Schuld

and Petruccione (2018) and Park et al. (2020b), we currently are in the “noisy intermediate-

scale quantum” (NISQ) era. NISQ processors are prone to decoherence and are not able to

continuously correct quantum errors.

Regarding quantum machine learning, Biamonte et al. (2017) define it as the exploration

of “how to devise and implement quantum software that could enable machine learning that

is faster than that of classical computers.” But they concede that both the hardware and

software challenges remain considerable. With more specificities, Liu and Rebentrost (2018)

propose two widely used machine learning algorithms’ quantum versions (i.e., kernel principal

component analysis and one-class SVM) to detect outliers in quantum states. For instance, a

set-up that can be applied in finance, fraud detection8, and surveillance. Martin et al. (2021)

use quantum principal component analysis to decrease the number of noisy factors needed to

simulate the time evolution of diverse time-maturing forward rates. Additionally, a quantum

8See Cecchini et al. (2010) for a classical version.
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version of the widely used k-means clustering was developed (Lloyd et al., 2013; Kerenidis et al.,

2019). Emmanoulopoulos and Dimoska (2022) explore the efficacy of quantum neural networks

for forecasting time series signals with simulated quantum forward propagation.

The SVM algorithm reaches limitations when the feature space becomes large and the ker-

nel functions become computationally costly to estimate. That is why quantum algorithms’

computational speed-ups is important. Rebentrost et al. (2014) show that the SVM can be

implemented on a quantum computer and can achieve an exponential speed-up. One strong

theoretical point is that the time complexity of the SVM is O(N) and is scaled down to O(logN)

with the quantum version (Lloyd et al., 2013; Rebentrost et al., 2014; Li et al., 2015). They show

that quantum SVM can solve certain classification problems which classical computers cannot

efficiently handle. Other recent theoretical papers implement the SVM on quantum computers

(Chatterjee and Yu, 2017; Schuld and Killoran, 2019; Havlicek et al., 2019; Park et al., 2020a;

Liu et al., 2021). However, exponential speed-up is attainable through the computations, thus

only if data is provided in a coherent superposition. It is no longer possible if they are brought

conventionally from a classical computer. My experiments are based on actual financial data

that is not generated by a quantum computer; an issue overcome by Havlicek et al. (2019). In-

puts are converted from classical bits to quantum bits (qubits) before the quantum algorithm is

run. Once the computations are finished, outputs’ qubits are turned back into bits. In line with

McRae and Hilke (2020), it is important to be aware that the quantum SVM version running

on Qiskit is not entirely quantum but rather “quantum-enhanced” as the quantum processor

performs only certain operations, the rest are done classically. Havlicek et al. (2019) define two

methods that map non-linearly classically provided data to a quantum state. The first method,

a major alternative to the quantum SVM, called variational quantum classifier (VQC), uses

a variational quantum circuit to classify the data as a conventional SVM does. The second

method is the quantum kernel estimator (QKE) that uses the quantum processor to estimate

the kernel function and then optimizes a classical SVM.

The established research has presented various ways of relating finance and quantum com-

puting. For instance, Rebentrost and Lloyd (2018), focusing on quantum speed-ups, proposed

an algorithm that comes up with the optimal risk-return tradeoff curve based on quantum ac-

cess to past returns. Rebentrost et al. (2018) develop a quantum algorithm for the Monte Carlo

pricing of financial derivatives. Notably, they handle the preparation of the relevant probability

distributions in a quantum superposition, the implementation of the payoff functions through
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quantum circuits, and the extraction of financial derivatives’ prices through quantum measure-

ments. Stamatopoulos et al. (2020) develop a methodology to price options and portfolios of

options using amplitude estimation. Their algorithm provides a quadratic speed-up compared

to classical Monte Carlo methods. A global discussion on the application of quantum comput-

ing to financial issues is brought up by Orùs et al. (2019). They deal with various subjects

like portfolios optimization, seeking arbitrage opportunities, credit scoring, and how quantum

amplitude estimation can lead to quantum speed-ups for Monte Carlo sampling that has appli-

cations such as derivatives pricing and risk analysis. Another example is the mapping of the

Black-Scholes-Merton formula (Black and Scholes, 1973; Merton, 1973) to Schrödinger equa-

tion (Haven, 2002). This emphasizes that finance could benefit from a computational speed-up

which “could manifest itself in a number of different ways, each of which could imply gargan-

tuan savings for governments, financial institutions, and individuals” (Orùs et al., 2019). Egger

et al. (2020) focus on applications across asset management, investment banking, retail and

corporate banking involving simulation, optimization, and machine-learning problems, where

quantum computing provides more reliable solutions.

