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Abstract

The most common methods for studying the comovement of assets hinge on correlation-based measures.

Given the mounting criticism of correlation-based models in the factor investing literature, we use causal

discovery algorithms to revisit three salient investment applications through the lens of novel causal network

representations. First, we benchmark causality-based peer groups in the context of industry neutraliza-

tion of long-short investment strategies, finding that they often outperform correlation-based or industry

peer groups from a Sharpe ratio perspective. However, industry peer groups remain important from a

volatility reduction perspective. Second, we build a long-short equity factor guided by stocks’ centrality

in the causal network. We characterize peripheral stocks as potential hedges against value, whilst central

stocks tend to be larger, value companies. Finally, we explore market timing of the S&P 500 using a causal

network density indicator as a gauge for systematic risk and market resilience. Indeed, a shrinking network

density predicts negative market returns and exhibits return predictability with an out-of-sample R2 of

0.55%. Although causal networks thus provide novel insights in factor investing, their implementation calls for

cautious pioneering as they bring about computational complexity and render interpretability more challenging.
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1 Introduction

The seminal work of Mantegna (1999) envisioned financial markets as highly complex

networks and demonstrated that representations, other than the covariance matrix, can be of

economic importance. Network measures and graph invariants that had long been available

to network scientists have since been applied extensively to financial networks to gain further

insight into their functioning.1 Despite the revolutionary nature of Mantegna’s (1999) work,

the corresponding network formulation may not fully be seen as an accurate representation

of the true financial network. The foremost concern is the usage of the correlation coefficient,

which is considered to be a poor measure of comovement (Li, 1990). In the context of financial

markets, and particularly factor investing, the correlation coefficient does not condition on

anything and is susceptible to spurious association (Simon, 1954). López de Prado (2023)

argues that these associational claims have led to significant overfitting and false discoveries

in the factor investing and asset pricing literatures. In this paper, we apply causal discovery

algorithms to create causal network representations of the S&P 500 investment universe and

leverage these representations for three investment applications. Through these applications,

we demonstrate the potential value-add and current limitations of causal discovery algorithms

in factor investing.

Causal discovery algorithms aim to learn causal relationships based on observational data.

A critical component of these algorithms is their support for a broad range of comovement

patterns. These methods look beyond simple statistical association, and instead condition on

all available data, allow for lead-lag relations, and determine the directionality of comovement

(Jiang et al., 2018). Although causal discovery algorithms have been popularized in fields

outside finance, such as biology and neuroscience (Spirtes and Zhang, 2016), they remain

underutilized in the study and practice of finance. We assess the economic value of causal

discovery algorithms and their associated network representation via three investment ap-

plications. First, we choose a representative causal discovery algorithm, the DYNOTEARS

approach of (Pamfil et al., 2020). DYNOTEARS is a score-based causal algorithm which can

1See for example Bonanno et al. (2003, 2004); Pozzi et al. (2007); Matteo et al. (2010); Buraschi and Porchia
(2012); Ahern (2013); Gao et al. (2013); Haldane (2013); Pozzi et al. (2013); Papenbrock and Schwendner
(2015); Bianchi et al. (2015); Kaya (2015); Peralta and Zareei (2016).
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estimate both contemporaneous and time-lagged relationships between given observations

(e.g., stock returns), and hence may provide richer insights into the comovement patterns of

stocks.

We apply these resulting networks to three investment applications using data on the S&P

500 constituents from 1990 to 2023. First, we utilize the estimated causal financial network

to create causality-based peer group clusters for the purpose of industry-neutralization in

the context of long-short equity strategies. Industry-neutralized strategies avoid the industry

bias present in some firm characteristics by diversifying over these industries. To evaluate the

industry-neutralization ability of the causality-based clusters, we construct and assess the

performance of industry-neutralized long-short portfolios for a variety of stock characteristics.

We compare the industry-neutralization ability of the DYNOTEARS classification scheme

against a standard classification scheme, the Global Industry Classification Standard (GICS),

and a statistical correlation-based clustering approach. We find that at both one-month and

twelve-month holding periods, the causality-based peer groups generally outperform their

comparison methods from a Sharpe ratio perspective. However, from a volatility reduction

perspective, the incumbent GICS is difficult to beat.

In the second investment application, we investigate the role of centrality in financial

networks. To this end, we construct long-short portfolios based on the centrality scores of

stocks, where we buy peripheral stocks and sell central stocks. To characterize centrality

in terms of common equity factors, we use spanning regressions based on Fama and French

(1993) and Hou et al. (2021). Standalone, the long-short centrality factor yields mixed

results and is highly dependent on the business cycle. However, judging from spanning

regression results, this centrality factor emerges as a potential hedge against value factors,

delivering significant alpha (4% to 6% annualized) on top of extant factor models. However,

the relationship between centrality and value also appears to be time-varying, thus giving

pause to its reliability as a constant value hedge. Lastly, we propose a novel market timing

indicator, based on the density of the network topology. We evaluate its in-sample and

out-of-sample return predictability, as well as its economic relevance. We find an in-sample

R2 of 0.75% and an out-of-sample R2 of 0.55%, and this predictability of the centrality timing

indicator is not explained by well-known macroeconomic or technical indicators (Welch and
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Goyal, 2008; Campbell and Thompson, 2008; Neely et al., 2014; Hammerschmid and Lohre,

2018).

We contribute to several streams of literature. The foundation of our research is most

closely related to the literature on financial networks, particularly the application of novel

techniques to build alternate financial network representations. Pamfil et al. (2020), who

propose the DYNOTEARS causal discovery algorithm, apply the technique to returns of

S&P 100 companies. They find that whilst the resulting representation is like a sector-

based approach, there are important differences, such as the connection between Amazon (a

Consumer Discretionary company) and many technology stocks (such as Facebook, Google,

and Microsoft). We extend upon this work by using a richer S&P 500 dataset and extending the

application of the causal network representations to real investment applications. Proposing

a causal discovery-based representation of a financial network for clustering of alternate

peer groups, we further contribute to the literature which subsequently applies clustering

algorithms to financial network representations (López de Prado, 2016; Konstantinov et al.,

2020; Tristan and Ong, 2021; French, 2023).

By applying causal discovery algorithms to stock returns, we illustrate the novelty of

these causal algorithm approaches over extant correlation-based approaches. In our industry-

neutralization investment application, we first use causal discovery algorithms to produce

alternate peer groups of stocks. We are among the first to compare the industry-neutralization

ability of this novel industry classification scheme against the industry-neutralization ability

of standard classification schemes such as GICS and correlation-based approaches. We further

demonstrate the insights that a causality-based representation of financial networks offers by

extracting centrality-based information from this representation. As a result, we are able to

characterize the factor-based characteristics of central and peripheral stocks in the S&P 500,

as well as propose a market timing indicator which is orthogonal to existing indicators.

The remainder of this paper is structured as follows. Section 2 lays the foundation of

causal discovery algorithms in the context of financial markets. Section 3 presents each

investment application, with a brief introduction, methodology, and empirical results. Section

4 then concludes.
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2 Causal network estimation

The existing literature on causal algorithms can be ambiguous in its terminology, as it

encompasses both causal discovery and causal inference. The former focuses on estimating a

causal network from observational data, whilst the latter focuses on estimating the causal

effect of an intervention via do-calculus (Pearl, 2010). As our goal is to model a causal

network of stocks rather than the causal effect of interventions, we restrict our presentation

of causal algorithms to causal discovery algorithms.

2.1 Financial peer groups

To motivate our exploration of causal networks, we explore the notion of a stock peer

group. A peer group is supposed to consist of companies that are similar or homogeneous in

some sense. Due to the myriad of ways to measure company similarity, there are numerous

peer group identification schemes. These identification schemes can be broadly divided into

two classes: Industry Classification Schemes (ICS) and Algorithmic Classification Schemes

(ACS). Notable examples of ICS include the Standard Industrial Classification (SIC), the

North American Industry Classification System (NAICS), or the Fama-French industries

(Fama and French, 1997). Arguably the most popular classification scheme for financial

practitioners is the Global Industry Classification Standard (GICS). Developed in 1999 by

S&P and MSCI, GICS was targeted towards the investment community and has since then

been adopted by many financial institutions (Phillips and Ormsby, 2016). The widespread

adoption of GICS can be explained by its desirable properties. Bhojraj et al. (2003) show

that GICS outperforms SIC, NAICS and the Fama-French industries in explaining cross-

sectional variations in out-of-sample returns and firm-level characteristics. Furthermore,

the classification is reviewed annually and feedback from stakeholders is taken into account

during this review, ensuring that GICS accurately reflects the ever-changing market structure

(Phillips and Ormsby, 2016).

