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Abstract

To assign a value to a portfolio, it is common to use Mark-to-Market prices. But how to proceed
when the securities are illiquid? When transaction prices are scarce, how to use other available real-time
information? In this article dedicated to corporate bonds, we address these questions using an extension
of the concept of micro-price recently introduced for assets exchanged on limit order books in the mar-
ket microstructure literature and ideas coming from the recent literature on OTC market making. To
account for liquidity imbalances in OTC markets, we use a novel approach based on Markov-modulated
Poisson processes. Beyond an extension to corporate bonds of the concept of micro-price, we coin the
new concept of Fair Transfer Price that can be used to value or transfer securities in a fair manner even
when the market is illiquid and/or tends to be one-sided.

Key words: fair price, imbalance, liquidity, market making, corporate bonds.

1 Introduction
We are all used to see the real-time prices of stocks scrolling on TV or blinking on the screens of our com-
puters and cellphones. However, we seldom ask ourselves what these prices we read are or should be. Do
they correspond to the prices of the last recorded trades? Are they some form of mid-prices? From which
exchange(s) or venue(s)? In fact, the very notion of real-time prices raises a lot of questions.

For liquid securities traded in limit order books (LOBs), a wide variety of concepts of real-time prices have
been proposed under different names such as mid-price, efficient price, fair price, micro-price, etc. Of course,
with different desired or undesired properties.

The first notion that naturally arises in the case of LOBs is that of the mid-price Sb+Sa

2 , where Sb is the
best bid price and Sa the best offer or ask price. This notion is simple but suffers from several limitations.
If we think that a good notion of price should be the proceed of a nowcasting procedure, the above notion of
mid-price does not use all the information available in the LOB, in particular the volumes available. Also,
it evolves in a discontinuous manner and may suffer from a form of bid-ask bounce when limits are depleted
by trades (though a less severe form of bid-ask bounce than in the case of last trade prices). Moreover, if
an asset can be traded on several venues, the mid-price ceases to be defined in an unambiguous manner:
it could be defined, for instance, as the mid-price on the main venue or as the average between the best
bid prices across venues and the best ask prices across venues. Questions also arise when prices are not
reliable because orders are not firm due to last look practices (a typical feature in foreign echange markets,
see [29]). In spite of these problems, mid-prices are widely used and they are good enough for a large bunch
of applications.
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The most famous extension of mid-price is that of the weighted mid-price (also called imbalance-based mid-
price) defined as V a

V b+V aS
b + V b

V b+V aS
a where V b and V a are the volumes available in the LOB at the best

bid and best ask prices respectively. This weighted mid-price is related to the saying “the price is where the
volume is not” (see [14]) that has inspired a lot of the approaches discussed below. Although it suffers from
numerous flaws (discontinuity, counterintuitive sensitivity to price improvement in some cases, excessive
noise, etc.) this weighted mid-price is widely used. It is indeed attractive since the imbalance between the
volumes posted at the best bid and at the best ask is known to be a good predictor of the price of the next
trade or of the next (mid-)price move. One can cite [19] for an empirical study, [12] for a simple expression
of the probability of an upward move conditional on these volumes in a simple Markovian model for the
dynamics of a limit order book, and [9] for an example of use of volume imbalance in trading strategies, to
only cite a few.

Measures of imbalance based on V b and V a just have to be monotone in V b/V a and they can therefore take
a variety of forms. In an attempt to generalize the price formation model of [27] to large-tick assets, Bonart
and Lillo proposed in [8] an extension of the above weighted mid-price in which they replaced volumes at the
best limits by their squares, i.e. V a2

V b2+V a2S
b + V b2

V b2+V a2S
a.1 They argue, based on theoretical and empirical

grounds that the quadratic version is preferable to the linear one, especially for assets with bid-ask spreads
(almost always) equal to one tick – so-called large-tick assets.

Many other notions of mid-price can be proposed along the above lines. One can indeed easily extend the
above definitions beyond top-of-book prices and volumes, or consider several venues. Another commonly
seen method consists in regressing signed cumulated volumes in the LOB on prices and to define an extended
mid-price as the intersection between the regression line and the price axis. In all cases these notions are
only heuristics and deserve a micro-foundation.

In the specific case of large-tick assets, different notions have also emerged in the academic literature. Delat-
tre et al. introduced in [14] an interesting approach in which they assume that there exists an unobservable
“efficient” price and deduce the location of that price through the order flow at the bid. More precisely,
they consider limit orders sent with a probability that is a monotone function of the distance between that
unobserved efficient price and the (observed) bid. Using historical data, they estimate in a nonparametric
way that function and then deduce from the current (in fact recent) order flow an estimation of the effi-
cient price. Two-sided extensions of this approach where one uses both the bid and the ask sides could be
imagined and would share a lot with the modelling approach of the trading flow typically used in market
making models. Robert and Rosenbaum proposed in [30] another route to estimate an efficient price for
large-tick assets that does not rely on the volumes at the best limits in the LOB but rather on transaction
prices only. The main idea underlying the approach is that if a transaction occurs and changes one of the
best limits in the LOB, then the efficient price must be close enough to the transaction price. Their paper
is one of the applications of the concept of uncertainty zones that has also been used for the optimal choice
of tick sizes (see [13] and [2] for a recent paper).

