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The impact of climate risks on the probability of bankruptcy: Evidence 

from agriculture firms in southern Europe 

 
 
Abstract 

Production in agricultural firms can be severely affected by the frequency and duration of 

extreme climate events, which can cause losses due to their impact on business-related natural 

capital. Physical climate effects are material dependencies for agricultural businesses that may 

severely affect performance and compromise survival. This study analyzes the effects of adverse 

climatic conditions in the area of the firm's headquarters, such as extreme maximum 

temperatures, heavy precipitation, and fires. Using logit regressions and the gradient-boosting 

ensemble method, agricultural firms' bankruptcy is found to be conditioned by these extreme 

weather events, indicating that the physical effects of climate change on firms' resources are 

already material for the agricultural sector's resilience and survival, although credit risk 

management still receives little attention.  
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1. Introduction 

The temperature and precipitation trends analysis shows that climate change is visible 

worldwide, and its effects are expected to intensify in the coming years. European financial 

institutions (EIB, 2021; EIOPA, 2022) recognize that physical climate change risks require 

adaptation by institutions, businesses, and society to reduce vulnerability, moderate damage, 

and alleviate adverse effects. The IPCC (2021) report shows that Mediterranean countries are 

experiencing more extensive and longer agricultural and ecological droughts combined with 

floods from extreme rainfall. In addition to droughts and floods, a broad study performed by the 

EIOPA (2022) among European insurers identifies wildfires as one of the most dangerous and 

potentially disruptive risks in southern Europe from a current and forward-looking perspective. 

As wildfires are prevalent in rural areas, this study shows that most property and assets 

destroyed by wildfires belong to firms and agricultural businesses. 

For many firms, interactions with nature have been considered no more than externalities and 

have not affected cash flows, assets, and risk profiles; hence, they have not translated into 

changes in the profit and loss account and/or the balance sheet (Natural Capital Coalition, 

2016a). This is not the case for the agricultural sector, where nature (soil, water, atmospheric 

conditions, and ecosystems) is a significant part of the production process, derived from material 

dependencies. Identifying, measuring, and valuing changes in natural capital and dependencies 

is critical for agricultural firms to take action (Natural Capital Coalition, 2016a).  
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Climate change is the origin of critical changes in the natural capital used in agriculture, 

constituting one of these strong dependencies. For example, rain and temperature determine 

freshwater provision, and extreme conditions cause droughts and floods. In contrast, the 

combination of different humidity, temperature, and wind conditions determines the 

propensity of wildfires to intensify and extend. The resulting changes in consumptive natural 

capital range from the desiccation of the soil surface and freshwater, as well as 

damage/destruction of raw materials (grain and other harvests, trees) (Natural Capital Coalition, 

2016b), to the deterioration or destruction of property, plant, and equipment (Monasterolo, 

2020). The consequences of climate change dependency on the agricultural business are the 

increase in operational costs to access alternative freshwater and raw materials, loss of revenue 

from crops, reparation costs, and rebuilding investments, and even compromising the firm's 

resilience and survival in the most severe cases (Natural Capital Coalition, 2016b). Other 

consequences for the affected geographical area are unemployment and decreased GDP (Burke 

et al., 2018; Hsiang et al., 2017), threatening the stability of economic and financial systems. 

To analyze the impact of physical risks from climate change on agricultural sector firms, this 

study establishes a necessary connection between the standpoints of firms' and their 

stakeholders.' From the firms' perspective, two theoretical approaches play a role in explaining 

how firms' financial health is affected: the resource-based theory (Barney and Clark, 2007; 

Berrone et al., 2013) and the resilience theory (Linnenluecke et al., 2012; Winn et al., 2011). 

From the stakeholders' perspective, this study builds on the theoretical exploration made by 

Ascui and Cojoianu (2019) of how natural capital credit risk assessment may be articulated in 

agricultural lending. Specifically, we advance the rating and costing stages1 of the risk 

management process by identifying natural capital risks originating from climate change with a 

significant effect (materiality assessment) on the financial health of agricultural businesses. 

This study focuses on the effects of climate-induced physical damage on firms' probability of 

bankruptcy. Therefore, credit risk management theory should be complemented by identifying 

climatic conditions and physical consequences that affect firms' resources and resilience, the 

measurement possibilities of risk drivers, and model proposals for risk assessment. 

The main objective of this study is to analyze the comprehensive effect of climate change factors 

on firm bankruptcy for a sector of particular concern, agriculture, and a geographical area 

susceptible to climate change in southern Europe. Analyzing individual climate factors, such as 

excess rainfall and periods of abnormally high temperatures, the negative influence on firms' 

health is found to align with previous findings (Griffin et al., 2019; Nguyen et al., 2023), 

consistent with the dependency of agricultural resources and resilience on climate conditions. 

However, this study aims to contribute to the literature by exploring an element of climate 

change that has not not been previously analyzed as an inductor of financial health 

deterioration. To this end, we investigate wildfire effects on the agricultural business, which 

requires the joint impact of several climate factors: drought, high temperatures, and wind as the 

main inductors. According to our results, bankruptcy risk significantly increases for firms in areas 

affected by extremely high temperatures and rainfall, and also for firms in the area of influence 

of wildfires. The combination of these three climatic factors (drought, high temperatures, and 

wind) aggravates the negative effect of wildfires on firms' financial health. These results 

highlight the importance of studying geographical areas with specific climatic conditions and 

risks, suggesting that the influence of climatic factors is not straightforward. In southern Europe, 

 
1 The credit risk management process can be divided into five phases, comprising rating (or risk 
identification), costing (or risk evaluation), pricing, monitoring, and workout (Weber et al., 2008). 
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excess rainfall causes floods, a negative factor for agricultural production; however, scarce 

rainfall is the main inducer of droughts and a relevant climatic factor for wildfire risk. 

This study contributes to the existing literature in several ways. First, it extends the emerging 

stream of research on the relationship between the physical effects of climate change and 

bankruptcy risk by establishing how this relationship affects the agricultural sector in southern 

Europe. Second, to the best of our knowledge, this is the first empirical study to analyze the 

effects of wildfires and their accentuated impacts in the presence of specific climatic conditions 

that climate change aggravates. Third, our results demonstrate the relevant role of the physical 

environment's risks on firms' financial health, showing that climate change factors affect the 

bankruptcy rates of companies in regions affected by exteme weather conditions and wildfires. 