Large-scale quantum computing remains theoretical, but cloud-based technologies allow for

small-scale empirical experiments. The quantum-enhanced SVM has mainly been tested on

separable data sets, such as “Breast Cancer Wisconsin (Diagnostic),” “Iris” or “Wine” data

sets (Havenstein et al., 2018; Sarma et al., 2019; McRae and Hilke, 2020), or to solve a minimal

optical character recognition (OCR) problem in Li et al. (2015). In addition to dealing with

“Breast Cancer” and “Wine” UCI data sets, McRae and Hilke (2020) generate three classes

of data: ad-hoc data, Anderson data (Anderson, 1958), and Coronavirus data (Smith et al.,

2020). Underlining the current involvement in applied quantum SVM research, Peters et al.

(2021) apply the quantum kernel SVM to a cosmological benchmark using real spectral features.

But to the best of my knowledge, noisier and non-stationary data sets, such as market finance

time series, were not handled in previous studies.

The first analysis was inspired by the framework of Huang et al. (2005), which used the

SVM to forecast the movement direction of a stock market index. Forecasting stock returns’

direction using machine learning algorithms and, more precisely, the SVM, remains popular

(Gong et al., 2016; Chen and Hao, 2017; Henrique et al., 2018; Ismail et al., 2020; Akyildirim

et al., 2022). As an attempt to provide more empirical experiences to bridge the research gap

between the application of the SVM and the quantum-enhanced SVM, this study assesses how
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the quantum-enhanced SVM behaves compared to the SVM in forecasting stock market indexes’

up and down movements.

3 Methodology

3.1 Model formulation

The usage of cloud-based quantum devices constrains the experiments to limit both the dimen-

sion and the size of the data set. Huang et al. (2005) forecast the movement direction of a stock

market index with only two features. Running a conventional SVM, the authors predict the

Japanese NIKKEI 225 index using the S&P 500 index (hereafter abbreviated to SPX index),

standing as a well-known indicator of the American economic condition, and the yen, affecting

the Japanese export. In this study, I set the Canadian S&P/TSX composite index (hereafter

abbreviated to TSX index) as a dependent variable. Notably, China became the most significant

export target for Japan9 and the yuan is restricted to fluctuating between bands (Jermann et al.,

2022). This study favors the TSX index as Canada now has many similarities with Japan then:

being a major exporter, predominantly exporting to the United States10, and belonging to the

high-GDP countries. Additionally, Huang et al. (2005) noticed that the “Japanese interest rate

has dropped down to almost zero since 1990,” a comparable situation to the Canadian interest

rate during the period studied (cf. fig. 4 in the Appendix). The TSX index is here explained

with three features: its own past values and those of the SPX index and the Canadian/US

dollar exchange rate (hereafter CAD).

According to Timmermann and Granger (2004) the efficient-market hypothesis does not

rule out forecasting short-lived gains. But, with such a small sample it may not be possible to

efficiently compare the models. Therefore, in a second experiment, I run the algorithms on a

more favorable framework, predicting present movements of the Euro Stoxx 50 index (hereafter

abbreviated to SX5E index) with highly correlated indexes. Namely, the German and French

indexes (DAX and CAC indexes), respectively correlated to the SX5E index, with which they

share the most important components, by 98.2% and 95%. By construction, this experiment

should lead to higher performance metrics as the classes are more clearly split.

For both settings, the data set spans weekly for more than ten years, between two major

crises (i.e., the GFC and the COVID pandemic), from 2009-07-08 until 2020-01-22, and is

9https://oec.world/en/profile/country/jpn
10Around 75% of Canada’s exports go to the United States (https://oec.world/en/profile/country/can).
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based entirely on Bloomberg L. P. data. To avoid being disturbed by the potential end-of-week

volatility, my experiment was done on Wednesdays, as in Huang et al. (2005). The training sets

show a slight imbalance11, while the test sets sometimes exhibit a clear imbalance. Consequently,

reliance on the accuracy metric is not assured. To address this, I evaluate the balanced accuracy,

F1-score, and the components of the latter: precision and recall.