In an attempt to provide a general framework for defining notions of real-time prices, Stoikov proposed
in [32] the concept of micro-price.2 This micro-price is defined as the long-term expectation of the (classi-
cal) mid-price conditional on all the information currently available. In other words, it relies on a long-term
limit to eliminate microstructural noise.3 Close ideas were present in the paper [26] by Lehalle and Mounjid
who, however, restricted the conditioning to the value of the current mid-price and imbalance.4 The gen-
eral framework proposed by Stoikov leads to various notions of prices depending on the assumptions made
regarding the random variables at stake. In particular, the notions of mid-price and weighted mid-price
are outcomes of the approach for simple models of the LOB dynamics. An important advantage of this
approach, beyond its versatility, is that the micro-price is always, by definition, a martingale.

1To account for make-take fees on some platforms, they also propose to replace bid and ask prices in the formulas by
rebate-adjusted prices.

2See [33] for a recent multi-asset extension.
3A vast literature exists regarding the filtering of microstructural noise. However, the aim of that literature is more that

of estimating volatility at the high-frequency level rather than effectively constructing a denoised price.
4In fact, the idea could be traced back to [25].
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Many concepts have been introduced in the case of markets organized around LOBs and these concepts are
commonly used by practitioners in the equity world. The case of over-the-counter (OTC) markets, how-
ever, has always attracted less research. In fact, several questions arise naturally when it comes to them,
especially regarding the available information.

On some markets, post-trade transparency is enforced and both dealers and clients5 can have access – at
least theoretically – to a consolidated tape of transactions. This is the case in the US corporate bond
markets with TRACE data (see [15, 16] for relevant statistical methods to exploit TRACE data) but the
situation is different in the European market in spite of recent efforts. The problem is in fact the fragmented
nature of information and, as in all OTC markets, the lag in reporting.

Beyond transaction prices and volumes, clients usually have access to the prices streamed by dealers on
electronic platforms. In the case of the European market for corporate bonds, which is the market of in-
terest for this paper, the main (multi-dealer-to-client) platforms are those of Bloomberg, MarketAxess and
Tradeweb. However, streamed prices are only indicative and for one given size.

As far as dealers are concerned, the information available to them depends on the market. In the case of
corporate bonds, dealers do not have access to the prices streamed by competitors but they have access
to composite prices provided by multi-dealer-to-client electronic platforms (CBBT for Bloomberg, CP+ for
MarketAxess, etc.) or can make their own composite from multiple sources. These prices have a lot of
drawbacks but they often constitute a first useful estimate. Beyond indicative prices, dealers have in fact
access to a lot of information through their customer flows. In the case of corporate bond markets, requests
for quotes (RFQs) probably constitute for a market maker with a decent market share the main source of
information beyond composite prices. The information content of client flows is indeed very important: (i)
the side / sign of RFQs (i.e. the willingness to buy or to sell) clearly indicates the sentiment of clients
on each bond or more generally on the bonds with similar characteristics (sector of the issuer, maturity,
etc.), and (ii) client decisions to trade or not to trade at the price answered by the dealer inform about the
demand curve of clients and therefore about the current (unobservable) price or its distribution.6

The use of RFQ data to estimate a real-time price in corporate bond markets is not new in the literature. A
multivariate approach based on particle filtering has been proposed in [21] that exploited information from
a proprietary database of RFQs sent to a dealer and trades in the dealer-to-dealer segment of the market.
This particle filtering approach is interesting in that it is Bayesian and provides therefore a distribution for
real-time prices.

In this paper, we propose two new ideas that both rely on a new approach to model the flow of RFQs
and its complex dynamics. In classical market making models, RFQs are modelled by Poisson processes:
requests arrive randomly and the probability of occurrence of an RFQ is the same at all time – we call
intensity the infinitesimal probability of an RFQ occurrence per unit of time. To model varying liquidity,
we assume in this paper that RFQs arrive randomly with an intensity that is itself a stochastic process: a
simple continuous-time Markov chain with only a few states. In technical terms, we model the flow of RFQs
at the bid and at the ask by a bidimensional Markov-modulated Poisson process (MMPP).7

Our first idea consists in defining a micro-price à la Stoikov using the information contained in the flow
imbalance. More precisely, we assume that the price process drifts proportionally to the difference between
the intensity at the ask and the intensity at the bid. When intensities at the bid and at the ask are the
same, the micro-price is nothing but the current price. However, imbalance leads to a micro-price above or

5In this paper, we use the word client to designate a liquidity-taker, i.e. any market participant who is not a dealer (as
in the expression “dealer-to-client segment”). It is of course not the client of a specific dealer, although we are going to use a
dataset of RFQs sent to a specific dealer.