Finally, our work links theoretical frameworks at two levels: at the agricultural firm level, the 

resource-based and resilience theories explain where and how firms' financial health is affected 

by physical climate risks. However, their application cannot quantify these risks individually. At 

the agricultural stakeholder level, the credit risk management theory incorporates financial 

environmental risks, including physical effects derived from climate change. It quantifies the risk 

for the concerned industries in broad geographical areas where these physical climate risks are 

endemic. The financial risk to agricultural businesses derived from climate change has 

implications for policymakers, regulators, investors, companies, and civil society (Caldecott, 

2017; IRENA, 2017). In the case of financial firms, both creditors and insurers (Natural Capital 

Coalition, 2016c) are concerned about the deterioration of natural capital, which reduces 

income and increases costs, thus hampering the firms' capacity to repay credit and deteriorating 

their capital investment, which results in collateral abatement (ESRB, 2016).  

The remainder of this paper is organized as follows. Section 2 reviews the literature on the 

physical effects of climate change on natural capital and how this impact may affect agricultural 

businesses and their bankruptcy risks. Section 3 describes the data, models, and variables used 

to test the proposed hypothesis. Section 4 reports and discusses the study's results. Section 5 

presents robustness analyses, and Section 6 explains the conclusions derived from the results 

and their implications for agricultural firms, their stakeholders, and the financial industry. 

2. Literature review 
2.1. Climate change factors and physical effects on natural capital 

As global warming intensifies, more frequent climate changes are observed, including hot 

extremes, heavy precipitation, intense tropical cyclones, and agricultural and ecological 

droughts, among other concerning changes (IPCC, 2021). All these disruptions in the natural 

environment induced by progressive warming require societal, productive systems, and 

institutional adaptation. Special incidences in primary sectors require strategic changes for 

resilience in areas with climate and weather extremes (Forino and Von Meding, 2021; 

Linnenluecke et al., 2013; Whiteman et al., 2012). 

A temporal increase in extreme damage has been detected globally, with temperate zones 

showing stronger patterns of growing damage at the upper percentiles of the distribution 

(catastrophic events) and mounting economic impacts (Coronese et al., 2019). In the European 

Mediterranean area, temperature increases exceed the global mean, and precipitation varies 

widely, with mean values decreasing as the mean temperature rises (IPCC, 2021). Severe 

droughts are expected to become twice as frequent in Europe, and aridity levels may become 

desert-like in the Mediterranean region as warming progresses (Teuling, 2018). With high-

temperature stress and limited water availability during the summer months in southern 
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Europe, the fire potential increases, which means more ignition, more extensive areas burned, 

and longer fire seasons (Lavalle et al., 2009). 

Extreme weather events induced by climate change mainly refer to extreme temperatures, 

heavy rainfall (or lack thereof), and high wind speeds, which may result in compound extreme 

events such as droughts, floods, and cyclones (IPCC, 2021; Linnenluecke et al., 2012). The 

combination of specific extreme climatic conditions and phenomena that are not necessarily 

extreme can exacerbate their impacts (Teuling, 2018). Thus, heat, lack of air humidity, derived 

desiccation of the soil surface, and strong winds work to intensify and extend a specific disaster 

type, wildfires2 (Sutanto et al., 2020). 

Physical catastrophes due to climate change, including wildfires and other domino effects, give 

rise to compound risks and intensify soil erosion, water stress, and biodiversity loss 

(Monasterolo, 2020). The destruction of natural capital and productive tangible assets and the 

deterioration of property values have severe socioeconomic consequences, such as a reduction 

in GDP, growth prospects, employment, and agricultural production, and an increase in energy 

consumption, coastal destruction, crime incidence, and human mortality (Burke et al., 2018; 

Hsiang et al., 2017). 

2.2. Physical climate effects and bankruptcy risk for agricultural business 

The theory of financial environmental risk is a complex framework comprising three blocks 

(Gutiérrez-López et al., 2022): the transition costs to low-carbon production (LCP), which can be 

considered of systemic relevance in the European setting (Cahen-Fourot et al., 2019), firms' 

danger of being unsustainable once a low-carbon economy is reached (Caldecott and Dericks, 

2018), and the already experienced or potential climate-induced physical damage to firms' 

capital (Romilly, 2007), which is the object of this study. 

The physical impacts of climate-related risks are classified by European financial institutions (EIB, 

2021; EIOPA, 2022) as acute risks (extreme weather events) and chronic risks (gradual global 

warming) and are expected to become the most prominent environmental hazards. Primary 

production sectors such as agriculture are strongly affected by their high dependence on natural 

capital (Ascui and Cojoianu, 2019). According to the resource-based theory, the direct effect on 

agricultural firms' resources negatively impacts firm performance. This theory states that a firm 

obtains a competitive advantage by exploiting its productive resources when imitation is 

challenging and generates valuable capabilities (Barney and Clark, 2007; Berrone et al., 2013).  

Physical climate risks can damage or destroy productive resources (natural capital, a firm's 

physical assets, and even human capital health) (Monasterolo, 2020) to such a significant extent 

that a firm's survival can be compromised. Hence, we resort to resilience theory to complete the 

proposed theoretical framework. 

Concerning the firm's resilience, business adaptation to the physical effects of extreme weather 

events has been mostly reactive due to their inability3 to predict changes and variability in 

 
2 “Fire weather” alludes to weather conditions triggering and sustaining wildfires. As global warming 
intensify, scientists estimate more frequent fire weather conditions in the Mediterranean area with high 
confidence (IPPC, 2021, p. 1600). 
 
3 Some characteristics make climate risks different from other financial risks: non-linear impacts, forward-
looking nature, large uncertainty, and complexity due to heterogeneous agents' behaviour (Linnenluecke 
et al., 2013). 
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climate at their locality, as well as expected impacts on their resources and activities and 

translation into costs and benefits (Berkhout, 2012; Winn et al., 2011). Adaptation is also 

conditioned by a firm's sense-making and learning processes related to climate change 

(Gasbarro and Pinkse, 2015; Zhang, 2022), with culture, institutions, information, and financial 

restrictions being as much of a determinant as costs and benefits. 

Recent studies (Clement and Rivera, 2017; Linnenluecke et al., 2012; Winn et al., 2011) have 

expanded resilience theory to consider extreme weather events. Thus, firms advance from 

adaptation to transformative change to cope with adaptation limits as extreme weather events 

become more frequent and intense due to climate change. The adaptation process should allow 

the firm to recover and return to its original operational regime; however, when adaptation 

limits are surpassed, two other trajectories emerge: a new operational regime or cease of 

operations (Clement and Rivera, 2017).  

Climate resilience expenses originating from climate risks concern operational disruptions, 

production adjustments, supply chain changes, and increased insurance premiums, whereas 

firms' asset value is reduced by direct asset destruction or deterioration (can be partly offset by 

insurance coverage) and market value reduction due to expected future climate risks (not 

covered by insurance) (Glinglinger and Moreau, 2023). 