Yet, there are also limitations to the GICS scheme. First, GICS is fairly static in nature

(Costa and De Angelis, 2011), as classification changes often take more than a year to

materialize. Hence, investors relying on GICS are potentially acting on outdated information.
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Figure 1 presents an example thereof this lag. The top figure shows the S&P 500 constituents

and their associated GICS membership (by color) as of November 4th, 2015. The spatial

clustering of the figure is a result of applying a causality-based ACS (the details not being

important here). Generally, we observe that the causal clustering agrees with the GICS

classifications, except for the highlighted Financial sector (in green), where we observe two

distinct clusters. If we then observe the bottom figure, which is the same information as of

October 3, 2016, we see that one of the separate Financial clusters was reclassified as Real

Estate. Thus, the causal based ACS identified, at least a year in advance of GICS, that the

Real Estate sector was distinct from the Financial sector, at least from a returns perspective.

<Insert Figure 1 about here>

A second limitation is that GICS is fixated on the end-product to determine company

similarity (Phillips and Ormsby, 2016), and thus neglects similarity stemming from the supply

chain. In contrast, ACS aim to quickly respond to market changes and do not (solely) take

the end-product of a company into account for computing company similarity. Many of these

ACS are inspired by the seminal work of Mantegna (1999) and as such cluster on the basis of

return correlation.2 However, the efficacy of these correlation-based ACS has been questioned

by Chan et al. (2007), who find that statistical clustering methods are outperformed by

GICS in their ability to capture out-of-sample return covariation. Vermorken et al. (2010)

argue that the non-Gaussian nature of stock returns might cause correlation-based ACS to

be less accurate.3 Unfortunately, their argument does not give any insight into how this issue

distorts the estimation of clusters. In the absence of such a mechanism, it becomes difficult

to hypothesize about the improvements other ACS could offer.

We posit three mechanisms that detail how the undesirable properties of the correlation

measure distort the estimation of clusters. First, the symmetry of the correlation measure

causes suppliers and their clients to be clustered together. As an example, food producers

in the Consumer Staples sector have spillover effects on restaurants, fast-food chains, and

hotels in the Consumer Discretionary sector. The substantial correlation resulting from these

2For some examples, see Onnela et al. (2003) and Musmeci et al. (2015).
3Markowitz and Usmen (1996a, 1996b) provide some evidence that daily log-returns in the S&P 500 follow a
Student’s t-distribution rather than a normal distribution.
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spillover effects will likely cause these companies to be clustered together in correlation-based

ACS. In asymmetric approaches, food producers are clearly distinct from their clients because

there is only one-way traffic. Second, the unconditioned nature of the correlation measure

causes clients of the same supplier to be clustered together. For instance, producers of

microchip (machines) have clients in different sectors such as Health Care, Information

Technology, and Communication Services. The pairwise correlations between members of

these sectors will increase when shocks occur to these producers because they all suffer from

spillover effects. This increase in correlation depends to an extent on the frequency and

magnitude of these shocks. Therefore, members of these sectors could be clustered together

due to the spurious correlation (Simon, 1954) originating from shared suppliers. In causal

discovery algorithms, this issue is non-existent because spurious association does not affect

the similarity measure. Based on these two mechanisms, it is clear that correlation-based

ACS will sometimes group stocks together that should not be grouped together. We will refer

to these two mechanisms and the associated conclusion as the “apples and oranges” narrative.

2.2 Causal network framework

The theoretical framework underlying causal algorithms is quite extensive. It contains

elements and assumptions that are often not utilized by modern methods. As such, we limit

the exposition to a concise explanation of the most-used elements. The most fundamental

notion within this framework is that of Bayesian Networks (BNs). Pearl (1985) details that

a given Directed Acyclic Graph (DAG), over a set of p random variables X, constitutes a

Bayesian Network if:

P (X) =

p∏
i=1

P (Xi|Pa(Xi)), (1)

where Pa(Z) denotes the parents of node Z. This equation expresses that each random

variable Xi only depends on its direct parents Pa(Xi) and is independent of other variables.

This condition is also referred to as the local Markov condition. An additional assumption

that can be made is the faithfulness assumption. This assumption states that for a DAG D,

a distribution P is called faithful w.r.t.D IFF all conditional independences are encoded by
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D (Spirtes et al., 2000). An equivalent formulation of this assumption can be constructed via

the concept of d-separation. In a DAG G, sets of nodes X and Y are d-separated by the set

Z, if Z is blocking all paths between X and Y .4

In practice, a stronger variant of the faithfulness assumption is applied. The rigorous

definition (Zhang and Spirtes, 2002) of strong faithfulness, in the Gaussian case, is as follows:

for a DAG D = (V,E), a Gaussian distribution P is called λ-strongly faithful w.r.t. D if:

min{| corr(Xi, Xj|XS) |, j not d-separated from i | S, ∀i, j, S} > λ,

where λ ∈ (0, 1), i, j ∈ V and S ⊂ V \ {i, j}. Essentially, this assumption dictates that (sets

of) variables that are d-connected in the underlying DAG should have this association reflected

in the data above a certain threshold. Uhler et al. (2013) argue that this requirement is a

rather restrictive condition for most DAGs. When this assumption does not hold, some causal

algorithms produce inconsistent estimates.5 Thus, algorithms that rely on this assumption

are less credible.

It is precisely this assumption that constitutes a major difference between the two main

classes of causal algorithms: constraint-based and score-based algorithms. Constraint-based

algorithms employ a conditional independence test to form a causal graph, whilst score-based

algorithms iterate over all possible DAGs and select the best-scoring DAG. An example of

a score function is the Bayesian Information Criterion (BIC). Most of the constraint-based

algorithms, such as the PC algorithm, rely on the strong faithfulness assumption for their

consistency. In contrast, most score-based algorithms, e.g., Van de Geer and Bühlmann

(2013), do not rely on the (strong) faithfulness assumption.

Regular Bayesian Networks do not take the temporal dimension into account. They

assume that the observations stem from one point in time and thus have no sequential

ordering. The class of BNs that allow for a sequential ordering of the data are referred

to as Dynamic Bayesian Networks (DBNs). In DBNs, not only the variables themselves

are included in the network, but also their lags up to some order k. The edges connecting

4The equivalent formulation reads: a DAG G satisfies the faithfulness assumption if for every X, Y , Z, if X
and Y are conditionally independent given Z then Z d-separates X and Y.

5In this context, consistency means that the estimated graph Ĝn converges to the true graph G as n→∞.
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variables from different periods are called inter-slice edges, whilst edges connecting variables

in the same period are called intra-slice edges.

2.3 Causal discovery algorithms

A well-known example of a constraint-based algorithm is the PC (Peter-Clark) algorithm

(Spirtes et al., 2000). The PC algorithm begins with the so-called skeleton estimation phase,

wherein it prunes a fully connected undirected graph based on a conditional independence

test. The edge between node A and B is removed, if A and B are found to be independent,

conditioning on a set of nodes C. In the orientation phase, the PC algorithm assigns directions

to the edges based on a set of rules.

Unfortunately, the feasibility of the PC algorithm for modeling financial markets is

severely limited. As with most constraint-based methods, the run time of the PC algorithm is

exponential to the number of nodes, which makes it unsuitable for high-dimensional financial

data. Moreover, the PC algorithm assumes causal sufficiency, meaning that all common

drivers are assumed to be included in the observed data. This assumption is challenging in the

context of financial markets due to its factor structure, yet, in the absence of this assumption,

one cannot guarantee the consistency of the PC algorithm. These limitations illustrate the

immense difficulty the literature has had in effectively adopting (constraint-based) causal

algorithms in the context of financial markets.

Recent advances in score-based methods have enabled practitioners to use them for

high-dimensional financial data. The run time of score-based methods used to be a challenge

given the acyclicity constraint on the optimization problem. This constraint renders the

optimization problem a Combinatorial Optimization Problem (COP), and it is generally

infeasible to exhaustively search the solution space of a COP (Korte et al., 2011). The

seminal work of Zheng et al. (2018) reformulated the acyclicity constraint to be smooth,

continuous, and exact. The authors named this reformulation NOTEARS which stands

for Non-combinatorial Optimization via Trace Exponential and Augmented Lagrangian for

Structure earning. The crucial benefit of NOTEARS is that standard solvers such as L-BFGS-

B (Byrd et al., 1995; Zhu et al., 1997) can be applied, making score-based methods more

tractable.
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Several papers have extended the methodology of Zheng et al. (2018), with notable

examples including DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al., 2023),

and GraphNOTEARS (Fan et al., 2023). The DYNOTEARS method uses NOTEARS for

estimating a Dynamic Bayesian Network, and this network can be formulated as a structural

vector autoregressive (SVAR) model:

X = XW + Y1A1 + ...+ ApYp + Z, (2)

where p is the autoregressive order, the Yi are time-lagged versions of X, and Z are the

errors. For the resulting DBN to be acyclic, only the intra-slice weights W need to be acyclic,

necessitating all diagonal entries of W to be zero. The Ai are inherently acyclic as they

point forward in time and thus cannot create cycles.

2.4 Estimation method

For estimating the causal financial networks, we opt for the DYNOTEARS method. The

benefit of this method is that the underlying NOTEARS technique makes it feasible for

our high-dimensional dataset, unlike many of the other methods available in the literature.

Furthermore, Pamfil et al. (2020) show that DYNOTEARS outperforms other causal discovery

algorithms in retrieving the causal structure of simulated datasets and the DREAM4 (Marbach

et al., 2009) datasets.