6One limitation is that some requests are sent without the intention to trade (for instance to value a portfolio). However,
thanks to multi-dealer-to-client platforms, dealers know whether the requests they answered led to a transaction with a
competitor.

7See [17] for an overview about MMPPs and their historical applications in telecommunication.
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below the current price depending on the side of the imbalance. The exact value of the micro-price depends
of course on the proportionality factor and on the joint dynamics of intensities.

Our second idea is inspired by the recent literature on OTC market making (see the reference books [10, 22]
for an overview of the recent market making literature). When two agents want to agree on a price, they
can resort to a neutral third party. However, if the seller requests a price to a market maker, then they will
get the bid price quoted by that market maker. If, instead, the buyer requests a price to a market maker,
then they will get the ask price quoted by that market maker. If we assume that this third party is aware
of the flow imbalances in the market, it is therefore natural to regard the average between these two prices
as a fair price, all the more when the market maker has zero inventory.

In market making models à la Avellaneda-Stoikov [1] (see also [6, 7, 22, 23] for a presentation which is more
consistent with OTC markets), trading flows depend on the distance of the dealer’s quotes to an exogenous
reference price. If trading flows (or intensities in mathematical models) at the bid and at the ask are the
same,8 then the optimal bid and ask prices of a market maker with no inventory will be symmetric around
the reference price, which is therefore a fair transfer price. What happens, however, when a market maker
is aware of asymmetries in the trading flows is that they skew their quotes even in the absence of inventory.
As a consequence, the average between the optimal bid and ask quotes ceases to coincide with the refer-
ence price. However, it is a fair transfer price given the current context in terms of liquidity. We propose
therefore an extension of existing market making models to incorporate MMPPs and obtain a new model in
which the average between the bid and ask quotes (in the absence of inventory) defines a fair transfer price
that can be used to value or transfer securities even when the market is illiquid and/or tends to be one-sided.

In Section 2 we introduce the modelling framework for the flow of RFQs and present the statistical estimation
of the model parameters. We then deal with two important extensions that are used throughout the paper.
The first one is linked to an exchangeability assumption between the intensities at the bid and at the ask.
Our assumption means that there is no structural asymmetry between the bid and the ask. Liquidity can of
course be asymmetric from time to time with a higher intensity on one side but this is only transitory and
the same could have happened on the other side with the same probability. The second extension allows
to go multi-bond and fit the model on a set of bonds rather than on single instruments. In Section 3, we
present a notion of micro-price inspired by that of Stoikov, but rooted into our model for the flow of RFQs,
and introduce our notion of Fair Transfer Price. Section 4 discusses numerical methods, presents many
numerical examples and discusses them.

2 A modelling framework for the flow of RFQs

2.1 Introduction and notation
Corporate bond markets, like many markets, see liquidity cycles. The number of RFQs received by a dealer
can be high or low. It can also be high on one side and low on the other, hence the very important role of
dealers who hold inventory and bridge the gap between different phases.

To model the dynamics of liquidity, the basic idea is to regard the number of RFQs received by a dealer on a
given bond at the bid and at the ask as two point processes. Of course, Poisson processes are not sufficient:
the intensities

(
λb
t

)
t

(for the bid) and (λa
t )t (for the ask) must be stochastic processes. In quantitative fi-

nance, the most commonly used extensions of Poisson processes are Hawkes processes. Hawkes processes are
indeed very good at modelling events that may happen in clusters. However, they are self-excited processes
and, in a market with limited post-trade transparency, we argue that it is odd to assume that an RFQ sent
by a client is the consequence of an RFQ sent by another client. Instead of using Hawkes processes, we
assume that intensities are continuous-time Markov chains with values in a finite set and use the concept of
Markov-modulated Poisson process. Because liquidity shocks can sometimes be symmetric and sometimes
be asymmetric, we consider more precisely a bidimensional MMPP: the intensity9 process (λt)t = (λb

t , λ
a
t )t

8We assume here implicitly that inventory costs are also the same.
9Throughout the paper, we call this process an intensity process in spite of it being bidimensional.
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is a continuous-time Markov chain taking values in {λ1,b, . . . , λmb,b} × {λ1,a, . . . , λma,a} with transition (or
rate) matrix Q ∈Mmbma

.10

In what follows, we focus on the estimation of the intensities λ1,b, . . . , λmb,b and λ1,a, . . . , λma,a and the
coefficients of Q. The method we propose is inspired by the EM algorithm proposed in [31] but generalized
to the case of a bidimensional MMPP.