Since specific by-industry attributes may be critical to a successful and effective response to the 

physical impacts of climate change (Linnenluecke et al., 2013), we focus on the effects of climate 

change on agricultural business. Let us consider operational disruptions requiring agricultural 

production adjustments for achieving business resilience. As explained in the previous section, 

acute risks, such as extreme temperatures, droughts, and floods, cause issues in accessing water 

for irrigation, a negative effect on crop growth, loss of grain and other harvests (raw materials), 

degradation of fertile soil, and deterioration of livestock health and welfare, resulting in higher 

mortality rates, lower productivity, and deterioration of immobilized productive capital 

(property, plant, and equipment) (Ascui and Cojoianu, 2019; Grillakis, 2019; Monasterolo, 2020). 

Therefore, according to the Natural Capital Protocol, climatic factors are classified as 

dependencies on the agricultural sector (Natural Capital Coalition, 2016b). 

Regarding the acute risk of fire, a primary consequence on agriculture is the destruction of crops 

and farmland. Fires can incinerate crops, devastate irrigation systems, and damage 

infrastructure, resulting in substantial losses for farmers and the agricultural sector. Another 

repercussion of agricultural fires is the degradation of fertile soil (Monasterolo, 2020). Fires can 

induce soil erosion and diminish the nutrient content of the soil, rendering it less adaptable for 

crop cultivation.  

Gradual global warming is causing droughts, floods, and fires, which are more frequent and 

destructive in the Mediterranean area (chronic risks), generating costlier agricultural insurance 

premiums (EOPA, 2022) and incipient consideration of future climate risk incidence on the 

market value of firms' assets (EIB, 2021).  

Consequently, the compound extreme event of wildfires must be regarded as a determinant of 

potential future losses and bankruptcy, critical factors in the climate resilience of agricultural 

firms in southern Europe. 

However, the direct effect of climate-induced physical catastrophes on specific communities is 

not predictable despite the classification of some risks as "endemic" to particular regions 

(chronic risk), as it happens with the incidence of fires (McKnight and Linnenluecke, 2019). The 
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low chance of expected recurrence in specific communities and their productive systems makes 

them adopt occasional reactive measures instead of incremental adaptations (Zhang, 2022). In 

addition to the previous factor, another concern is the backward-looking nature of financial risk 

metrics when climate change effects are growing, generating a general underestimation of 

climate change impacts on financial risk valuations (Monasterolo, 2020; Teuling, 2018). It is 

necessary to highlight the unprecedented extremes scientists expect in five metrics: magnitude, 

frequency, new regions, timing, and simultaneous occurrence (IPCC, 2021).  

To develop a deductive focus that provides a general quantitative assessment in which individual 

firms' risks can be evaluated, we incorporate the agricultural stakeholders' standpoint, 

materialized in financial institutions' incorporation of climate change risks into credit risk 

assessment. 

Evaluating physical climate risk has become increasingly critical for financial institutions, with 

significant implications for their operations and financial performance (EIB, 2021; EIOPA, 2022). 

Financial firms' resilience depends on how they measure the effect of the physical climate risk 

on the valuation of assets and clients' credit risk profiles. Therefore, regulators worldwide are 

increasingly focusing on climate risk, and financial institutions may be required to disclose their 

climate risk exposure and incorporate climate risk into their risk management processes. Non-

compliance can result in regulatory penalties and reputational damage. However, financial risks 

from climate change have not received sufficient attention from financial institutions and their 

supervisors (Fabris, 2020). 

This study addresses the need to incorporate physical climate risks into assessment methods to 

serve financial institutions' credit management (Georgopoulou et al., 2015). Specifically, we 

integrate climate risks into the credit risk assessment for agricultural businesses in southern 

Europe, a geographical area susceptible to climate change. To this aim, we adopt the theoretical 

framework developed by the Natural Capital Coalition (2016a) in their Natural Capital Protocol. 

Thus, in the "measure and value" stage, first, material dependencies are identified and 

measured; then, changes in the state and trends of business-related natural capital are 

measured. Finally, the value of these natural capital dependencies is assessed. Unlike floods, 

droughts, and extreme temperatures, wildfires, climate-related disasters with significant effects 

on agriculture, are mostly overlooked in the literature. However, the sector guide developed for 

the food and beverage sector (Natural Capital Coalition, 2016b) also applies to the agricultural 

sector and explicitly mentions wildfires as a cause of changes in natural capital. 

In line with Ascui and Cojoianu (2019), we adopt a lender's perspective when considering 

climate-derived physical risk. The reason alluded to by resilience theory is the low chance of 

recurrence for a particular community and certain firms; hence, the low chance of recurrence is 

a reason for firms to only adopt reactive occasional measures (McKnight and Linnenluecke, 

2019; Zhang, 2022). In contrast, lenders offer credit to wider geographical areas (normally 

countrywide), and are very likely to be affected by some adverse effects of physical climate risk 

if the lender's area of influence is endemically affected by climate risks, as countries in southern 

Europe are.  

The question of interest is how to integrate these dependencies into credit risk management or 

the recently developed environmental credit risk management (ECRM) (UNEP FI, 2007). The risk 

assessment process comprises the following stages: identification, analysis, categorization, 

mitigation, and monitoring. To advance the stages of identification and analysis, we propose 

specific quantitative variables referring to extreme conditions of temperature, precipitation, and 
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wind, as well as wildfires, to measure the physical climate change risk with damaging effects on 

agricultural resources. We hypothesize that they have a material incidence on firms' bankruptcy 

probability. 

H1. Physical climate change factors exert a material effect on agricultural firms' bankruptcy risk 

in southern Europe.  

To date, a limited number of studies have integrated environmental risk into credit risk 

management performed by financial firms (Coulson, 2009; Labatt and White, 2002; Mengze and 

Wei, 2015; UNEP FI, 2007; Weber, 2012, 2005; Weber et al., 2008, 2010; White, 1996), and 

previous studies addressing physical climate risk in credit risk management (i.e. from a 

theoretical approach, Ascui and Cojoianu, 2019) have devoted very little or no attention to 

wildfires.  

Providing agricultural firms with the necessary sense-making and learning on physical climate 

change would allow them to decide how to adapt or apply transformative shifts in response to 

extreme weather events, reducing the probability of cessation of their operations, according to 

the resilience theory. With this intention, our study includes the most relevant climate change 

factors for the economic sector and geographical area under analysis, contending that 

geography determines exposure to climate-derived disasters (McKnight and Linnenluecke, 2019; 

Nyberg et al., 2022; Romilly, 2007) and must be considered when computing the economic 

impact on resources and firms' financial vulnerability (Dennis, 2022).  

3. Research design 

The proposed model aims to uncover the crucial financial and climatic risk factors determining 

a company's bankruptcy or insolvency within the following 12 months. The study’s objective is 

to pinpoint the drivers of company distress, considering not only individual financial ratios but 

also climate-related variables, particularly those concerning physical risks.  