In this study, the “SVC” class of the machine learning library called “sci-kit learn” (Pe-

dregosa et al., 2011) is used to implement the classical support vector classification on a local

computer. And a dedicated NISQ version of the quantum-enhanced SVM algorithm is run on

a freely publicly available cloud-based quantum device. The free access is limited to 5 qubits

and is provided by IBM Q Experience (IBM Staff, 2016). The program is written with the

Python-based Quantum information science kit (Qiskit, IBM Staff (2017)). Aware of the cloud-

based quantum technology’s limitations I restrict, for both experiments, the size of the training

and test sets to respectively 80 and 20 consecutive weeks. Both experiments are run monthly

over the same 113 Wednesdays, providing 113 performance measures which are summarized and

analyzed in section 4.

To put it in a nutshell, this study forecasts the one-week direction of the TSX composite

index and the current value of the Euro Stoxx 50 index’s direction. It can be expressed as

follows:

DirectionTSX
t+1 = f

(
ReturnTSX

t , ReturnSPX
t , ReturnCAD

t

)
(1)

DirectionSX5E
t = f

(
ReturnDAX

t , ReturnCAC
t

)
(2)

3.2 Classical Support Vector Machine

This article deals with market finance time series that are implicitly noisy and non-stationary.

According to Cao and Tay (2003), the SVM has successfully modelled financial time series.

These authors also point out interesting characteristics of this algorithm such as good general-

ization performance, the absence of local minima, and sparse representation of solution.

In this paper, I determine the TSX and SX5E indexes’ movement direction with binary clas-

sification. The algorithm will learn a discriminant rule (here, the maximum-margin hyperplane)

from the training set to summarize the main idea quickly. In this framework, each example,

11Less than 60%, mainly in favor of up movements.
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out of T (here 113 observations) training examples, is a vector that belongs to the vector space

of D considered attributes (here stock indexes and forex variables), xt ∈ IRD. In the training

set, examples are labelled as the algorithm must know to which class (the explained indexes are

either going up or down), yt ∈ {−1, 1}, corresponds to each data point. Once the discriminant

rule is known, the algorithm can handle a new example and determine to which class it most

likely belongs.

Boser et al. (1992)’ article and the soft margin improvement proposed by Cortes and Vapnik

(1995) are the origin of the SVM that is essentially based on the blending of two key ideas:

maximum-margin hyperplane and kernel function. The aim is to select the hyperplane for which

its distance to the two closest points is maximized. This hyperplane is known as the maximum-

margin hyperplane. The primal problem with soft margin, writing the regularization term C,

the slack variable ϵt and the weights plus the bias (w, b) ∈ IRD+1, is commonly stated as follows:

min
w

1

2
∥w∥2+C

T∑
t=1

ϵt

subject to yt(w
⊤xt + b) ≥ 1− ϵt,

C ≥ 0, ϵt ≥ 0.

Although such a problem has a straightforward solution for linear classification, it is not anymore

the case for non-linear classification. But one can consider mapping the data into a higher feature

space of dimension D′, such that D′ > D. Let’s define Φ(x) as the feature map embedding

the data to the larger space, a linear classifier can then be rewritten as h(x) = w⊤Φ(x)+b.

However, calculations to map all data in a higher feature space become computationally costly

as the number of dimensions increases. But it is enough for one to use a kernel function to avoid

long computation in high dimensions. The idea is to act as if the data is mapped to a higher-

dimensional space, in which a linear classifier could be used as a maximum-margin hyperplane.

This method, called the “kernel trick,” allows operating in the original feature space by applying

the kernel function to the data. In other words, instead of computing the inner products of

the images of each datum in higher dimension Φ(xi)
⊤Φ(xj), one can use the kernel function to

directly return the inner product of the transformed data in the higher feature space without

any actual computation of Φ(x), such that K(xi,xj) = Φ(xi)
⊤Φ(xj). To make a connection

10



with the following quantum version, I write the dual problem maximizing the Lagrangian:

Maximize L̃(α) =

T∑
t=1

αt −
1

2

T∑
i=1

T∑
j=1

αiαjyiyjK(xi,xj)

subject to
T∑
t=1

αtyt = 0, and αt ≥ 0 for each t.