Before detailing our implementation of this method, we first provide a rigorous model

specification. Two important components of this model specification are the identification and

the regularization scheme. Typically, the identifiability of SVAR models is not guaranteed.

However, Pamfil et al. (2020) argue that the parameters of this model are identified in two

special cases. Both of these cases rely to some extent on the acyclicity of the contemporaneous

effects W. First, when the errors Z are standard normal variables, the identifiability follows

from Peters and Bühlmann (2014).6 They prove that linear Gaussian structural equation

models, which correspond to a DAG, are fully identified if the errors have equal variance.

Second, when the errors Z are independent non-Gaussian variables, the identifiability follows

6For the origin of the parameters W and Z, we refer the reader to Eq. (2).
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from Hyvärinen et al. (2010). They show that non-Gaussian models generally cannot produce

a unique ordering of the components. However, by assuming the acyclicity of W, they show

that a unique ordering can be found. For the identifiability of the DYNOTEARS model, we

assume that one of these cases applies. As to the regularization scheme, Pamfil et al. (2020)

apply L1 (LASSO) regularization to both the intra-slice and the inter-slice weights, ensuring

that the estimated DBN is sufficiently sparse.

Having detailed the model specification, we now discuss our model implementation choices.

First, we set the number of lags p to zero, and thus estimate the causal effect of stock i on

stock j as the intra-slice weight ŵij.
7 This choice follows from the weak form of the Efficient

Market Hypothesis (Fama, 1970), which posits that the market is efficient to all information

contained in historical prices. Second, we apply a log transformation to the stock returns and

normalize the resulting log returns to have a mean of zero, and a variance of one. Without

this normalization, the regularization scheme would cause the method to prefer low-variance

stocks over high-variance stocks. Third, we use a sliding window approach to allow for a

time-varying network. We set the window size to four years and the window increment to

one month. This window size is roughly in line with Pamfil et al. (2020) in their descriptive

analysis of the S&P 100. Fourth, due to the computational burden of this method, it is

infeasible to tune the regularization parameter λW. Therefore, we set λW to 0.1 which is

in line with Pamfil et al. (2020), who calibrate this parameter via a grid search approach.

These implementation choices yield the final optimization problem:

min
W

1

2n
‖X−XW‖F + λW ‖W‖1 s.t. W is acyclic, (3)

where X are the normalized log returns, 1
2n
‖X−XW‖F is the least-squares loss, and λW is

the L1 regularization parameter.

7Notably, the intra-slice weights constitute a DAG G. This graph representation will be essential for our
investment applications.
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3 Causal network applications in portfolio management

In this section, we introduce and discuss the results of the causal network investment

applications. First, we compare the performance of several classification schemes for the

purpose of industry-neutralization when constructing long-short investment strategies. Sub-

sequently, we evaluate the economic value of stock centrality by creating a centrality factor

derived from a causal network representation of stock returns. Lastly, we assess the return

predictability of a causal network density-based market timing indicator.

In our empirical analysis, we use constituents of the S&P 500 index as a representative

universe to build causal networks over. We source daily and monthly stock and index returns

from Refinitiv Datastream for the period of December 1989 to December 2022. We source

fundamental and company information data from S&P Compustat. Our results run from

January 1993 to December 2022, because the first three years of return data are used to

calibrate any models. We follow our previously described methodology to estimate the

DYNOTEARS causal network over the S&P 500 constituents, and we then subsequently

use the Node2Vec algorithm to translate this causal network representation into clusters of

stocks. Further detail is given in the Online Appendix.

3.1 Industry neutralization

Our first investment application of financial networks is to provide peer groups for

industry-neutralization. In the analytical framework of Ehsani et al. (2023), the predictive

power of firm characteristics can be split into two components: an across-industry component

and a within-industry component. They show analytically and empirically that long-short

portfolios generally benefit from sector-neutralization (i.e., removing the across-industry

component).8 The reason that the across-industry component often does not carry a premium

compared to the within-industry component is well-illustrated by Vyas and van Baren (2021).

They find that some equity factors suffer from unpriced industry exposure due to industry

tilts. That is, the industry composition of the tail distribution, for a given firm characteristic

8Note that we use the terms industry-neutralization and sector-neutralization interchangeably.
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(e.g., Book-to-Price ratio), can be highly homogeneous. An example of this homogeneity can

be found in Blitz and Hanauer (2020) who show that the value factor displays major industry

bias in favor of the Utilities sector, and thus incurs unnecessary risk. In addition, they find

that the value factor is systematically short in sectors that have a large amount of intangible

assets, e.g., the Information Technology sector. In fact, Asness et al. (2000), Bender et al.

(2019), and Cohen and Polk (1996) all show that most, if not all, value characteristics suffer

from unrewarded industry exposure. In this application, we investigate the potential of ACS

in the context of industry-neutralization, with a specific focus on causality-based ACS.

3.1.1 Methodology

To study the efficacy of different peer groups in the context of industry neutralization

of long-short portfolios, we take twelve well-known firm characteristics: twelve-minus-one

month momentum, one month reversal, beta using sixty months of returns, book-to-price,

cash-to-assets, earnings-to-price, EBITDA-to-EV, one-year forward earnings-to-price, gross

profitability-to-assets, residual twelve-minus-one month momentum (Blitz et al., 2011), and

return on equity.9 For each characteristic and each different classification scheme, we form

long-short portfolios within each peer group/industry. At a given time t and for a given

classification scheme, we generate a ranking of stocks, in each cluster, based on a characteristic,

and go long in the top 20% and go short in the bottom 20%.10 That is, within each cluster,

we apply a quintile long-short strategy. Furthermore, we employ monthly rebalancing to these

long-short portfolios. We report results for both equal-weighted (EW) and value-weighted

(VW) portfolios with a one-month holding period and twelve-month holding period (following

the overlapping portfolio approach of Jegadeesh and Titman (1993)). As a benchmark, we

include a trading strategy that does not use industry-neutralization. This benchmark strategy

generates a ranking, based on a given characteristic, over all stocks, and produces a quintile

long-short strategy using this ranking.

We compare the performance of industry-neutralized trading strategies based on GICS,

9For 1M reversal and beta 60M, we flip the sign of the characteristic (i.e., low values are associated with high
expected returns). Financial ratios are all estimated using the most recently available data as at the end of
each month.

10Additionally for beta 60M we follow Blitz, van Vliet, and Baltussen (2020) and make the portfolio beta
neutral by ensuring the beta of the long leg and short legs have full-sample market betas of one.
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DYNOTEARS, and statistical clustering (SC). DYNOTEARS clusters are provided by the

method described in Section 3.1, and thus we require a representative clustering method for

the SC strategy. We apply hierarchical clustering to the correlation matrix of the log returns

to obtain K = 10 or 11 statistical clusters.11 In particular, we measure the stock’s correlation

using the Pearson correlation coefficient. Instead of performing hierarchical clustering on the

raw correlation matrix, we utilize Principal Component Analysis (PCA) to transform the

stock returns into their factor exposures (Avellaneda and Serur, 2020). In this transformation,

we use the first K = 10 or 11 principal components, such that the transformed matrix has

dimensions N (number of assets) by K. Then, we compute the pairwise distance between

stock i and stock j as dij = ‖Ci − Cj‖2, where Ci is the ith row of the PCA-transformed

matrix. Equivalently, we compute the distance between stocks as the Euclidean distance

between their factor exposures. Similar to the DYNOTEARS method, we restrict K to

be either the past or current number of GICS sectors. We use the same sliding window

methodology as DYNOTEARS.

3.1.2 Results

In Table 1 we present the Sharpe ratio rank (one being highest, four being lowest) for the

DYNOTEARS long-short strategies, relative to the GICS and SC neutralized strategies and

the benchmark strategy with no industry-neutralization. We present the Sharpe ratio rank

for both EW and VW portfolios, as well as for differing holding periods. From a risk-adjusted

return perspective, we generally find that the DYNOTEARS strategies are outperforming the

other strategies across all construction methods and characteristics. In forty-eight possible

comparisons, DYNOTEARS is ranked first thirty times, second fifteen times, and third three

times. Importantly, we do not find any strong biases for specific types of characteristics. We

find similar performance for value characteristics (such as book-to-price) as well as quality

characteristics (such as Cash-to-assets and ROE).

<Insert Table 1 about here>

In Table 2 and Table 3, we present the annualized results for value-weighted trading

11This is a common approach in the literature, see Mantegna (1999) and Bonanno et al. (2003, 2004).
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strategies based on different classification schemes. We also report the causal alpha, which is

an annualized α derived from a regression of the form:

RCausal
t = α + βMKTRMKT + βRc

t + εt,

where RCausal
t is the long-short return of the causal neutralization and Rc

t is the long-short

return of GICS/correlation/no-neutralization based strategy. Table 2 presents results for

one-month holding periods and Table 3 for twelve-month holding periods. First, the strategy

without neutralization (labeled None) often performs worse from a volatility perspective

than its neutralized counterparts, suggesting that these characteristics suffer from unpriced

industry exposure. For instance, for the 12-1M Momentum characteristic, the benchmark

volatility is 20.92%, whilst the neutralized strategy volatility is between 14.64% and 16.42%.