2.2 Estimation of the parameters
2.2.1 Likelihood of a sample

Our goal in the next paragraphs is to compute the likelihood of a sequence of RFQ times t1 < . . . < tN
with sides s1, . . . , sN , where the sides are encoded as elements of {b, a} for bid and ask.

Let us denote by (NRFQ,b
t )t and (NRFQ,a

t )t the processes counting the number of RFQs at the bid and at
the ask respectively, and let us consider the function

G : t 7→ (G(jb−1)ma+ja,(kb−1)ma+ka(t))1≤jb,kb≤mb,1≤ja,ka≤ma

where

G(jb−1)ma+ja,(kb−1)ma+ka(t) = P(NRFQ,b
t = 0, NRFQ,a

t = 0, λt = (λkb,b, λka,a)|λ0 = (λjb,b, λja,a)).

We have for h > 0, 1 ≤ jb, kb ≤ mb and 1 ≤ ja, ka ≤ ma:

G(jb−1)ma+ja,(kb−1)ma+ka(t+ h)

= P(NRFQ,b
t+h = 0, NRFQ,a

t+h = 0, λt+h = (λkb,b, λka,a)|λ0 = (λjb,b, λja,a))

=

mb∑
lb=1

ma∑
la=1

P(NRFQ,b
t+h = 0, NRFQ,a

t+h = 0, λt+h = (λkb,b, λka,a), λt = (λlb,b, λla,a)|λ0 = (λjb,b, λja,a))

=

mb∑
lb=1

ma∑
la=1

G(jb−1)ma+ja,(lb−1)ma+la(t)P
(
NRFQ,b

t+h = 0, NRFQ,a
t+h = 0, λt+h = (λkb,b, λka,a)

|NRFQ,b
t = 0, NRFQ,a

t = 0, λt = (λlb,b, λla,a)
)

= G(jb−1)ma+ja,(kb−1)ma+ka(t)
(
1 +Q(kb−1)ma+ka,(kb−1)ma+ka

h+ o(h)
)

×
(
1− λkb,bh+ o(h)

) (
1− λka,ah+ o(h)

)
+

∑
1≤lb≤mb,1≤la≤ma,(lb,la )̸=(kb,ka)

G(jb−1)ma+ja,(lb−1)ma+la(t)
(
Q(lb−1)ma+la,(kb−1)ma+ka

h+ o(h)
)
.

This leads to the following differential equation:

d

dt
G(jb−1)ma+ja,(kb−1)ma+ka(t) = G(jb−1)ma+ja,(kb−1)ma+ka(t)

(
Q(kb−1)ma+ka,(kb−1)ma+ka

− λkb,b − λka,a
)

+
∑

1≤lb≤mb,1≤la≤ma,(lb,la) ̸=(kb,ka)

G(jb−1)ma+ja,(lb−1)ma+la(t)Q(lb−1)ma+la,(kb−1)ma+ka

which, in matrix form, writes
G′(t) = G(t)

(
Q− Λ̃b − Λ̃a

)
10In what follows, we shall order the states in lexicographic order, i.e.

(λ1,b, λ1,a), . . . , (λ1,b, λma,a), . . . , (λmb,b, λ1,a), . . . , (λmb,b, λma,a).

The case in which the two intensity processes are considered in an independent manner is a specific one and corresponds, for
the chosen order, to Q = Qb ⊗ Ima + Imb ⊗Qa where Qb and Qa are the transition matrices associated with

(
λb
t

)
t

and (λa
t )t

respectively and ⊗ denotes tensor (or Kronecker) product.

5



where Λb = diag(λ1,b, . . . , λmb,b), Λa = diag(λ1,a, . . . , λma,a), Λ̃b = Λb ⊗ Ima
and Λ̃a = Imb

⊗ Λa.

As G(0) is the identity matrix Imbma
, we conclude that

G(t) = exp
((

Q− Λ̃b − Λ̃a
)
t
)
.

By Markov property, for s ≥ 0, if we assume that λs is distributed according to a distribution represented
by a column vector πs (in Rmbma), then for 1 ≤ jb ≤ mb, 1 ≤ ja ≤ ma, π′

s exp((Q− Λ̃b − Λ̃a)t)e(jb−1)mb+ja

is the probability that there was no RFQ between time s and time s+ t and the intensity process is equal
to (λjb,b, λja,a) at time s+ t.11

If we assume that λ0 is distributed according to a distribution represented by a column vector π0, then the
likelihood of the whole sample writes

L(Q,Λb,Λa|t1, . . . , tN , s1, . . . sN )

= π′
0

(
N∏

n=1

exp
((

Q− Λ̃b − Λ̃a
)
(tn − tn−1)

)
Λ̃sn

)
e

where t0 = 0 and e =
∑mb

jb=1

∑ma

ja=1 e
(jb−1)ma+ja = (1, . . . , 1)′.