The choice of companies, countries, and years analyzed is meticulously considered. This study 

primarily targets companies operating in the agricultural sector, including crop and livestock 

production, where the effects of climate change are particularly pronounced. Agricultural 

businesses are susceptible to temperature, precipitation, and other climatic fluctuations 

because they are highly dependent on natural capital (Ascui and Cojoianu, 2019). 

3.1. Sample 

The present study's financial data are sourced from the ORBIS dataset provided by Bureau van 

Dijk (BvD). Firms with available financial data from 2016 to 2018 are meticulously selected. 

These selection criteria ensure the use of the most recent available financial data until 2019 for 

any firm under consideration.  

The years selected for this analysis are particularly significant, as they represent economically 

stable periods in Europe from a macroeconomic perspective. This choice mitigates the influence 

of bankruptcy that may arise from a more significant economic downturn. For example, although 

data from 2020 and 2021 may technically be incorporated, these years are predominantly 

overshadowed by the global implications of the COVID-19 pandemic. As such, discerning 

whether a firm's bankruptcy arises due to the pandemic, inherent financial vulnerabilities, or 

specific factors such as climate-induced risks may become fuzzier.  
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Furthermore, the years selected for this study strive to strike a balance between historical depth 

and representativeness and validity of the data. Given the recent surge in global temperatures 

and escalation of extreme weather events, it is paramount to consider contemporary climatic 

influences on businesses. Factoring data from distant years may jeopardize the study's 

conclusions, as the economic characteristics of firms during those periods may differ 

substantially from those of more recent years. 

Firms in Portugal, Spain, Italy, and France are considered from a regional perspective. The 

selection of these countries is informed by an IPCC (2021) report, which highlights that 

Mediterranean countries are experiencing more extensive and prolonged agricultural and 

ecological droughts juxtaposed with floods resulting from extreme rainfall. Consequently, these 

countries encounter pronounced extreme weather events and wildfires within the timeframe of 

this study. Notably, Greece was initially considered in this selection; however, it was ultimately 

excluded due to the low quality of the available data. 

The sample comprises 15,036 companies. These firms are categorized as either ”distressed” or 

”healthy.” A company is deemed a ”failed” if its financial statements for the year are accessible 

and one of the following statuses is observed within the next 12 months: rescue plan, insolvency 

proceedings, payment suspension, dissolved, or bankruptcy. This selection criterion ensures the 

use of the most recent available financial data until 2019 for any firm under consideration. 

Notably, this approach mirrors the strategies employed by financial institutions in their efforts 

to predict default. Such strategies allow them a margin of maneuverability to pre-empt potential 

bankruptcy or non-payment issues. This approach also aligns with the Basel IV regulations 

emphasizing banking stability. Based on this criterion, 458 firms are considered to have failed. 

This study considers pertinent accounting-based variables extensively employed in the 

literature.  

Climatic data are sourced from the European Climate Assessment and Dataset Project (ECA&P). 

ECA&P aggregates observations from an extensive network of stations across Europe and the 

Mediterranean region. It boasts records from over 2,500 sites detailing daily precipitation 

patterns and over 1,300 sites documenting daily minimum and maximum temperatures. This 

dataset is one of the most reliable public repositories for daily European weather data. This 

study also integrates historical data on European wildfires. Wildfire information is derived using 

Fire Event Delineation for Python (FIREDpy) open-source software. FIREDpy autonomously 

fetches and refines fire-related data for designated areas and captures metrics, such as the 

number of fires, expansion of the burned area, duration, and other pertinent parameters. It is 

worth mentioning that although financial information is limited to the years 2016 to 2018, 

climate-related metrics consider data from the last 10 years; therefore, the period covered is 

quite extensive.  

3.2. Models and variables 

In the proposed model, the dependent variable is a dummy variable that equals one if the 

company is considered failed, and zero otherwise. This model incorporates various established 

variables as proxies for a firm's financial health (Du Jardin, 2010; Crutzen and Van Caillie, 2010; 

Tian et al., 2015; Charalambakis and Garrett 2019; Atif and Ali, 2021). The seven selected 

variables are profitability, long-term debt, short-term liabilities, liquidity, tangibility, size, and 

activity. Return on assets (ROA) is calculated as the ratio of net income to total assets. Long-

term debt (LONG_DEBT) is expressed as the ratio of long-term financial debt to total assets. 

Short-term liabilities (SHORT_LIAB) are calculated as the ratio of short-term liabilities to total 
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assets. Liquidity (LIQ) represents the ratio of current assets to current liabilities. Tangibility 

(TANG) is the ratio of fixed assets to total assets. Size (SIZE) is computed as the logarithm of total 

assets, and the activity variable (ACTIVITY) is calculated as sales growth with respect to the 

previous year. 

In addition to these financial variables, for each firm-year, three climate variables are 

incorporated into the model: maximum temperature (MAX_TEMP), precipitation (PRECIPI), and 

number of fires (FIRES). MAX_TEMP is the anomaly in the maximum temperature observed in 

the last 3,650 days compared to the historically available data. PRECIPI is determined as the 

anomaly in the maximum precipitation value observed in the previous 365 days compared with 

historically available data. FIRES measures the number of fires in the last 1,865 days within a 100 

km radius of the firm's location.  

Linking climate variables to individual companies is considerably more challenging, especially 

compared with the more straightforward process of assigning financial metrics. This difficulty is 

primarily due to the need to accurately identify the operational locations of these companies. 

For larger corporations, gathering detailed information on their main production sites and key 

assets may not always be feasible. In addition, the available data may not always be reliable. 

The current study focuses on small to medium-sized enterprises (SMEs) in response to this issue. 

The location of an SME's headquarters is often easy to find and usually provides a good 

indication of its primary asset location, as supported by Griffin et al. (2019). This concept is based 

on the view that smaller companies tend to operate in specific areas. When adding climatic 

factors for each company, considering the company's distance from relevant data sources, such 

as weather stations, is essential. For example, if a company is close to several weather stations 

that record temperature data, the readings from the nearest station are assigned to that 

company. The abovementioned variables are identified in the equation as CRP, a climate risk 

variable proxy that includes MAX_TEMP, PRECIPI, and FIRES. 

In addition, a Climate Index is calculated by extracting the first principal component of the three 

most influential variables in the initiation and propagation of fires (CLIMATE_INDEX) using 

maximum temperature, drought, and wind (IPPC, 2021; McKnight and Linnenluecke, 2019; 

Turco et al., 2014). Drought is assigned a value of one if the mean rainfall value for April, May, 

June, July, August, and September is below the first tercile of the average annual rainfall, and 

zero otherwise. The wind is calculated as the anomaly in the mean wind speed observed in the 

last 1,825 days compared to the historically available data. 