The underperformance of the no-neutralization strategy is often caused by its high volatility,

causing its Sharpe ratio to decrease in turn. This increased volatility likely stems from its lack

of diversification. In summary, for these specific characteristics, we find substantial economic

value to industry-neutralization. Figure 3 demonstrates the risk-adjusted return improvements

of the causality-based approach over the GICS and SC approaches, highlighting how the only

scenario in which the causal approach underperforms, from a return perspective, is for the

cash-to-assets strategy. However, from a volatility reduction perspective, we generally find

that GICS and SC outperform the causality-based approach.

<Insert Table 2 about here>

Second, turning our attention to the SC variant, we find that its performance is gen-

erally worse than that of the causal and GICS strategies but, at times, better than the

no-neutralization strategy. For instance, for the Book-to-price characteristic, both the causal

variant and the GICS variant outperform the SC variant. Moreover, for five of the charac-

teristics, the causal variant attains a significant alpha over the SC variant with annualized

alphas up to 3.74%. We identify two mechanisms that explain the poor performance of

the SC variant. The first explanation can be found in MacMahon and Garlaschelli (2015)

who argue that applying community detection algorithms to correlation matrices leads to
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inherently poor/biased results.12 The second explanation for this phenomenon is the “apples

and oranges” narrative, that the diversification power of correlation-based ACS is harmed

by its tendency to cluster companies that should not be clustered. We find support for this

hypothesis, as the stock-selection power of the correlation method is markedly lower than the

stock-selection power of the other variants.

<Insert Figure 3 about here>

Third, when comparing the Causal variant to GICS, we find that the causal variant

generally outperforms GICS in terms of Sharpe ratio. For instance, for both the FY1 Earnings-

to-price characteristic and the book-to-price characteristic, the causal variant outperforms

GICS. Moreover, in both cases, the causal variant holds significant return predictability over

the GICS variant. This outperformance mostly seems to derive from increased stock-selection

power, considering that the mean returns of the causal variant are consistently higher. This

aligns well with the illustration in Figure 1, namely that due to a lack of timeliness, and an

excessive focus on the end-product, the diversification power of GICS is potentially lower

than that of causal algorithms. Thus, the causal variant has a significant risk-adjusted return

edge over the GICS variant for (most of) these characteristics. We find that these results hold

for both one-month holding periods, as well as for longer holding periods. This highlights

the general applicability of these causal clustering techniques for industry-neutralization.

However, given the volatility reduction power of GICS, this suggests there is still an important

place for GICS when applying industry-neutralization.

<Insert Table 3 about here>

3.2 Centrality as a cross-sectional long-short equity factor

Our second investment application explores the role of financial network centrality in the

cross-section of equity returns. First, we define what we exactly mean by (node) centrality.

Freeman et al. (2002) posit that the center of a star network, as seen in Figure 2, is the purest

example of a central node. They understand central nodes as the nodes that have more ties,

12Specifically, they show that modularity-oriented community detection algorithms, when applied to correlation
matrices, cannot retrieve the community structure even under optimal (simulation) conditions.
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can reach other nodes more quickly, and more often lie on the shortest path between other

nodes. Classical centrality measures such as degree, closeness, and betweenness centrality

respectively embody these properties. For instance, degree centrality simply counts the

number of the in- and out-going edges as a measure of centrality.

<Insert Figure 2 about here>

The general sentiment in the literature is that stocks with high centrality are undesirable,

with many authors arguing that incorporating centrality can yield more effective portfolio

diversification in the framework of Markowitz (1952). For instance, Peralta and Zareei (2016)

formally show that, both in minimum-variance and mean-variance portfolios, large eigenvector

centrality scores correspond to low optimal weights. Notably, this result relies on the financial

network being formulated as a correlation network. On the empirical side, Pozzi et al. (2013)

find that peripheral companies offer lower risk and higher returns than central companies.

They contextualize this finding by positing that central companies carry more risk during

market crashes. Their network formulation is a filtered correlation network like in Mantegna

(1999).13

Vỳrost et al. (2019) argue that highly central stocks offer less diversification than peripheral

stocks. Additionally, they argue that central stocks are riskier because market shocks will

not only affect the highly central asset itself, but also its neighborhood. Konstantinov et al.

(2020) are among the first to comment on the relation between centrality and factors, however

they do not use stock-level data but multi-asset multi-factor data. They do so by including

the factor returns into their network analysis and find that the RMW, HML, and CMA

factors of Fama and French (2015) are highly central nodes in the financial network.

3.2.1 Methodology

To investigate the role of centrality in financial networks, we construct a monthly centrality

factor using our causal network. For this centrality factor, we monthly sort S&P 500 stocks

into value-weighted quintile long-short portfolios based on the inverse of their eigenvector

13The authors explore two types of filtered correlation networks are explored: Minimum Spanning Trees
(MSTs) and Planar Maximally Filtered Graphs (PMFGs).
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centrality score.14 Thus, peripheral stocks will belong to the top portfolio, whilst central

stocks will belong to the bottom portfolio.

3.2.2 Results

Figure 4 displays the cumulative return of the centrality factor over time. The performance

of the centrality factor seems highly driven by the business cycle, as it is best before NBER

recessions and worst after these recessions. This pattern is consistent with a growth strategy,

as growth stocks display strong performance during bull markets, whilst this performance

evaporates during bear markets. Before characterizing the centrality factor in terms of

existing factors, we first establish that the centrality factor adds value beyond these factors

by investigating the alphas of the spanning regressions in Table 4 relative to several common

factor models. Specifically, we take the market return in excess of the risk free rate (MKT-Rf),

and the Fama-French Small-Minus-Big (SMB), High-Minus-Low (HML), Up-Minus-Down

(UMD), Robust-Minus-Weak (RMW), Conservative-Minus-Aggressive (CMA), Short-Term

Reversal (STR), and Long-Term Reversal (LTR) from the Kenneth French data library. We

take the Betting-Against-Beta (BAB) from the AQR data library. We take the Hou et al.

(2021) q5 factors of Investment (AI), Size (ME), Expected growth (EG), and Return on equity

(ROE) from the Global-Q database.

<Insert Figure 4 about here>

The centrality factor attains an annualized alpha of 2.21% in the CAPM (Panel (a)

column (i)), 2.78% in the FF4 model (Panel (a) column (iii)), 5.56% in the FF6 model (Panel

(a) column (v)), and 5.02% in the q5 model (Panel (b) column (iii)), whilst the annualized

Sharpe Ratio is negative. At first glance, one might expect a higher Sharpe Ratio given

the high alphas, but the factor loadings in Table 4 help rationalize this contradiction. The

centrality factor loads negatively on the MKT and the HML/IA factors, both of which carry

positive risk premia. Therefore, by negatively loading on these factors, the expected return

and the Sharpe Ratio of the centrality factor are lowered. Notably, the q5 alpha is higher than

the FF4 alpha, in part because the centrality factor loads more negatively on the investment

14We find quantitatively similar results for equal-weighted portfolios.
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factor than on the value factor.

<Insert Table 4 about here>

Given that its alphas are significant and sizable, the centrality factor adds orthogonal

information to factor models such as Fama and French (1993) and Hou et al. (2021). We

visualize the cumulative alpha (or alpha-add) over time in Figure 4. We define the cumulative

alpha of the centrality factor as the cumulative sum of α̂ + ε:t, where ε:t are the residuals up

to and including time t. Beyond the difference in trend, we observe that the alpha-add in the

FF6 model is similar to the alpha-add in the q5 model. This is to be expected as the factor

loadings on MKT-Rf, SMB/ME, and HML/IA are similar. For both models, the alpha-add

over time is not consistent, as the alpha-add of the centrality factor seems roughly related

to its performance (as visualized in Figure 4). The alpha-add is much larger during stable

regimes than that in (the aftermath of) unstable regimes. This suggests that in stable regimes,

the existing factors fail to incorporate centrality more so than in unstable regimes. In turn,

the centrality factor can effectively act as a cheap hedge since it does not underperform, but it

controls for risk in other factors which are known to perform well. However, the performance

of the centrality factor in the 2020 to 2023 period highlights that this is not a free hedge, as

it significantly underperforms.

Next, we characterize the centrality factor in terms of existing factors. Indeed, based on

the left partition of Table 4, the conjecture that the centrality factor resembles a growth

strategy rings true. Namely, the centrality factor negatively loads on the HML value factor

with a significant coefficient of -0.34 in the FF3 model. This anti-value tilt is consistent

with the growth definition of Fama and French (2007). In their valuation-based perspective,

growth stocks are defined as stocks with an inflated valuation, e.g., as reflected in a low

book-to-price ratio. In this definition, a growth stock is simply the opposite of a value stock.

However, the definition of a growth stock is somewhat contested in the broader literature.