Maximizing the above likelihood expression is not straightforward. Instead, we propose in the next para-
graph an EM algorithm in which the hidden variable is the trajectory of the unobservable intensity process.

2.2.2 An EM algorithm

Let us consider as hidden variables a sequence of times 0 = τ0 < . . . < τP (≤ tN ) corresponding to transitions
of the process (λt)t and a sequence of couples (sb0, s

a
0), . . . , (s

b
P , s

a
P ) in {1, . . . ,mb} × {1, . . . ,ma} such that

(λb
t , λ

a
t ) = (λsbp,b, λsap,a) over (τp, τp+1] (where, by convention τP+1 = tN ).

The likelihood of t1 < . . . < tN , s1, . . . sN , τ1 < . . . < τP , sb0, . . . , sbP and sa0 , . . . , s
a
P is

L(Q,Λb,Λa|t1, . . . , tN , s1, . . . sN , τ1, . . . , τP+1, s
b
0, . . . , s

b
P , s

a
0 , . . . , s

a
P )

= (π0)(sb0−1)ma+sa0

(
P−1∏
p=0

Q(sbp−1)ma+sap,(s
b
p+1−1)ma+sap+1

exp
(
Q(sbp−1)ma+sap,(s

b
p−1)ma+sap

(τp+1 − τp)
))

× exp
(
Q(sbp−1)ma+sap,(s

b
p−1)ma+sap

(τP+1 − τP )
)( P∏

p=0

(
λsbp,b

)cbp
exp

(
−λsbp,b(τp+1 − τp)

))

×

(
P∏

p=0

(
λsap,a

)cap
exp

(
−λsap,a(τp+1 − τp)

))

where cbp = Card({n|tn ∈ (τp, τp+1], sn = b}) and cap = Card({n|tn ∈ (τp, τp+1], sn = a}).

The associated log-likelihood writes

log
(
(π0)(sb0−1)ma+sa0

)
+

P−1∑
p=0

log
(
Q(sbp−1)ma+sap,(s

b
p+1−1)ma+sap+1

)

+

P∑
p=0

(
Q(sbp−1)ma+sap,(s

b
p−1)ma+sap

− λsbp,b − λsap,a
)
(τp+1 − τp) +

P∑
p=0

cbp log(λ
sbp,b) +

P∑
p=0

cap log(λ
sap,b)

11(e1, . . . , embma ) is the canonical basis of Rmbma .
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= log
(
(π0)(sb0−1)ma+sa0

)
+

∑
1≤jb≤mb
1≤ja≤ma

∑
1≤kb≤mb
1≤ka≤ma

(jb,ja )̸=(kb,ka)

ñ(jb,ja),(kb,ka) log(Q(jb−1)ma+ja,(kb−1)ma+ka
)

+
∑

1≤jb≤mb
1≤ja≤ma

T̃ (jb,ja)
(
Q(jb−1)ma+ja,(jb−1)ma+ja − λjb,b − λja,a

)
+

∑
1≤jb≤mb
1≤ja≤ma

ñb
(jb,ja)

log(λjb,b) +
∑

1≤jb≤mb
1≤ja≤ma

ña
(jb,ja)

log(λja,a)

= log
(
(π0)(sb0−1)ma+sa0

)
+

∑
1≤jb≤mb
1≤ja≤ma

∑
1≤kb≤mb
1≤ka≤ma

(kb,ka )̸=(jb,ja)

ñ(jb,ja),(kb,ka) log(Q(jb−1)ma+ja,(kb−1)ma+ka
)

−
∑

1≤jb≤mb
1≤ja≤ma




∑
1≤kb≤mb
1≤ka≤ma

(kb,ka )̸=(jb,ja)

Q(jb−1)ma+ja,(kb−1)ma+ka

+ λjb,b + λja,a

 T̃ (jb,ja)

+
∑

1≤jb≤mb
1≤ja≤ma

ñb
(jb,ja)

log(λjb,b) +
∑

1≤jb≤mb
1≤ja≤ma

ña
(jb,ja)

log(λja,a) (1)

where:

• for 1 ≤ jb, kb ≤ mb and 1 ≤ ja, ka ≤ ma with (jb, ja) ̸= (kb, ka), ñ(jb,ja),(kb,ka) is the number
of transitions of the intensity process (λt)t from (λjb,b, λja,a) to (λkb,b, λka,a) over the time interval
[0, tN ],

• for 1 ≤ jb ≤ mb and 1 ≤ ja ≤ ma, T̃ (jb,ja) is the total time spent by the intensity process (λt)t in
(λjb,b, λja,a) over the time interval [0, tN ],

• for 1 ≤ jb ≤ mb and 1 ≤ ja ≤ ma, ñb
(jb,ja)

and ña
(jb,ja)

are the number of RFQs at the bid and at the
ask respectively over the time interval [0, tN ] while the intensity process (λt)t is in (λjb,b, λja,a).