The model used to test the hypothesis is as follows: 

𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦 = 𝑎0 + 𝑎1𝑅𝑂𝐴𝑖𝑡 + 𝑎2𝐿𝑂𝑁𝐺_𝐷𝐸𝐵𝑇𝑖𝑡 + 𝑎3𝑆𝐻𝑂𝑅𝑇_𝐿𝐼𝐴𝐵𝑖𝑡 + 𝑎4𝐿𝐼𝑄𝑖𝑡 + 𝑎5𝑇𝐴𝑁𝐺𝑖𝑡 +

𝑎6𝑆𝐼𝑍𝐸𝑖𝑡 + 𝑎7𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌𝑖𝑡 + 𝜀𝑖𝑡                     (1) 

𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦 = 𝑎0 + 𝑎1𝑅𝑂𝐴𝑖𝑡 + 𝑎2𝐿𝑂𝑁𝐺_𝐷𝐸𝐵𝑇𝑖𝑡 + 𝑎3𝑆𝐻𝑂𝑅𝑇_𝐿𝐼𝐴𝐵𝑖𝑡 + 𝑎4𝐿𝐼𝑄𝑖16−19 + 𝑎5𝑇𝐴𝑁𝐺𝑖𝑡 +

𝑎6𝑆𝐼𝑍𝐸𝑖𝑡 + 𝑎7𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌𝑖𝑡 + 𝑎8𝐶𝑅𝑃𝑖𝑡 + 𝜀𝑖𝑡                   (2) 

𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦 = 𝑎0 + 𝑎1𝑅𝑂𝐴𝑖𝑡 + 𝑎2𝐿𝑂𝑁𝐺_𝐷𝐸𝐵𝑇𝑖𝑡 + 𝑎3𝑆𝐻𝑂𝑅𝑇_𝐿𝐼𝐴𝐵𝑖𝑡 + 𝑎4𝐿𝐼𝑄𝑖16−19 + 𝑎5𝑇𝐴𝑁𝐺𝑖𝑡 +

𝑎6𝑆𝐼𝑍𝐸𝑖𝑡 + 𝑎7𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌𝑖𝑡 + 𝑎8𝑀𝐴𝑋_𝑇𝐸𝑀𝑃𝑖𝑡 + 𝑎9𝑃𝑅𝐸𝐶𝐼𝑃𝐼𝑖𝑡 + 𝑎10𝐹𝐼𝑅𝐸𝑆𝑖𝑡 + 𝜀𝑖𝑡               (3) 

𝐵𝑎𝑛𝑘𝑟𝑢𝑝𝑡𝑐𝑦 = 𝑎0 + 𝑎1𝑅𝑂𝐴𝑖𝑡 + 𝑎2𝐿𝑂𝑁𝐺_𝐷𝐸𝐵𝑇𝑖𝑡 + 𝑎3𝑆𝐻𝑂𝑅𝑇_𝐿𝐼𝐴𝐵𝑖𝑡 + 𝑎4𝐿𝐼𝑄𝑖16−19 + 𝑎5𝑇𝐴𝑁𝐺𝑖𝑡 +

𝑎6𝑆𝐼𝑍𝐸𝑖𝑡 + 𝑎7𝐴𝐶𝑇𝐼𝑉𝐼𝑇𝑌𝑖𝑡 + 𝑎8𝐹𝐼𝑅𝐸𝑆𝑖𝑡 +  𝑎9𝐶𝐿𝐼𝑀𝐴𝑇𝐸_𝐼𝑁𝐷𝐸𝑋𝑖𝑡+ 𝑎10𝐹𝐼𝑅𝐸𝑆 𝑥 𝐶𝐿𝐼𝑀𝐴𝑇𝐸_𝐼𝑁𝐷𝐸𝑋𝑖𝑡 +

𝜀𝑖𝑡                      (4) 
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The proposed models are estimated using logit regressions for the panel data. We check the 

validity of our results by considering different tests, such as the Wald test, Lagrange multiplier 

(LM test score), receiver operating characteristics (ROC), and likelihood ratio test (LR test).  

4. Results and discussion 

4.1. Descriptive statistics 

Table 1 presents the summary statistics of the variables included in the model for the full sample 

(Panel A), healthy firms (Panel B), and failed firms (Panel C). Panel A reports that, on average, 

the overall failure rate is 1.1%, ROA is 2.12%, and leverage shows a high rate of short-term 

liabilities (35.87%) in contrast to long-term financial debt (16.78%). Comparing Panels B and C, 

failed firms show negative ROA and lower liquidity and tangibility. The higher proportion of 

short-term liabilities is consistent with this faster way of obtaining funds when a decrease in 

profitability limits the available liquidity.  

Table 1. Descriptive statistics 

Panel A. Full sample 

  Mean SD Min p25 p50 p75 Max 

Failure 0.011 0.104 0.000 0.000 0.000 0.000 1.000 
ROA 0.0212 0.0778 -0.3164 -0.0013 0.0085 0.0419 0.3640 
LONG_DEBT 0.1678 0.2229 0.0000 0.0000 0.0673 0.2629 0.9716 
SHORT_LIAB 0.3587 0.2986 0.0010 0.1016 0.2814 0.5643 1.1585 
LIQ 2.3102 7.4945 0.0205 0.4377 0.9027 1.5152 80.8130 
TANG 0.5582 0.3042 0.0000 0.2991 0.6013 0.8347 0.9936 
SIZE 14.6752 0.9891 10.6489 14.1111 14.7623 15.3426 16.6063 
ACTIVITY 0.4295 1.9992 -0.8873 -0.0747 0.0568 0.2593 16.8584 
MAX_TEMP 0.6847 1.0645 -1.1713 0.2327 0.5304 0.9291 6.3055 
PRECIPI -6.0202 7.9927 -60.2500 -7.5496 -4.1157 -1.8492 9.7000 
FIRES 47.6449 64.3899 0.0000 8.0000 26.0000 60.0000 380.0000 

Panel B. Healthy firms 

  Mean SD Min p25 p50 p75 Max 

ROA 0.0216 0.0769 -0.3164 -0.0011 0.0087 0.0421 0.3640 
LONG_DEBT 0.1678 0.2226 0.0000 0.0000 0.0678 0.2629 0.9716 
SHORT_LIAB 0.3562 0.2969 0.0010 0.1007 0.2788 0.5607 1.1585 
LIQ 2.3215 7.5300 0.0205 0.4388 0.9035 1.5210 80.8130 
TANG 0.5596 0.3034 0.0000 0.3016 0.6029 0.8349 0.9936 
SIZE 14.6766 0.9865 10.6489 14.1135 14.7622 15.3421 16.6063 
ACTIVITY 0.4278 1.9888 -0.8873 -0.0733 0.0578 0.2596 16.8584 
MAX_TEMP 0.6827 1.0633 -1.1713 0.2327 0.5299 0.9291 6.3055 
PRECIPI -6.0400 8.0090 -60.2500 -7.5496 -4.1157 -1.8492 9.7000 
FIRES 47.5267 64.1762 0.0000 8.0000 26.0000 60.0000 380.0000 