Rather than a valuation-based perspective, others have taken a profitability-based or an

investment-based perspective on growth. For instance, Novy-Marx (2013) argues that

strategies based on profitability, as measured by the gross profits-to-assets ratio, are growth

strategies. In this perspective, profitability/growth strategies can substantially improve the
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performance of value strategies by acting as a hedge. Hou et al. (2021) take an investment-

based perspective on growth and argue that trading on the (estimated) growth rate of

investment-to-assets should be considered a growth strategy. Therefore, based on Panel (b)

of Table 4, the centrality factor should not be deemed a growth strategy as the coefficient of

the expected growth factor is insignificant.

The spanning regressions offer an insightful characterization of central stocks. Given

that the centrality factor operates on a reverse sort of centrality (i.e., we buy peripheral

stocks and short central stocks), we can effectively reverse the factor loadings to get a

better understanding of central stocks. The foremost conclusion is that central stocks are

large, value-heavy companies. This finding is supported by Buraschi and Porchia (2012)

who find that the book-to-price ratio is positively related to their centrality measure, and

thus that central stocks are generally value-heavy. Additionally, Konstantinov et al. (2020)

conclude that the value factor has a central position in the financial network, albeit at the

asset allocation level. Thus, our finding is an important step in clarifying the financial

interpretation of centrality measures.

3.3 Market timing

For our last investment application, we investigate the market timing ability of the causal

network density. The rationale is that network density is reflective of the systematic risk

of a financial network and thus might carry some return predictability. Since the seminal

work of Cowles (1933), many scholars have investigated return predictability of the U.S.

stock market. Kaya (2015) investigates the role of aggregate network eccentricity.15 They

interpret the average eccentricity (aggregated over the nodes) of the network as a proxy for

the density of the topology. In their interpretation, a lower average eccentricity corresponds

to a denser topology and vice versa. They observe that the topology becomes denser prior to

market crashes and that returns, after a period of increasing density, are more left-skewed

and leptokurtic than returns after a period of decreasing density. This finding is in line with

15The eccentricity of a node v is the maximum distance to any other node in the network. Therefore,
eccentricity is the inverse of a centrality measure, such that lower eccentricities correspond to more central
nodes.
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Lenzu and Tedeschi (2012) who explore how a denser topology is rather problematic from a

systematic risk perspective.

There is good reason to believe that the density of a financial network can be understood

as a measure of its resiliency against crises. To test this hypothesis, we perform an equity

market-timing case, using a causal network-based proxy for financial network density. Naively,

this proxy could be defined as the average centrality in the network. However, we expect this

proxy to have little market timing ability, as structural breaks in the network topology likely

cause the absolute level of centrality to be uninformative for predictive purposes. Therefore,

we use the relative level (change) of centrality, rather than the absolute level. Concretely,

this proxy is defined as:

pt =
1

|Ut|
∑
i∈Ut

ci,t −
1

|Ut−1|
∑

j∈Ut−1

cj,t−1, (4)

where ci,t is the eigenvector centrality measure. This construction is like the systematic risk

index of Kaya (2015) who also computes the density as the average network centrality but

uses the eccentricity measure instead of the eigenvector measure.

The work most closely related to our market timing efforts is Eng-Uthaiwat (2018). They

investigate how much return predictability the network topology offers in the S&P 100.

However, two critical aspects of their methodology diverge from our methodology. First, their

network formulation follows the correlation-based PMFG methodology of Tumminello et al.

(2005). While our network formulation is based on a causal discovery algorithm. Second,

they choose the graph diameter as a measure of network topology, whilst we choose the

average eigenvector centrality. The graph diameter is defined as the maximum eccentricity,

or equivalently, the length of the shortest path between the most distant nodes. The choice

for the graph diameter as a measure of network topology poses a subtle issue in the context

of financial networks. This issue stems from the small-world property of financial networks.16

Small-world networks, as introduced by Watts and Strogatz (1998), are characterized by

a low degree of separation and significant local clustering. This means that the diameter

of such networks will consistently be low and therefore be of little explanatory value. For

16The small-world property of financial networks has ostensibly been confirmed by Haldane (2013), Gao et al.
(2013), and Sun and Chan-Lau (2017).
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instance, the diameter of the financial network in Sun and Chan-Lau (2017) is only two.

Therefore, we opt for the average eigenvector centrality. Ruhnau (2000) explains that the

main benefit of the eigenvector centrality approach is that the importance of an edge is no

longer static. Instead, out-going edges from influential nodes are deemed more important

than out-going edges from less influential nodes. Moreover, Dablander and Hinne (2019)

show that for causal networks, eigenvector centrality is a better choice compared to other

node centrality measures.

3.3.1 Methodology

In testing the timing efficacy of the network density indicator, we follow existing market

timing literature (Welch and Goyal, 2008; Neely et al., 2014; Hammerschmid and Lohre,

2018). Specifically, we measure in-sample return predictability using bivariate predictive

regressions of the following form:

rt+1 = α + βxt + εt+1, (5)

where rt is the excess market (S&P 500) return at time t, and xt is the value of some indicator

at time t. The predictors used to explain stock returns in the literature can roughly be divided

into two classes: macroeconomic variables and technical indicators. To give an example of

the former, the dividend-price ratio is a macroeconomic variable used by Fama and French

(1988) and Cochrane (2008). An example of the latter can be found in Neely et al. (2014)

who use fourteen technical indicators based on moving averages, momentum, and volume. To

gauge the efficacy of our timing indicator for future performance, we follow Campbell and

Thompson (2008) to estimate an out-of-sample R-squared, denoted R2
OS. Like Neely et al.

(2014), we calculate the certainty equivalent return (CER) gain for the timing indicator to

get a sense of the indicator’s economic relevance. Specifically, the CER can be interpreted

as the annual management fee the investor would be willing to pay to have access to the

network density forecast instead of the historical average forecast. We provide additional

details in Online Appendix B.

In addition to using our network centrality measure in the bivariate regression of Eq. (5), we
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also conduct a multivariate regression where we include common macroeconomic variables and

technical indicators as controls. Specifically, we include eleven macroeconomic indicators using

the Welch and Goyal (2008) dataset, and ten technical indicators following Hammerschmid

and Lohre (2018).17 To reduce this set of twenty-one control predictors, we use the PCA

approach of Neely et al. (2014) to arrive at three principal components. Specifically, we run

PCA over all twenty-one control predictors to generate three orthogonal factors. With these

factors, we can use the following multivariate regression:

r(t+1) = α + βCxC,t +
K∑
k=1

βkx(k,t) + ε(t+1), (6)

where xC,t is our causal network density indicator at time t, and x(k,t) is a principal

component factor at time t.

3.3.2 Results

We first review the bivariate predictive regression on network density, which yields an

R2 of 0.75% (as seen in column (i) of Table 5). This suggests that the network density

carries some return predictability, as the R2 exceeds the often-mentioned R2 threshold of

0.5% (Zhou, 2010; Neely et al., 2014). Moreover, the coefficient β̂ possesses the expected

sign and is significant, albeit at a 10% level. Namely, the coefficient is negative, indicating

that an increase in network density is associated with lesser expected returns. A potential

explanation for this relatively high predictability is that the network density is a good

indicator for recessions. Intuitively, one would expect more variance during recessions than

during expansionary periods. Therefore, if a predictor functions well in recessions, it will

likely have a higher R2 than predictors that function equally well in expansionary periods.

This reasoning is empirically supported by Henkel et al. (2011) who show that the return

predictability for many predictors is concentrated in recessionary periods.

<Insert Table 5 about here>

Validating the predictability of the network density indicator out-of-sample, we find

an R2
OS of 0.55%, which is significant at a 10% level. The level of out-of-sample return

17The full list of controls can be found in Online Appendix B.
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predictability is like the return predictability of a number of technical indicators seen in Neely

et al. (2014) and Hammerschmid and Lohre (2018). Particularly, Neely et al. (2014) find

that moving-average and volatility-based technical indicators carry significant (at the 10%

level) predictive value out-of-sample. For these indicators, they find R2
OS ranging from 0.44%

to 0.88%, some of which are even significant at the 5% level. Likewise, Hammerschmid and

Lohre (2018) also find that moving-average and volatility-based technical indicators carry

significant predictive value out-of-sample. They find R2
OS ranging from 0.59% to 1.03%, none

of which are significant at a 5% level.

We evaluate the economic utility of the network density proxy by computing the CER

gain (∆) which amounts to 1.83% for the bivariate forecast. Similar to the R2
OS, this value

is roughly in line with the value of the technical indicators in Neely et al. (2014) and

Hammerschmid and Lohre (2018). Particularly, for technical indicators that have a significant

R2
OS, Hammerschmid and Lohre (2018) find annualized CER gains ranging from 1.9% to

2.6% whilst Neely et al. (2014) find annualized CER gains ranging from 1.5% to 2.9%. Based

on the value of ∆, we conclude that the network density proxy has economically substantial

predictive power for the (monthly) equity risk premium.

Given that network density carries a similar amount of predictive value, it is interesting to

evaluate how different network density is from these technical indicators. To this end, column

(ii) of Table 5 presents the same results but including a set of three principal component

control factors. We find qualitatively similar results as the bivariate regression in column

(i), whereby we have a negative coefficient on β̂ that is significant at the 10% level. Hence,

the predictability of the causal network-based density indicator is not explained by the

information contained in common control variables related to macroeconomic variables and

technical indicators.