The EM algorithm consists in iteratively computing the expectation of the log-likelihood expression (1) con-
ditionally on the real observables t1 < . . . < tN and s1, . . . , sN under the assumption that the unobservable
variables are distributed according to the model with given values Λ̂b, Λ̂a and Q̂ of Λb, Λa and Q, and, then,
carrying out a maximization of the resulting expression over the diagonal coefficients of Λb and Λa and the
non-diagonal coefficients of Q to update the values of Λ̂b, Λ̂a and Q̂.

Ignoring the first term which contributes almost nothing, we easily see that the EM algorithm boils down
to the following updates:

Λ̂b
jb,jb ←

∑ma

ja=1 EΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ñb
(jb,ja)

]
∑ma

ja=1 EΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

] for 1 ≤ jb ≤ mb,

Λ̂a
ja,ja ←

∑mb

jb=1 EΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ña
(jb,ja)

]
∑mb

jb=1 EΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

] for 1 ≤ ja ≤ ma,

and, for 1 ≤ jb, kb ≤ mb and 1 ≤ ja, ka ≤ ma with (jb, ja) ̸= (kb, ka),

Q̂(jb−1)ma+ja,(kb−1)ma+ka
←

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ñ(jb,ja),(kb,ka)

]
E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

] .
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Assuming that the initial intensity is distributed according to a distribution represented by a column vector
π0, we get that the conditional expectation of the number of RFQs at the bid while the intensity process is
equal to (λjb,b, λja,a) is12

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ñb
(jb,ja)

]
=

N∑
r=1

1sr=bEΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
1λb

tr
=λjb,b

]
=

1

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
N∑
r=1

1sr=bπ
′
0

(
r∏

n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e(jb−1)ma+ja

×e(jb−1)ma+ja
′
(

N∏
n=r+1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e.

Similarly, we have

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ña
(jb,ja)

]
=

N∑
r=1

1sr=aEΛ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
1λb

tr
=λjb,b

]
=

1

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
N∑
r=1

1sr=aπ
′
0

(
r∏

n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e(jb−1)ma+ja

×e(jb−1)ma+ja
′
(

N∏
n=r+1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e.

Regarding the time spent in (λjb,b, λja,a), we get

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

]
=

∫ tN

0

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
1(λb

t ,λ
a
t )=(λjb,b,λja,a)

]
dt

=
1

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
∫ tN

0

π′
0

n(t)∏
n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn


× exp((Q̂− ˜̂Λb − ˜̂Λa)(t− tn(t)))e

(jb−1)ma+jae(jb−1)ma+ja
′
exp((Q̂− ˜̂Λb − ˜̂Λa)(tn(t)+1 − t))

×

 N∏
n=n(t)+2

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

 e dt

where n(t) = max{n, tn < t}.

12We write
˜̂
Λb = Λ̂b ⊗ Ima and ˜̂

Λa = Imb ⊗ Λ̂a.
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This also writes

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

]
=

1

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
N∑
r=1

(
π′
0

(
r−1∏
n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)

×
∫ tr

tr−1

exp((Q̂− ˜̂Λb − ˜̂Λa)(t− tr−1))e
(jb−1)ma+jae(jb−1)ma+ja

′
exp((Q̂− ˜̂Λb − ˜̂Λa)(tr − t))dt

×

(
N∏

n=r+1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e

)
.

Using a similar reasoning, we have

E
Λ̂b,Λ̂a,Q̂,t1,...tN ,s1,...sN

[
ñ(jb,ja),(kb,ka)

]
=

Q̂(jb−1)ma+ja,(kb−1)ma+ka

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
∫ tN

0

π′
0

n(t)∏
n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn


× exp((Q̂− ˜̂Λb − ˜̂Λa)(t− tn(t)))e

(jb−1)ma+jae(kb−1)ma+ka
′
exp((Q̂− ˜̂Λb − ˜̂Λa)(tn(t)+1 − t))

×

 N∏
n=n(t)+2

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

 e dt

=
Q̂(jb−1)ma+ja,(kb−1)ma+ka

π′
0

(∏N
n=1 exp((Q̂−

˜̂
Λb − ˜̂Λa)(tn − tn−1))

˜̂
Λsn

)
e

×
N∑
r=1

(
π′
0

(
r−1∏
n=1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)

×
∫ tr

tr−1

exp((Q̂− ˜̂Λb − ˜̂Λa)(t− tr−1))e
(jb−1)ma+jae(kb−1)ma+ka

′
exp((Q̂− ˜̂Λb − ˜̂Λa)(tr − t))dt

×

(
N∏

n=r+1

exp((Q̂− ˜̂Λb − ˜̂Λa)(tn − tn−1))
˜̂
Λsn

)
e

)
.

These quantities can be computed iteratively and it is noteworthy that we do not need to compute the
denominators as they cancel out when we update Λ̂b, Λ̂a and Q̂. It must also be noted that the only
computational difficulty lies in finding a scaling factor to avoid ending up with very low or very high values.