Panel C. Failed firms 

  Mean SD Min p25 p50 p75 Max 

ROA -0.0210 0.1331 -0.3164 -0.0498 0.0000 0.0165 0.3640 
LONG_DEBT 0.1638 0.2510 0.0000 0.0000 0.0138 0.2569 0.9716 
SHORT_LIAB 0.5850 0.3567 0.0010 0.2717 0.5883 0.8839 1.1585 
LIQ 1.2852 2.6463 0.0205 0.3143 0.8160 1.1229 27.3173 
TANG 0.4309 0.3486 0.0000 0.0921 0.3524 0.7789 0.9936 
SIZE 14.5524 1.1924 10.6489 13.8580 14.7861 15.4020 16.6063 
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ACTIVITY 0.5810 2.7830 -0.8873 -0.2233 -0.0084 0.2367 16.8584 
MAX_TEMP 0.8627 1.1535 -1.1713 0.3407 0.6346 1.1944 6.3055 
PRECIPI -4.2346 6.1069 -60.2500 -5.2185 -3.2000 -1.3226 9.7000 
FIRES 58.3079 80.8164 0.0000 7.5000 29.0000 63.0000 380.0000 

Notes. The variables' definitions are reported in the Appendix.  

Figure 1 reports the mean values of the climate factors used by the firm's category of financial 

health. In all cases, failed firms are located in areas that suffered severe climate conditions, 

indicating a negative effect of these extreme climate events (rainfall anomalies, anomalies in 

maximum temperatures, and the number of fires around the firm) on the firm's financial health. 

Figure 1. Climate variables by firm's financial health 

 
Notes. The variables' definitions are reported in the Appendix.  

 

Table 2 presents a correlation analysis considering the full sample, healthy firms, and failed firms 

(Panels A, B, and C, respectively).4 All four extreme climatic events show a significant correlation 

with failure (in the full sample), and the positive signs for temperature, precipitation, and fire 

support the results shown in Figure 1. The negative correlations between extreme precipitation 

and fire with tangibility and size are consistent with the deterioration/destruction of firm 

resources. 

 
4 In untabulated results we obtain values lower than two for the Variance Inflation Factor (VIF) in all 

models, indicating the absence of multicollinearity between the studied variables. 
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 Table 2. Correlation analysis 

Panel A. Full sample 

 Failure ROA LONG_DEBT SHORT_LIAB LIQ TANG SIZE ACTIVITY MAX_TEMP PRECIPI WIND FIRES 

Failure 1            
ROA -0.0570* 1           
LONG_DEBT -0.0018 -0.0783* 1          
SHORT_LIAB 0.0798* -0.1151* -0.2590* 1         
LIQ -0.0144* 0.0130* -0.1719* -0.2192* 1        
TANG -0.0440* -0.1811* 0.2034* -0.4813* -0.0668* 1       
SIZE -0.0131* -0.1415* 0.0541* -0.3182* 0.0597* 0.4106* 1      
ACTIVITY 0.0080 0.0300* 0.0216* 0.0154* 0.0195* 0.0328* -0.0546* 1     
MAX_TEMP 0.0176* -0.0284* -0.1221* 0.0687* 0.0115* -0.0080 0.0389* 0.0005 1    
PRECIPI 0.0235* -0.0145* -0.1184* 0.0955* 0.0158* -0.0762* -0.0172* -0.0059 0.2191* 1   
WIND -0.0139* 0.0156* 0.1098* -0.0636* -0.0060 0.0589* 0.0066  0.0068 -0.1399* -0.0710* 1  
FIRES 0.0174* -0.0018 0.0012 0.0740* -0.0133* -0.0785* -0.0902* 0.0106 -0.1059* -0.1052* -0.0561* 1 

Panel B. Healthy firms 

 ROA LONG_DEBT SHORT_DEBT LIQ TANG SIZE ACTIVITY MAX_TEMP PRECIPI WIND FIRES 

ROA 1           
LONG_DEBT -0.0781* 1          
SHORT_LIAB -0.1053* -0.2585* 1         
LIQ 0.0107 -0.1725* -0.2193* 1        
TANG -0.1858* 0.2032* -0.4819* -0.0670* 1       
SIZE -0.1436* 0.0519* -0.3192* 0.0603* 0.4093* 1      
ACTIVITY 0.0294* 0.0232* 0.0155* 0.0188* 0.0354* -0.0528* 1     
MAX_TEMP -0.0268* -0.1213* 0.0675* 0.0117* -0.0078 0.0398* 0.0007  1    
PRECIPI -0.0136* -0.1183* 0.0943* 0.0162* -0.0760* -0.0168* -0.0061  0.2192* 1   
WIND 0.0174* 0.1111* -0.0628* -0.0062 0.0580* 0.0055 0.0076  -0.1407* -0.0701* 1  
FIRES -0.0003 0.0010 0.0731* -0.0132* -0.0785* -0.0895* 0.0081  -0.1072* -0.1068* -0.0558* 1 
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Panel C. Failed firms 

 ROA LONG_DEBT SHORT_LIAB LIQ TANG SIZE ACTIVITY MAX_TEMP PRECIPI WIND FIRES 

ROA 1           

LONG_DEBT -0.1071 1          

SHORT_LIAB -0.3696* -0.3384* 1         

LIQ 0.2561* -0.1901* -0.3031* 1        

TANG -0.1233* 0.2209* -0.3437* -0.2453* 1       

SIZE -0.1035 0.1987* -0.2550* -0.0672 0.4825* 1      

ACTIVITY 0.0755 -0.0643 -0.0219 0.1881* -0.0895 -0.1464* 1     

MAX_TEMP -0.0595 -0.1774* 0.0733 0.0278 0.0310 -0.0006 -0.0198  1    

PRECIPI 0.0120 -0.1355* 0.0716 0.0054 -0.0124 -0.0334 -0.0077  0.1891* 1   

WIND -0.1466* -0.0110 -0.0654 -0.0054 0.0949 0.0922 -0.0446  -0.0408 -0.1612* 1  
FIRES -0.0219 0.0173 0.0592 -0.0023 -0.0363 -0.1191* 0.1327* -0.0434 -0.0109 -0.0676 1 

Notes. The variables' definitions are reported in the Appendix.  
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4.2. Empirical results 

Table 3 presents the results of the logit regressions used to derive the probability of agricultural 

firm bankruptcy or insolvency based on firm-specific financial variables and geography-specific 

climate risk factors. The first column shows the results for the baseline model, which only 

includes well-known financial inductors with effects on firm bankruptcy that have been 

contrasted in the literature. The next five columns show the results after adding climate risk 

factors. Extremely high temperatures are added in column 2, extreme precipitation in column 3, 

and fires in column 4; all four positively and significantly affect the probability of firm 

bankruptcy. These results align with the damage/destruction of relevant resources from 

extreme climate events (resource-based theory) and with scarce previous findings on the 

adverse effects of high temperatures and fire danger on European agriculture (Lavalle et al., 

2009). 