4 Conclusion

In this paper, we set out to advance financial network modeling by introducing causal

discovery algorithms to the factor investing literature. To motivate this effort, we highlight the

potential improvements that causal discovery algorithms offer over the prevalent correlation-
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based framework of Mantegna (1999). We structured this effort by selecting a representative

causal discovery algorithm (DYNOTEARS) and applying it to three common investment

applications.

We found that DYNOTEARS offers orthogonal industry-neutralization strategies com-

pared to GICS and statistical clusters, typically resulting in higher risk-adjusted returns

compared to competing methods. However, the incumbent GICS still remains relevant from

a volatility reduction perspective. We further demonstrate that a causal network-based stock

centrality factor acts as a hedging factor in combination with the common Fama-French

and q5 factor models. Finally, we find that a causal network-based market timing indicator

successfully predicts forward S&P 500 excess returns, often on par with existing indicators

from the literature.

Ultimately, these findings lead us to conclude that causal discovery algorithms can be

of substantial economic value and thus represent a valuable tool for practitioners. Such

algorithms are able to provide novel and unique insights, which go above and beyond what

is possible with standard correlation-based measures. Despite these opportunities, causal

discovery algorithms remain limited by their computational complexity and interpretability.

Thus, we advocate for the continued exploration of causal discovery techniques in the factor

investing literature.
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Table 1: Performance ranking for causal-neutralized long-short strategies
This table reports the rank (out of four) of the Sharpe ratio for the causal-neutralized long-short quintile
strategies when compared against No-neutralization, GICS-neutralized, and Correlation-neutralized strategies.
A rank of one corresponds to the highest Sharpe ratio, and a rank of four to the lowest. We report results for
equal-weighted and value-weighted strategies. We also report results using a holding period of one-month or
twelve-months following the overlapping portfolio approach of Jegadeesh and Titman (1993). Our sample
runs from January 1993 to December 2022.

Weighting Method Equal-weighted Value-weighted

Holding Period 1M 12M 1M 12M

1M Reversal 2 1 1 1

12-1M Momentum 1 2 1 3

Beta 60M 1 2 1 2

Book-to-price 1 2 1 2

Cash-to-Assets 2 1 1 1

Earnings-to-price 2 2 2 1

EBITDA-to-EV 2 2 1 3

FY1 Earnings-to-price 1 2 1 2

Gross Profitability / Assets 1 1 2 3

Residual 12-1M Momentum 1 1 1 1

ROE 1 1 1 2
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Table 2: Backtest results for industry-neutralized factors - 1M holding period
This table reports the performance statistics associated with various long-short investment strategies, each
using different classification scheme (Causal, GICS, or Correlation) as well as the benchmark strategy with
no-neutralization. For each of the characteristics we apply a long-short value-weighted quintile strategy
within each cluster of the given peer group classification. Our sample runs from January 1993 to December
2022. We report the annualized return, annualized volatility, Sharpe ratio, the annualized CAPM alpha
and beta, the maximum drawdown (DD), and the Causal Alpha (i.e., the alpha when regressing the causal
strategy returns on the non-causal strategy returns.)∗,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% level, respectively.

Characteristic Neutral. Return Volatility SR CAPM α Beta DD Causal α

1M Reversal Causal 7.97% 11.97% 0.665 6.87% 0.13 -19.8%

GICS 6.63% 11.01% 0.602 5.19% 0.17 -37.0% 2.75%∗∗∗

Correlation 6.48% 10.54% 0.614 4.95% 0.18 -17.3% 3.07%∗∗

None 5.98% 15.46% 0.387 4.17% 0.22 -33.7% 4.15%∗∗

12-1M Momentum Causal 3.55% 16.42% 0.216 4.89% -0.16 -64.8%

GICS 2.41% 14.82% 0.162 3.34% -0.11 -58.6% 1.74%∗

Correlation 2.65% 14.64% 0.181 3.37% -0.09 -58.9% 1.77%

None 3.21% 20.92% 0.153 5.95% -0.33 -62.4% 0.90%

Beta 60M Causal 4.56% 13.06% 0.349 4.57% 0.00 -40.9%

GICS 2.93% 10.38% 0.282 2.93% 0.00 -41.3% 2.08%

Correlation 3.08% 11.69% 0.263 3.09% 0.00 -37.6% 1.84%

None 5.97% 18.33% 0.325 5.99% 0.00 -57.7% 1.13%

Book / Price Causal 1.35% 13.32% 0.101 1.00% 0.04 -57.6%

GICS 1.17% 13.26% 0.088 0.82% 0.04 -53.1% 0.27%

Correlation -0.78% 12.62% -0.062 -1.25% 0.06 -62.8% 2.13%∗

None 0.07% 15.01% 0.004 -0.44% 0.06 -73.0% 1.35%

Cash / Assets Causal 5.69% 9.79% 0.581 5.10% 0.07 -27.5%

GICS 3.53% 9.17% 0.385 3.59% -0.01 -23.0% 0.64%

Correlation 4.72% 10.11% 0.467 4.99% -0.03 -27.7% -0.50%

None 4.98% 13.54% 0.367 1.87% 0.37 -64.9% 2.01%∗

Earnings / Price Causal 1.95% 12.21% 0.159 2.58% -0.08 -49.3%

GICS 1.90% 11.43% 0.166 2.65% -0.09 -49.9% 0.15%

Correlation 0.60% 11.00% 0.055 1.20% -0.07 -65.0% 1.41%

None 0.60% 14.91% 0.040 2.26% -0.20 -63.2% 0.93%

EBITDA / EV Causal 5.01% 13.04% 0.384 5.36% -0.04 -43.5%

GICS 3.70% 13.11% 0.282 4.35% -0.08 -53.4% 1.73%∗

Correlation 2.26% 12.39% 0.183 3.18% -0.11 -57.7% 2.60%∗∗

None 4.28% 14.54% 0.295 5.02% -0.09 -59.6% 1.56%

FY1 Earnings / Price Causal 3.07% 12.35% 0.249 3.98% -0.11 -49.0%

GICS 0.62% 11.83% 0.052 1.14% -0.06 -60.7% 2.92%∗∗∗

Correlation 0.92% 12.03% 0.076 1.56% -0.08 -64.1% 2.64%∗∗

None 2.48% 14.44% 0.172 4.47% -0.24 -68.6% 0.84%

Gross Profitability / Assets Causal 2.93% 10.72% 0.273 3.87% -0.11 -34.4%

GICS 2.29% 10.46% 0.219 3.39% -0.13 -47.9% 1.14%

Correlation 2.89% 10.48% 0.276 3.96% -0.13 -36.3% 0.75%

None 3.10% 11.73% 0.264 3.30% -0.02 -34.5% 1.59%

Residual 12-1M Momentum Causal 2.53% 9.72% 0.260 3.20% -0.08 -37.3%

GICS 2.10% 9.00% 0.234 2.46% -0.04 -20.8% 1.14%

Correlation 2.17% 8.89% 0.244 2.67% -0.06 -28.1% 1.00%

None 1.92% 10.52% 0.182 2.51% -0.07 -35.8% 1.32%

Return on equity Causal 3.07% 9.90% 0.309 3.84% -0.09 -41.7%

GICS 1.78% 10.19% 0.175 2.75% -0.12 -49.9% 1.68%∗

Correlation 1.04% 10.11% 0.103 1.79% -0.09 -54.4% 2.46%∗∗

None 2.36% 11.95% 0.197 3.91% -0.19 -37.4% 1.17%
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Table 3: Backtest results for industry-neutralized factors - 12M holding period
This table reports the performance statistics associated with various long-short investment strategies, each
using different classification schemes (Causal, GICS, or Correlation) as well as the benchmark strategy with
no-neutralization. For each of the characteristics we apply a long-short value-weighted quintile strategy
within each cluster of the given peer group classification. We calculate returns over a 12M holding period
using the overlapping portfolio approach of Jegadeesh and Titman (1993). Our sample runs from January
1993 to December 2022. We report the annualized return, annualized volatility, Sharpe ratio, the annualized
CAPM alpha and beta, the maximum drawdown (DD), and the annualized Causal Alpha (i.e., the alpha
when regressing the causal strategy returns on the non-causal strategy returns.) ∗,∗∗ ,∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% level, respectively.