2.2.3 Estimating the current state

Once an estimation of the parameters has been carried out, it is possible to estimate the state of the intensity
processes at any point in time t. If indeed we consider a prior probability distribution for the initial value
λ0 = (λb

0, λ
a
0) of intensity process represented by a column vector π0, then, given a sequence of observed

RFQs times 0 = t0 < t1 < . . . < tn(≤ t) prior to time t along with their associated sides s1, . . . sn, the a

9



posteriori distribution πt of (λb
t , λ

a
t ) writes

(πt)(jb−1)ma+ja ∝ π′
0

(
n∏

r=1

exp((Q− Λ̃b − Λ̃a)(tr − tr−1))Λ̃
sr

)
exp((Q− Λ̃b − Λ̃a)(t− tn))e

(jb−1)ma+ja

i.e.

πt =
π′
0

(∏n
r=1 exp((Q− Λ̃b − Λ̃a)(tr − tr−1))Λ̃

sr
)
exp((Q− Λ̃b − Λ̃a)(t− tn))e

(jb−1)ma+ja

π′
0

(∏n
r=1 exp((Q− Λ̃b − Λ̃a)(tr − tr−1))Λ̃sr

)
exp((Q− Λ̃b − Λ̃a)(t− tn))e

. (2)

2.3 Two important extensions
2.3.1 An exchangeability assumption to impose symmetry in the asymmetries

In the above estimation procedure, we considered two sets {λ1,b, . . . , λmb,b} and {λ1,a, . . . , λma,a}: one for
the bid and one for the ask. Even if one considers mb = ma = m, when one estimates intensities on real
data, there is no chance that the estimated parameters coincide between the bid and the ask. However, if
parameters are close and/or if there is no reason to believe that there is a structural asymmetry between
the bid and the ask, it makes sense to impose that both sides share a unique set of intensities {λ1, . . . , λm}.
In what follows, we shall furthermore assume, when indicated, some form of symmetry in liquidity asym-
metries: there may be periods when liquidity is higher on one side than the other but the exact opposite
could have happened with the same probability. In mathematical terms, this corresponds to a point-in-time
exchangeability assumption. In our Markovian setup, this means that the transition matrix Q of the Markov
chain (λb

t , λ
a
t )t is also that of the Markov chain (λa

t , λ
b
t)t. These assumptions are essential to build a model

where prices are driven by imbalances. In particular, they guarantee that the price process does not drift
indefinitely in such a model.

A natural question is of course that of estimating the intensities (or equivalently the diagonal matrix
Λ = diag(λ1, . . . , λm)) and the transition matrix Q ∈Mm2 using a set of RFQs at the bid and at the ask.

The likelihood computed in Section 2.2.1 is of course valid in the specific case we consider here with
Λb = Λa = Λ, but the EM algorithm has to be adapted to take into account the constraints imposed by the
symmetry assumptions. The log-likelihood (1) now writes

L(Q,Λ|t1, . . . , tN , s1, . . . sN , τ1, . . . , τP+1, s
b
0, . . . , s

b
P , s

a
0 , . . . , s

a
P )

= log
(
(π0)(sb0−1)m+sa0

)
+

∑
1≤jb≤m
1≤ja≤m

∑
1≤kb≤m
1≤ka≤m

(kb,ka )̸=(jb,ja)

ñ(jb,ja),(kb,ka) log(Q(jb−1)m+ja,(kb−1)m+ka
)

−
∑

1≤jb≤m
1≤ja≤m




∑
1≤kb≤m
1≤ka≤m

(kb,ka) ̸=(jb,ja)

Q(jb−1)m+ja,(kb−1)m+ka

+ λjb + λja

 T̃ (jb,ja)

+
∑

1≤jb≤m
1≤ja≤m

ñb
(jb,ja)

log(λjb) +
∑

1≤jb≤m
1≤ja≤m

ña
(jb,ja)

log(λja)

and the matrix Q verifies Q(jb−1)m+ja,(kb−1)m+ka
= Q(ja−1)m+jb,(ka−1)m+kb

for 1 ≤ jb, kb ≤ m and
1 ≤ ja, ka ≤ m.