Table 3. The effects of climate change on business failure 

  (1) (2) (3) (4) (5) (6) 

ROA -4.614*** -4.606*** -4.606*** -4.632*** -4.631*** -4.389*** 

 [0.637] [0.638] [0.639] [0.639] [0.641] [0.657] 
LONG_DEBT 1.010*** 1.073*** 1.121*** 1.003*** 1.163*** 1.065*** 

 [0.281] [0.282] [0.282] [0.281] [0.282] [0.290] 
SHORT_LIAB 1.887*** 1.875*** 1.854*** 1.873*** 1.823*** 1.818*** 

 [0.229] [0.229] [0.230] [0.229] [0.231] [0.236] 
LIQ -0.00544 -0.00527 -0.00533 -0.00540 -0.00511 -0.00769 

 [0.0140] [0.0139] [0.0139] [0.0140] [0.0138] [0.0153] 
TANG -0.936*** -0.929*** -0.881*** -0.917*** -0.852*** -0.858*** 

 [0.217] [0.217] [0.218] [0.218] [0.218] [0.222] 
SIZE 0.169*** 0.162*** 0.165*** 0.175*** 0.166*** 0.155*** 

 [0.0576] [0.0576] [0.0577] [0.0577] [0.0578] [0.0586] 
ACTIVITIY 0.0319 0.0320 0.0324 0.0311 0.0313 0.0193 

 [0.0229] [0.0229] [0.0229] [0.0230] [0.0229] [0.0249] 
MAX_TEMP  0.0992**   0.0769*  

  [0.0434]   [0.0460]  
PRECIPI   0.0321***  0.0317***  

   [0.0104]  [0.0108]  
FIRES    0.00133* 0.00174** 0.00172** 

    [0.000735] [0.000735] [0.000763] 
CLIMATE_INDEX      -0.0378 

      [0.0745] 
FIRES*CLIMATE_ INDEX      0.00330** 

      [0.00133] 
Constant -7.550*** -7.534*** -7.353*** -7.701*** -7.539*** -7.442*** 

 [0.856] [0.855] [0.861] [0.861] [0.863] [0.873]        
Observations 29,938 29,938 29,938 29,938 29,938 29,052 
Pseudo R2 0.0691 0.0704 0.0723 0.0699 0.0743 0.0697 

Wald Test (Chi sq) 269.3 5.218 9.539 3.258 17.40 18.21 
Wald p-value 0.000 0.0224 0.00201 0.0711 0.000584 0.000398 
Lagrange-multiplier 
(Score) Test 285.9 5.253 9.168 3.272 17.08 18.65 
LM (Score) p-value 0.000 0.0219 0.00246 0.0705 0.000680 0.000323 
ROC 0.706 0.708 0.713 0.707 0.714 0.707 
LR Test  4.680 11.64 3.019 18.94 104.1 
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LR p-value   0.0305 0.000647 0.0823 0.000281 0.000 
Notes. The variables' definitions are reported in the Appendix.  

Our results for extreme rainfall are also consistent with those of Calabrese et al. (2021) for heavy 

rainfall events. Column 5 shows that all three factors maintain their significant effects when 

jointly incorporated into the model. In column 6, we test the encouraging effect of a "fire 

weather" index to the simple existence of fires close to firms, confirming the relevant role of 

weather conditions on the incidence of this catastrophe (whether ignited naturally or human-

induced), the amplifying effect of combining several climatic factors (IPCC, 2021; Sutanto et al., 

2020), and the importance of including wildfires (or just fires) as climate-related physical risks in 

the aggravating process derived from climate change in southern Europe (Lavalle et al., 2009). 

5. Robustness analyses 

To address reverse causality, in Table 4, we present the results obtained by estimating an 

instrumental variable ordinary least squares (OLS) model that resembles the conventional use 

of two-step least squares (2SLS). The first four columns show similar results, supporting the 

validity of our conclusions. However, in this approach, we also consider instrumental variables 

to study the effect of the number of fires on business failure (column 5). Specifically, we select 

anomalies in the maximum temperature, anomalies in the mean wind speed, and a proxy of 

droughts as instruments. The results indicate that if the number of fires is explained by climate 

variables that act as fire inductors, the positive effect of fires on business failures is stronger.5 

Table 4. The effects of climate change on business failure. Two-step least squares 

  (1) (2) (3) (4) (5) 

ROA -0.0690*** -0.0687*** -0.0686*** -0.0681*** -0.0632*** 

 [0.0082] [0.0082] [0.0082] [0.0082] [0.0083] 
LONG_DEBT 0.0080*** 0.0087*** 0.0087*** 0.0092*** 0.0071** 

 [0.0029] [0.0029] [0.0029] [0.0029] [0.0030] 
SHORT_LIAB 0.0238*** 0.0235*** 0.0235*** 0.0231*** 0.0221*** 

 [0.0026] [0.0026] [0.0026] [0.0026] [0.0027] 
LIQ 0.0000 0.0000 0.0000 0.0000 0.0000 

 [0.0001] [0.0001] [0.0001] [0.0001] [0.0001] 
TANG -0.0101*** -0.0102*** -0.0099*** -0.0098*** -0.0086*** 

 [0.0025] [0.0025] [0.0025] [0.0025] [0.0025] 
SIZE 0.0014** 0.0013* 0.0013** 0.0014** 0.0017** 

 [0.0007] [0.0007] [0.0007] [0.0007] [0.0007] 
ACTIVITIY 0.0005* 0.0005* 0.0005* 0.0005* 0.0003 

 [0.0003] [0.0003] [0.0003] [0.0003] [0.0003] 
MAX_TEMP  0.0013**  0.0011*  

  [0.0006]  [0.0006]  
PRECIPI   0.0002*** 0.0002***  

   [0.0001] [0.0001]  
FIRES    0.0000** 0.0001*** 

    [0.0000] [0.0000] 
Constant -0.0122 -0.0120 -0.0106 -0.0129 -0.0229** 

 [0.0101] [0.0100] [0.0101] [0.0101] [0.0108]       
Observations 29,938 29,938 29,938 29,938 29,052 
R-squared 0.0095 0.0097 0.0098 0.0101 0.0058 

 
5 We re-estimate the model by using probit and obtain similar results that support our main hypothesis 

(results available under request). 
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Notes. The variables' definitions are reported in the Appendix.  