Characteristic Neutral. Return Volatility SR CAPM α Beta DD Causal α

1M Reversal Causal 0.19% 4.33% 0.044 -0.16% 0.04 -15.4%

GICS -0.68% 4.10% -0.165 -0.96% 0.03 -25.7% -0.36%

Correlation -0.84% 4.12% -0.204 -1.16% 0.04 -24.2% -0.52%

None -0.72% 5.43% -0.133 -1.31% 0.07 -24.7% -0.43%

12-1M Momentum Causal 2.02% 12.04% 0.168 2.14% -0.01 -52.0%

GICS 2.27% 10.66% 0.213 2.20% 0.01 -41.9% -0.79%

Correlation 2.48% 11.01% 0.225 2.59% -0.01 -41.9% -0.47%

None 1.46% 15.16% 0.096 1.98% -0.06 -64.1% 0.36%

Beta 60M Causal 3.72% 10.90% 0.342 3.74% 0.00 -34.3%

GICS 1.96% 8.89% 0.220 1.96% 0.00 -37.7% 1.60%∗

Correlation 2.40% 9.85% 0.244 2.41% 0.00 -34.3% 1.78%∗

None 6.01% 17.52% 0.343 6.03% 0.00 -57.9% 0.33%

Book / Price Causal 0.41% 11.49% 0.036 0.63% -0.03 -52.7%

GICS 0.50% 11.65% 0.043 0.73% -0.03 -52.9% 1.31%∗

Correlation -1.14% 11.39% -0.100 -0.98% -0.02 -61.8% -0.28%

None -0.27% 13.92% -0.020 0.02% -0.04 -71.6% 0.38%

Cash / Assets Causal 4.22% 8.28% 0.510 3.39% 0.10 -26.3%

GICS 2.92% 8.39% 0.348 3.03% -0.01 -29.2% 0.43%

Correlation 3.63% 9.22% 0.393 3.85% -0.03 -31.4% 0.91%

None 4.65% 13.14% 0.354 1.45% 0.38 -63.4% 2.28%

Earnings / Price Causal 0.99% 9.40% 0.105 1.81% -0.10 -40.7%

GICS 0.75% 9.13% 0.082 1.51% -0.09 -47.8% 1.41%∗

Correlation -0.33% 8.67% -0.038 0.12% -0.05 -53.5% 0.19%

None 0.73% 13.40% 0.055 2.82% -0.25 -55.0% -0.21%

EBITDA / EV Causal 1.82% 11.21% 0.162 2.69% -0.10 -46.6%

GICS 2.44% 11.48% 0.213 3.31% -0.10 -47.4% 1.77%∗∗

Correlation 0.11% 10.75% 0.010 0.98% -0.10 -56.0% -0.28%

None 2.59% 13.14% 0.197 3.80% -0.14 -55.6% -0.33%

FY1 Earnings / Price Causal 0.44% 10.90% 0.040 1.69% -0.15 -57.2%

GICS -0.66% 10.99% -0.060 0.30% -0.11 -64.5% 1.69%

Correlation -0.75% 10.67% -0.071 -0.01% -0.09 -68.4% 1.40%∗∗

None 0.77% 12.88% 0.060 3.03% -0.27 -65.7% -0.69%

Gross Profitability / Assets Causal 1.56% 9.56% 0.163 2.20% -0.08 -31.6%

GICS 1.37% 9.72% 0.141 1.96% -0.07 -42.8% -0.05%

Correlation 1.92% 9.66% 0.198 2.73% -0.10 -28.7% 0.64%

None 2.58% 11.22% 0.230 2.52% 0.01 -35.0% 0.51%

Residual 12-1M Momentum Causal 1.11% 6.43% 0.173 1.62% -0.06 -22.3%

GICS 0.65% 6.11% 0.106 1.01% -0.04 -22.2% 0.39%

Correlation 0.91% 6.51% 0.139 1.36% -0.06 -22.5% 0.64%∗

None 0.42% 7.26% 0.058 0.99% -0.07 -37.4% 0.81%∗

Return on equity Causal 1.74% 8.47% 0.206 2.21% -0.06 -36.6%

GICS 0.91% 8.56% 0.106 1.34% -0.05 -42.7% -0.13%

Correlation 2.01% 8.53% 0.236 2.18% -0.02 -27.8% 0.62%

None 2.23% 11.03% 0.202 3.07% -0.10 -35.9% -0.31%
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Table 4: Spanning regression results for the centrality factor
This table presents the results of spanning regressions of the value-weighted top-minus-bottom quintile
portfolio return of the centrality factor over various factor models. Long-short portfolios are rebalanced
monthly over the period January 2003 to December 2022. Newey-West adjusted t-statistics are reported in
parentheses. ∗,∗∗ ,∗∗∗ indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Panel (a): Fama-French models

(i) (ii) (iii) (iv) (v) (vi)

Alpha (ann.) 2.21% 3.26% 2.78% 6.11% 5.56% 5.29%

(1.09) (1.81) (1.60) (3.43) (3.14) (2.94)

MKT-Rf -0.04 -0.09 -0.07 -0.18 -0.15 -0.14

(-0.69) (-2.12) (-1.64) (-4.47) (-3.69) (-3.56)

SMB 0.16 0.15 0.07 0.06 0.05

(1.7) (1.77) (0.85) (0.79) (0.60)

HML -0.34 -0.33 -0.12 -0.09 -0.11

(-5.12) (-4.42) (-1.90) (-1.33) (-1.72)

UMD 0.05 0.08 0.05

(1..00) (1.74) (0.94)

RMW -0.28 -0.29 -0.33

(-2.93) (-3.23) (-3.91)

CMA -0.39 -0.42 -0.46

(-3.91) (-4.42) (-4.29)

STR -0.05

(-0.99)

LTR 0.03

(0.35)

BAB 0.09

(1.46)

R2 0.0% 18.0% 18.3% 24.5% 25.5% 25.9%

Panel (b): q5model

(i) (ii) (iii)

Alpha (ann.) 2.21% 4.85% 5.02%

(1.09) (2.73) (2.84)

MKT-Rf -0.04 -0.15 -0.17

(-0.69) (-3.69) (-4.21)

ME 0.15 0.13

(1.35) (1.29)

IA -0.66 -0.63

(-6.23) (-6.36)

EG 0.02 0.14

(0.23) (1.26)

ROE -0.19

(-2.26)

R2 0.0% 22.8% 24.3%
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Table 5: Predictive regression on network density
This table presents the estimated coefficients for the predictive regressions in Eq. (5) and Eq. (6). R2

OS is
estimated following Campbell and Thompson (2008). The ∆ statistic is the annualized CER gain for an
investor who opts to use the predictive regression forecast instead of the historical average forecast. Our
sample runs from January, 1993 to December, 2022. Heteroskedasticity robust t-values are reported in
parentheses. ∗,∗∗ ,∗∗∗indicate statistical significance at the 10%, 5%, and 1% level, respectively.

Bivariate Multivariate

α 0.012 0.013

(5.57)∗∗∗ (5.81)∗∗∗

βCentrality -4.06 -4.10

(-1.62) (-1.69)∗

Controls N Y

R2 0.75% 5.98%

R2
OS 0.55%∗ 3.40% ∗∗

∆ 1.83% 8.16%
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Figure 1: GICS classification as of November 2015 (upper) and October 2016 (lower)
This figure visualizes the causal network embeddings and GICS sector classification of 4th November 2015
(top panel) and 3rd October 2016 (bottom panel). In the top panel, Real Estate was still part of the Financial
GICS sector. In the bottom panel, Real Estate was moved into a new sector in GICS. Each point corresponds
to a constituent of the S&P 500 and is colored by the GICS sector it was a member of at that point in time.
The spatial clustering is based on the causal network representation of returns.
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Figure 2: Star network illustration
Example of a star network with a central node (A) and five connected nodes (B–F).
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Figure 3: Industry neutralization alpha and Sharpe ratio comparison
Panel (a) plots the alpha of the causality-based industry neutralization method over the statistical correlation,
GICS, and no-neutralization approaches. Panel (b) plots the Sharpe Ratio of each approach. Results are
calculated on the S&P 500 universe over the sample of January 1993 to December 2022. Note that for SR,
we plot the absolute Sharpe ratio for ease of comparison.
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Figure 4: Cumulative alpha of centrality factor
This figure shows the cumulative alpha, in percentage points, of the spanning regressions. The cumulative
alpha at time t is calculated as the cumulative sum of α̂+ ε:t, where ε:t are the residuals up to and including
time t. NBER recessionary periods are highlighted with gray shading. The sample runs from January 1993
to December 2022.
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Appendix A: Additional technical details for causal net-

work estimation

Specification of DYNOTEARS clusters

For our first investment applications, we wish to organize causal network graphs into

clusters of similar stocks. When presented with such a graph, we recognize two approaches to

clustering. The first approach is to directly apply some graph clustering algorithm. However,

conventional graph clustering algorithms, such as Strongly Connected Components (SCC)

and the Louvain method, have undesirable properties. For instance, Shirokikh et al. (2022)

show that the SCC algorithm usually returns one super-cluster when applied to financial

networks. This finding is in line with common asset pricing models such as the CAPM, but

is undesirable when it comes to identifying sub-clusters in financial networks.

A prominent example of a graph clustering algorithm that can precisely do this, is Louvain

clustering (Blondel et al., 2008).18 The Louvain method is well-known for its performance

and scalability (De Meo et al., 2011). It is a greedy technique that produces clusters by

iteratively optimizing the modularity of these clusters, i.e., optimizing the density of links

in-cluster relative to the density of links out-of-cluster. The Louvain method does not allow for

18Wang et al. (2017) and Hosseini et al. (2021) investigate the (in)ability of the Louvain method to detect
sub-clusters in financial networks.
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choosing the number of clusters ex-ante, which hinders a fair comparison between clustering

methodologies.