(3)

Thus, the hyperplane can be rewritten h(x) =
∑T

t=1 α
∗
t ytK(xt,x) + b, where α∗ is the optimal

Lagrange multiplier. In this study, I run the classical SVM and I select the radial basis func-

tion (K(xi,xj) = exp{−γ || xi − xj ||2}) as the kernel function. I also use the linear kernel

(K(xi,xj) = x⊤
i xj) as it does not require to optimize the γ parameter.

3.3 Quantum-enhanced Support Vector Machine

The experiments also use the quantum kernel estimator (QKE), a method mapping non-linearly

classically provided data to a quantum state (Havlicek et al., 2019). It estimates the kernel

function with the quantum processor and then optimizes an SVM. In other words, K(xi,xj) is

estimated quantumly and then the dual problem (cf. eq. (3)) is classically solved. This algorithm

sometimes called SVM-QKE (Liu et al., 2021) is available in Qiskit (Qiskit Development Team,

2020).

As already stated above, the non-linear transformation function applied to the data that

cannot be linearly separated in their original space is called a feature map. In this new feature

space, one classifies by assessing the examples’ closeness, corresponding to computing each

pair of data inner product. But calculating the non-linear feature map for each datum is not

necessary. It is sufficient to evaluate each pair of examples’ inner product in the new feature

space. This set of inner products is simpler to compute and is named the kernel. Quantum-

enhanced SVM algorithms are used when the required feature map is not efficient classically,

notably if the necessary computational resources are expected to scale exponentially with the

problem size. The QKE uses the quantum processor to estimate the kernel in the feature space

to solve this dilemma. In this set-up, the quantum computer is used twice, to calculate the

kernel for all pairs of data from the training set and then estimate the kernel for a new datum

from the test set.

More explicitly, the kernel’s inputs are the fidelities, measures of quantum states’ closeness,

between the feature vectors. The standard method to estimate fidelities is via the swap test
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(Buhrman et al., 2001), but as only the fidelities’ values are needed, Havlicek et al. (2019) rather

choose a shallower circuit as proposed by Cincio et al. (2018). In this case, the states in the

feature map are structured allowing to estimate of the overlap from the transition amplitude,

the kernel is thus set as K(xi,xj) = |⟨Φ(xi)|Φ(xj)⟩|2 = |⟨0|U †
Φ(xi)

UΦ(xj) |0⟩|2. In other words,

the quantum circuit U †
Φ(xi)

UΦ(xj) is applied to the initial reference state |0⟩. Then, the resulting

state, U †
Φ(xi)

UΦ(xj) |0⟩, is sampled R (number of shots12) times in the z-basis. Finally, the kernel

estimator, up to a sampling error
∼
ϵ = O(R−0.5), is #{0, . . . , 0}/R that corresponds to the

number of observed zero bit-strings divided by R. Once the kernel matrix has been built for the

entire training set, the separating hyperplane is found by classically solving eq. (3). Then, the

quantum computer is called again to estimate the kernel for a new datum x′ ∈ IRD with all the

support vectors, and the new corresponding label is assigned by ŷ′ = sign
(∑T

t=1 αtytK(xt,x
′)+

b
)
.

From a hardware viewpoint, in the manner of elementary logic gates of a classical computer,

quantum computers handle a series of quantum gates13 (called quantum circuits), which were

particularity inherited from quantum properties to be reversible. For eq. (1) and eq. (2), the

chosen features map is a second-order Pauli-Z evolution circuit (cf. a simplified example in

fig. 1) with a number of qubits, nqb = 3 and nqb = 214, respectively — the quantum computer

manipulates 2nqb probability values — two repetitions and full entanglement.

[Insert Figure 1]

From a practical point of view, it is interesting to emphasize that SVM algorithms re-

quire choosing a kernel out of several kernel functions, e.g., polynomial, Gaussian, radial basis,

sigmoid, etc. It also requires tuning its hyperparameters accordingly to optimize the bias-

variance tradeoff. Notably, non-linear kernel functions require to set the γ parameter. This

is not the case for the quantum SVM by Havlicek et al. (2019) that is only derived from

K(xi,xj) = |⟨Φ(xi)|Φ(xj)⟩|2, making it simpler for anyone to use. However, for a specific

training set, with the SVM, one will always obtain the same output15, which is untrue for the

inherently stochastic quantum-enhanced SVM.

In the following section 4, I present the empirical results of the comparisons between the

SVM and the quantum-enhanced SVM on actual financial data, both in terms of accuracy and

12In this experiment R = 210.
13The quantum gates used in this study are available in the Appendix, and more details are available in

Kurowski et al. (2023).
14nqb corresponds to the number of features.
15Assuming that no random state parameter is tuned.
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computation time.