Finally, as a robustness test, we check the rank ordering and importance of the variables derived 

from our model by comparing them with the well-established gradient-boosting ensemble 

method (Freund and Schapire, 1996). In machine learning, utilizing an ensemble of distinct 

classifiers has demonstrated enhanced overall model accuracy. Boosting is a technique that 

initially acquires a base classifier from an original dataset, modifies the training dataset 

distribution based on the performance of the base classifier, and subsequently trains the next 

base classifier using an altered sample distribution. This method allocates weights to each 

training set, which can be employed to create a collection of bootstrap samples from the initial 

data. 

Boosting is selected as a benchmark because several studies in the bankruptcy literature use 

ensemble strategies, including boosting, and have corroborated their advantages (Kim and 

Upneja., 2014; Sun et al., 2014; Wang et al., 2012). Furthermore, boosting can give more 

importance to features that contribute more to the classification task and are less prone to 

overfitting than a single and more complex classifier. The importance of the variables in a model 

is measured as the loss in the model's accuracy if a variable is removed from the model, keeping 

the remaining variables constant. Table 5 lists the importance of the variables used in the 

boosting ensemble model. 

Table 5. The effects of climate change on business failure. Boosting model 

 Variable Proposed model Boosting Model 

SHORT_LIAB 1 2 
ROA 2 1 
TANG 3 5 
LONG_DEBT 4 9 
PRECIPI 5 6 
SIZE 6 3 
FIRES 7 8 
MAX_TEMP 8 7 
ACTIVITY 9 4 
LIQ 10 11 
CLIMA 11 10 

Notes. The variables' definitions are reported in the Appendix.  

Overall, the logit/probit and boosting models show relatively similar patterns in ranking 

variables. Although differences are observed in the specific rankings of individual items, the 

overall structure and importance assigned to financial and climatic factors are generally 

consistent between the two methodologies. Only two variables rank differently: long-term debt 

and activity. These results suggest that both model types capture similar aspects of the 

underlying data, and their differences can be attributed to the unique characteristics of each 

method.  

6. Conclusions 

Climate change is the origin of critical effects on natural capital, a significant part of the 

agricultural production process that constitutes a strong dependency on this sector. In southern 

Europe, extreme conditions of climatic factors, such as high temperature, heavy rainfall, or lack 

of it, result in compound extreme events such as droughts and floods. In addition, high 

temperatures, in combination with lack of air humidity, the derived desiccation of soil surface, 
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and strong wind, are called "fire weather" as inductors of fire seriousness. The direct destruction 

of goods and productive tangible assets, together with the deterioration of natural capital (soil 

erosion and difficult access to fresh water), severely affects strategic resources for the 

agricultural business (resource-based theory), producing immediate losses, increased costs, and 

reduced income. The indirect effects come from the reduced market values of non-damaged 

assets (reducing collateral value in credit contracts), higher insurance premiums, reduced gross 

domestic product, and higher rates of unemployment in the damaged area near the agricultural 

firm, as other firms and citizens (potential clients) also suffer losses in physical capital and 

significant expenses due to climate disasters. 

The risks mentioned above are often underestimated. First, the growing progression of physical 

climate risks under climate change makes backward-looking data a poor and optimistic proxy 

for real risk. Second, the low recurrence rate of climatic disasters in the same specific zones 

induces occasional reactive measures instead of incremental adaptation (resilience theory). 

However, this should not be the case for financial firms, such as banks or insurance companies, 

since their area of influence is considerably wider, extending to many firms and clients across 

one or even several countries, implying that financial firms in areas where climatic disasters 

become endemic (chronic risk) will suffer their economic consequences. 

Given the considerations above, this study adopts a lender's perspective to consider climate-

derived physical risk and estimate the probability of bankruptcy of agricultural firms in four 

southern European countries during 2016–2018. We do not address 2019 and 2020, as the 

adverse effects of the COVID-19 pandemic may bias them. Considering their geographical 

proximity to the firm's headquarters, we assign extreme climatic events to firms, as SMEs' assets 

are expected to be concentrated close to and around the head office. For a sample of 15,036 

firms, including 458 officially declared bankruptcy or insolvency, our results show that 

abnormally high temperatures, precipitation, and the incidence of fires are significant factors 

contributing to  bankruptcy or insolvency. Furthermore, a "fire weather" index comprising a 

combination of high temperatures, drought, and wind, in combination with fire occurrence, 

shows an intensifying effect on the bankruptcy risk of agricultural businesses. 

Implications and extension of our study 

Our results demonstrate that underestimated physical climate risks are material and have a 

measurable effect on agricultural firms' bankruptcy and/or insolvency. The main implications for 

managers, investors, creditors, insurers, and policymakers emanate from the need to include 

time and geography as relevant factors in the climate change transition (Nyberg et al., 2022). 

Both financial systems and public administrations are final contributors of funds to help societies 

and productive agents cope with the effects of climate physical disasters, thus playing a critical 

role in climate change adaptation (Dennis, 2022; Forino and Von Meding, 2021) but also 

suffering economic consequences in their accounts, compromising the financial system and the 

states financial stability (Klusak et al., 2021) in the most dramatic cases. In line with the UNEP FI 

(2002) recommendations, coordinated policies are urgently required in key climate-related 

zones, and our study suggests concerns for southern Europe with respect to the agricultural 

sector. 

Financial firms, mainly banks and insurance companies, can obtain an additional tool to quantify 

the incidence of physical climate-derived disasters in agricultural businesses; hence, they can 

derive probabilities and price the potential impacts of physical climate risks on firms' 

performance, with substantial influence on their loans and insurance terms. Knowledge of 
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industry-wide incidence can help design institutional policies to prompt firms to develop 

attributes for adapting production to climate physical impacts (Linnenluecke et al., 2013), and 

climate change adaptation is a relevant contribution to community resilience (McKnight and 

Linnenluecke, 2019) 

Future extensions of this work can incorporate expectations for specific geographical areas 

regarding the evolution of climatic factors triggering physical climate disasters according to 

scientific medium- and long-term estimations. 
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APPENDIX  

List of variables 

ROA Net income to total assets 

LONG_DEBT Long-term financial debt to total assets 

SHORT_LIAB Short-term liabilities to total assets 

LIQ Current assets to current liabilities 

TANG Fixed assets to total assets 

SIZE Log of total assets 

ACTIVITY Sales growth 

MAX_TEMP Anomalies in the maximum value of temperature observed in the last 3650 
days compared with historical available data 

PRECI Anomalies in the maximum value of precipitations observed in the last 365 
days compared with historical available data 

FIRES Number of fires in the last 1865 days in less than 100 km of the firm location 

DROUGHT Equals one if the mean value of the rain for April, May, June, July, August, and 
September is below the first tercile of the average rainfall for the year and 
zero otherwise  

WIND Anomalies in the mean speed of wind observed in the last 1825 days 
compared with historically available data 

 