The second approach to produce clusters from a graph is what we refer to as graph

representation clustering. Instead of clustering the graph using its natural form, we cluster

the graph using continuous feature representations of the nodes. That is, we learn a mapping

of nodes to an embedding space that preserves the network neighborhoods of the nodes. These

embeddings can then be used by common clustering algorithms, such as K-means, to produce

clusters. There are three major benefits to graph representation clustering. First, one can

use a large variety of common clustering methods. Second, many of these clustering methods

allow choosing the number of clusters ex-ante. Third, these embeddings are well-suited for

visualization.

To create the DYNOTEARS clusters, we make use of Node2Vec in combination with

K-means. First, we apply Node2Vec to the estimated DAG G to obtain embeddings for

each node. To this end, we need to configure the hyperparameters of Node2Vec (Grover and

Leskovec, 2016): embedding dimensionality, walk length, number of random walks, return

parameter (p), and in-out parameter (q). In essence, the parameters p and q jointly control

the random walk behavior. While p dictates the probability that a just-visited node is visited

once more, q regulates the incentive to explore. Namely, if q is sufficiently large, the random

walk is biased towards nodes close to the source node.19 Second, these embeddings are used by

K-means to generate clusters. Given a predefined number of clusters K, K-means optimizes

the following loss function:

L =
K∑
k=1

∑
i∈Ck

||xi − µk||22, (A. 1)

where Ck contains all stocks in cluster k, xi is the embedding belonging to stock i, µk is the

mean of cluster k, and ||·||2 is the Euclidean norm. The exact optimization methodology

can be found in Lloyd (1982). We restrict the number of clusters K to be either the past

(K = 10) or current number (K = 11) of GICS sectors, to allow for a fair comparison.

19We refer the reader to Grover and Leskovec (2016) for a technical review of the Node2Vec algorithm.
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Specification of correlation benchmark

We compare the performance of industry-neutralized trading strategies based on GICS,

DYNOTEARS, and statistical clustering (SC). Therefore, we require a representative clus-

tering method for the SC strategy. As is common in this literature, we apply hierarchical

clustering to the correlation matrix of the log returns to obtain statistical clusters.20 In

particular, we measure stock return correlations via the Pearson correlation coefficient.

Hierarchical clustering takes a matrix of distances as the sole input and produces a

hierarchical tree (dendrogram) as output. For instance, Mantegna (1999) computes the

pairwise distances as dij = 1− ρ2ij, where ρ is the Pearson correlation measure. Hierarchical

clustering can either be agglomerative or divisive in nature. In agglomerative clustering,

each observation is assigned its own cluster, and pairs of clusters are merged based on some

linkage function. We opt for Ward’s linkage function (Ward, 1963) to determine which

clusters are merged at each iteration. This linkage function minimizes the total within-

cluster variance at each iteration. The benefit of Ward’s linkage function over other linkage

functions is that it produces relatively compact clusters (Ros and Guillaume, 2019). From

the estimated hierarchical tree, we can extract a number of clusters K by choosing the

appropriate height/distance.

Instead of performing hierarchical clustering on the raw correlation matrix, we first

utilize Principal Component Analysis (PCA) to transform the stock returns into their factor

exposures. In this transformation, we only use the first K principal components, such that

the transformed matrix has dimensions N (number of assets) by K. Then, we can compute

the pairwise distance between stock i and stock j as dij = ‖Ci − Cj‖2, where Ci is the ith

row of the PCA-transformed matrix. Equivalently, we compute the distance between stocks

as the Euclidean distance between their factor exposures. Similarly to the DYNOTEARS

method, we restrict K to be either the past or current number of GICS sectors. Likewise, to

allow for a fair comparison, we use the same sliding window methodology as DYNOTEARS.

The main benefit of this application of PCA is that it reduces the statistical uncertainty

associated with the sample correlation matrix. In the context of financial markets, it is

well-established that there is substantial noise present in the correlation matrix. For instance,

20See, for example, Mantegna (1999); Bonanno et al. (2003), and Bonanno et al. (2004).
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Laloux et al. (1999) analyze the correlation matrix of the S&P 500 and find that the lowest

eigenvalue-eigenvector pairs are dominated by noise. Therefore, the clear benefit of only

keeping the first K components is that some noise is removed. In turn, the stability and

quality of the hierarchical clusters should improve as they are based on less noisy distances.

Appendix B: Additional methodology for empirical ap-

plications

Industry neutralization

To investigate the efficacy of our trading strategies, we employ some well-known perfor-

mance metrics. For each portfolio and its associated returns RP (with length T ), we report

the mean return, the volatility of the returns, and the annualized Sharpe Ratio:

SR(RP ) =
√
D
µ(RP )

σ(RP )
, (A. 2)

where D is the number of trading periods in a year. We ignore the risk-free rate in the Sharpe

Ratio computation, as long-short trading strategies are self-financing. To test whether the

causal strategy has significant return predictability over the other classification schemes, we

perform spanning regressions of the form:

RCausal
t = α + βRc

t + εt, (A. 3)

where RCausal
t are the portfolio returns for the DYNOTEARS classification scheme and Rc

t

are the portfolio returns based on some other classification scheme.

Market timing

In-sample return predictability does not guarantee out-of-sample return predictability.

As such, we validate the out-of-sample predictability of the network density proxy using the

R2
OS of Campbell and Thompson (2008) which is defined as:
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R2
OS = 1− MSFE1

MSFE0

, (A. 4)

where MSFE1 is the Mean Squared Forecast Error (MSFE) based on the srutinized timing

indicator21, whilst MSFE0 is the MSFE based on the historical average forecast. To evaluate

whether the R2
OS is significant, we utilize the MSFE-adjusted statistic of Clark and West

(2007), which is defined as the average of:

ft+1 = (rt+1 − r̄t+1)
2 − [(rt+1 − r̂t+1)

2 − (r̄t+1 − r̂t+1)
2], (A. 5)

where r̄t+1 is the historical average forecast, and r̂t+1 is the forecast based on our proxy. With

this test statistic, we test the one-tailed hypothesis H0 : R2
OS ≤ 0 against H1 : R2

OS > 0.

Return predictability alone does not speak to the economic relevance of the proxy.

Following Campbell and Thompson (2008); Ferreira and Santa-Clara (2011); Neely et al.

(2014), and Hammerschmid and Lohre (2018), we assess its economic utility by computing the

certainty equivalent return (CER) gain. We compute the CER for a mean-variance investor

who allocates across equities and risk-free bills based on some forecast of the excess market

return. Each month t, this investor allocates the following weight to equities (Neely et al.,

2014):

wt =
1

γ

r̂t+1

σ̂2
t+1

, (A. 6)

where γ is the risk aversion coefficient, r̂t+1 is the forecast of the equity risk premium, and

σ̂2
t+1 is a forecast of its variance. Moreover, a weight of 1− wt is allocated to risk-free bills.

Similar to Neely et al. (2014) or Hammerschmid and Lohre (2018), the variance is computed

using a moving-average window of five years, the risk aversion coefficient is set to five, and

the portfolio weights wt are restricted to be between 0 and 1.5. Neely et al. (2014) argue

that this restriction is reflective of realistic portfolio constraints, as it excludes short selling

and taking on more than 50% leverage. Subsequently, the CER can be computed as:

21We estimate the required forecast errors using an expanding window methodology. To ensure a sufficiently
large in-sample estimation period, we opt for a burn-in period of one-hundred months. For an example, see
Hammerschmid and Lohre (2018).
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CER = µ̂p −
1

2
γσ̂2

p, (A. 7)

where µ̂p and σ̂2
p are the mean and variance of the portfolio based on the weights in Eq. (A. 6).

The CER gain can now be computed as the difference between the CER of the forecasts using

the network density and the CER of the forecasts using the historical average forecast. We

multiply the difference between these CERs by 1,200 such that it is an annualized percentage.

This difference can be interpreted as the annual management fee the investor would be willing

to pay to have access to the network density forecast instead of the historical average forecast.

Marketing timing indicators

We construct ten technical indicators following Neely et al. (2014) and Hammerschmid

and Lohre (2018). Specifically, we create the momentum and moving average signals. To

construct the momentum signals, we use the below rule:

MOMm =

 1 if Pt ≥ Pt−m

0 if Pt < Pt−m

, (A. 8)

where Pt is the index price at time t, and we evaluate this signal for the values of

m = 1, 3, 6, 9, 12 months.

To construct the moving average signal, we take the simple moving average of the S&P

500 index value as:

MAP
j,t =

1

j

j−1∑
i=0

Pt−i for j = s, l, (A. 9)

where s and l are the lengths of the short and long moving averages. We use values of

s = 1, 2, 3 months and l = 9, 12 months. We then compare these moving averages to produce

six indicators as follows:

MAs,l =

 1 if MAP
s,t ≥MAP

l,t

0 if MAP
s,t < MAP

l,t

. (A. 10)
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