4 Results

4.1 Forecasting the future movement direction of stock market index

Equity forecasting remains of utmost importance for financial investors (Timmermann and

Granger, 2004; Pástor and Stambaugh, 2009; Rapach et al., 2013; Nyberg and Pönkä, 2016).

In the first experiment, the TSX index movement direction is predicted using its own returns

of the previous weeks, with those of the SPX index and the CAD. As shown in fig. 2, there is

no clear separation of the distribution of the movement directions. Thus, predicting where the

market is heading is challenging by construction.

[Insert Figure 2]

[Insert Table 1]

Numerical outputs from table 1 match the lack of separability displayed on fig. 2. Although

the radial basis function (RBF) kernel versions provide the best balanced accuracies, they remain

only slightly above 50%. The linear and quantum kernels, that do not require a γ parameter,

offer similar results, but closer to the 50% threshold. In other words, forecasting future weekly

movement direction of the TSX index using a selected limited number of features with classical

and quantum SVM does not seem appropriate. Obviously, with around one chance out of two

to correctly predict, no investment decision should be based on these frameworks.

Although the F1-Score is relatively high, I mainly note that recall is higher than precision,

meaning that out of the up movements that should have been selected many were actually

selected. Yet the lower precision highlights that only some of the up movements retrieved are

actually relevant.

Under current conditions, it is not beneficial to employ these algorithms on a limited set of

features to predict future movement direction of the TSX index. However, these results may be

overcome with the possibility of performing the same computations on bigger matrices, notably

with the improvement of quantum technologies’ capacities.

In section 4.2, I perform the same analysis on a more favorable set-up. The chosen framework

has the advantage of splitting the classes more clearly, allowing to study of the algorithms’

behavior in better conditions. More precisely, I propose to forecast the present movement
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direction of an index (cf. section 3.1). From a practitioner’s point of view, it can be seen as a

missing data completion task.

4.2 Forecasting the present movement direction of stock market index

In this section, up and down weekly movement directions of the SX5E index are forecasted

with the returns of the DAX and CAC indexes occurring on the same dates. This set-up

ensures algorithm comparability, albeit in a basic framework. However, it is worth noting that

predictability might be absent in section 4.1, potentially leading to non-comparability of the

models. By construction, fig. 3 shows a clearer separation of the distribution of these movement

directions than in fig. 2.

[Insert Figure 3]

[Insert Table 2]

The good separability displayed in fig. 3 is reflected in the numerical outputs. The best

balanced accuracies are found for each algorithm using the highest tested value of C. In other

terms, when the strength of the regularization is the weakest, it leads to the highest number

of well-classified training set points but potentially inclines to overfit. However, the results

presented in table 2 are computed on the test set and thus, there is no overfitting noted.

Regarding the SVM with RBF kernel, large values of γ allowing “more” non-linearity in the

hyper-plane also leads to higher accuracies. As in section 4.1 the SVM with RBF kernel provides

the best balanced accuracies, above 90%. The easier-to-tune linear and quantum kernels lead

to lower balanced accuracies but still higher than 80%. Overall, for such a task, a financial

practitioner can still improve the accuracy, in this experiment by more than 8%, preferring the

classical non-linear kernel SVM to the quantum-enhanced SVM.

In this experiment, the F1-Score is relatively high and both recall and precision provide high

figures. Thus, among the up movements that should have been selected, many were actually

selected, and most of the up movements retrieved are actually relevant.

Due to the better metrics obtained from the SVM with the RBF kernel, the current advice is

against utilizing the quantum-enhanced version for forecasting the present movement direction

of the SX5E index. It is worth noting, however, that the quantum-enhanced version maintains

the advantage of being easier to tune, which in turn reduces the likelihood of parametriza-

tion mistakes. Again, these results may be overcome with the possibility of performing the
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same computations on bigger matrices, notably with the improvement of quantum technologies’

capacities.

4.3 Technical considerations

In this analysis, it is important to note that while the results may vary between individual runs,

at the example scale, they demonstrate a level of stability on average, instilling confidence in

their overall reliability. Besides, the quantum-enhanced SVM’s average computation time per

observation using the cloud-based quantum computer is 3 hours and 55 minutes, — ranging

from 40 minutes to more than 8 hours, making the computation duration unreliable —, being

on average 5.9 × 106 times slower than performing classical computation locally. McRae and

Hilke (2020) also using Qiskit’s quantum-enhanced SVM, reached similar conclusions, both in

terms of accuracy and calculation time, and discussed further the difference between the time

of computation in practice from the theoretical exponential speed-up.

In sum, the quantum-enhanced SVM does not demonstrate better performance, in terms of

both accuracy and computation time, compared to the classical SVM.

5 Conclusion

In this paper, two empirical experiments compare the predictive powers of the quantum-

enhanced SVM and the classical SVM based on stock market index data, which provide prelimi-

nary outcomes and financial insights for academics and practitioners. The quantum algorithm is

run on an actual quantum computer accessible through a cloud-based technology. However, the

main limitation of this technology lies in the fact that these freely publicly available quantum

devices can only deal with small input matrices within reasonable computation time.

The main result is that the quantum-enhanced SVM underperforms the SVM in terms of

both accuracy and computation time. While the current indication suggests that financial pro-

fessionals may not immediately gain from the quantum-enhanced SVM for forecasting stock

market index movement direction, it is possible that in the future, there could be an oppor-

tunity. Over time, researchers and practitioners might discover the advantage in favoring the

quantum SVM over the classical SVM. Beyond its potential to provide significant speed-up, the

quantum SVM eliminates the need for selecting a kernel function and fine-tuning a large set of

hyperparameters.
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Embracing the trend of developing quantum technologies, which encompasses quantum sen-

sors, simulators, communications, and computers, this paper directs its attention to a financial

study, centering on quantum computers. The contribution of this paper is two-fold. First, this

paper synthesizes the quantum machine learning literature with a focus on quantum SVM to

academics and practitioners in the realm of finance. Second, this paper conducts two pilot

experiments using the quantum-enhanced SVM, grasping the current state of progress of freely

publicly available quantum technologies, which proposes a future research agenda. Quantum

computing continuously faces various challenges in its development, due to the limited num-

ber of qubits available, the short amount of time to quantum decoherence, the required frigid

temperatures to operate, etc. Hence, the outputs could be improved in future research, once a

more efficient technology is available.

6 Appendix

6.1 Bank of Canada overnight lending rate

[Insert Figure 4]

6.2 Quantum gates

The second-order Pauli-Z evolution circuit relies the following gates:

� The Hadamard gate which acts on a single qubit and creates superposition.

� The controlled-NOT gate which entangles and disentangles qubits together (Monroe et al.,

1995).

� The U1 gate that is a diagonal gate leading to a single rotation about the z-axis (McKay

et al., 2017).
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8 List of Tables

Table 1: Future forecasts’ metrics

Notes. This table displays the means of the future forecasts’ balanced accuracies, F1-Scores, Precisions &

Recalls.
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Table 2: Present forecasts’ metrics

Notes. This table displays the means of the present forecasts’ balanced accuracies, F1-Scores, Precisions &

Recalls.

9 List of Figures

Figure 1: Second-order Pauli-Z evolution circuit

q0 : H U1(2ϕ(x0)) • • • •
q1 : H U1(2ϕ(x1)) U1(2ϕ(x0, x1)) • •
q2 : H U1(2ϕ(x2)) U1(2ϕ(x0, x2)) U1(2ϕ(x1, x2))

Notes. This chart displays a second-order Pauli-Z evolution circuit for 3 qubits, one repetition and full

entanglement. Where ϕ is a classical non-linear function with ϕ(xi) = xi and ϕ(xi, xj) = (π − xi)(π − xj).
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Figure 2: TSX index weekly movement direction

Notes. These graphs display the up (black +) and down (grey o) weekly movement directions for the S&P/TSX

composite index over 551 dates with regards to the one-week lag returns of the S&P/TSX composite and the

S&P 500 indexes, and the USDCAD exchange rate.
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Figure 3: SX5E index weekly movement direction

Notes. These graphs display the up (black +) and down (grey o) weekly movement directions for the Euro

Stoxx 50 index over 551 dates with regards to the present returns of the DAX and CAC indexes.
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Figure 4: BoC O/N lending rate.

Notes. This graph displays the overnight lending rate set by the Bank of Canada (BoC) on eight fixed dates

each year, from December 31, 1997 until October 1, 2021.
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