Subsequently, the M -step (i.e. the update) is modified and becomes

Λ̂j,j ←

∑m
k=1 EΛ̂,Q̂,t1,...tN ,s1,...sN

[
ñb
(j,k)

]
+
∑m

k=1 EΛ̂,Q̂,t1,...tN ,s1,...sN

[
ña
(k,j)

]
∑m

k=1 EΛ̂,Q̂,t1,...tN ,s1,...sN

[
T̃ (j,k)

]
+
∑m

k=1 EΛ̂,Q̂,t1,...tN ,s1,...sN

[
T̃ (k,j)

] for 1 ≤ j ≤ m,
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and, for 1 ≤ jb, kb ≤ m and 1 ≤ ja, ka ≤ m with (jb, ja) ̸= (kb, ka),

Q̂(jb−1)m+ja,(kb−1)m+ka
←

EΛ̂,Q̂,t1,...tN ,s1,...sN

[
ñ(jb,ja),(kb,ka)

]
+EΛ̂,Q̂,t1,...tN ,s1,...sN

[
ñ(ja,jb),(ka,kb)

]
EΛ̂,Q̂,t1,...tN ,s1,...sN

[
T̃ (jb,ja)

]
+ EΛ̂,Q̂,t1,...tN ,s1,...sN

[
T̃ (ja,jb)

]
where the expectations are the same as in Section 2.2.2 with Λ̂b = Λ̂a = Λ̂.

2.3.2 A multi-bond extension

What determines liquidity in corporate bond markets? Depending on the risk aversion of market partici-
pants, the level of equity prices, those of yield curves and those of credit spreads, credit risk can be attractive
or unattractive to investors. Some sectors or some ranges of maturity can also be more attractive while
others may be less. In all cases, it is reasonable to believe that the interest of clients for bonds is shared
across bonds having similar characteristics.

In what follows, we consider a set of d bonds and propose a one-factor liquidity model that echoes in some
sense the CAPM. More precisely, we consider a Markov chain similar to the one used above, but we assume
that the intensity process of bond i is given by (λi

t)t = (λi,b
t , λi,a

t )t = (βi,bλb
t , β

i,aλa
t )t. In other words,

(λt)t = (λb
t , λ

a
t )t represents an aggregate, while bond-level sensitivities to this aggregate are represented by

coefficients (βi,b)i and (βi,a)i.13

To compute the likelihood of a sequence of RFQ times t1 < . . . < tN corresponding to RFQs in bonds
i1, . . . , iN and sides s1, . . . , sN where the sides are encoded as elements of {b, a} as above, let us introduce
two counting processes (NRFQ,i,b

t )t and (NRFQ,i,a
t )t for each bond i, and the function

G : t 7→ (G(jb−1)ma+ja,(kb−1)ma+ka(t))1≤jb,kb≤mb,1≤ja,ka≤ma

where

G(jb−1)ma+ja,(kb−1)ma+ka(t) = P(∀i,NRFQ,i,b
t = 0, NRFQ,i,a

t = 0, λt = (λkb,b, λka,a)|λ0 = (λjb,b, λja,a))

Using the same reasoning as above, we obtain for h > 0, 1 ≤ jb, kb ≤ mb and 1 ≤ ja, ka ≤ ma:

G(jb−1)ma+ja,(kb−1)ma+ka(t+ h)

= P(∀i,NRFQ,i,b
t+h = 0, NRFQ,i,a

t+h = 0, λt+h = (λkb,b, λka,a)|λ0 = (λjb,b, λja,a))

=

mb∑
lb=1

ma∑
la=1

P(∀i,NRFQ,i,b
t+h = 0, NRFQ,i,a

t+h = 0, λt+h = (λkb,b, λka,a), λt = (λlb,b, λla,a)|λ0 = (λjb,b, λja,a))

=

mb∑
lb=1

ma∑
la=1

G(jb−1)ma+ja,(lb−1)ma+la(t)P
(
∀i,NRFQ,i,b

t+h = 0, NRFQ,i,a
t+h = 0, λt+h = (λkb,b, λka,a)∣∣∣∀i,NRFQ,i,b

t = 0, NRFQ,i,a
t = 0, λt = (λlb,b, λla,a)

)
= G(jb−1)ma+ja,(kb−1)ma+ka(t)

(
1 +Q(kb−1)ma+ka,(kb−1)ma+ka

h+ o(h)
)

×
d∏

i=1

(
1− βi,bλkb,bh+ o(h)

) (
1− βi,aλka,ah+ o(h)

)
+

∑
1≤lb≤mb,1≤la≤ma,(lb,la) ̸=(kb,ka)

G(jb−1)ma+ja,(lb−1)ma+la(t)
(
Q(lb−1)ma+la,(kb−1)ma+ka

h+ o(h)
)
.

13For identifiability reasons, we consider the normalization

d∑
i=1

βi,b =

d∑
i=1

βi,a = 1.
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This leads to the following differential equation:

d

dt
G(jb−1)ma+ja,(kb−1)ma+ka(t)

= G(jb−1)ma+ja,(kb−1)ma+ka(t)

(
Q(kb−1)ma+ka,(kb−1)ma+ka

−
d∑

i=1

βi,bλkb,b −
d∑

i=1

βi,bλka,a

)
+

∑
1≤lb≤mb,1≤la≤ma,(lb,la )̸=(kb,ka)

G(jb−1)ma+ja,(lb−1)ma+la(t)Q(lb−1)ma+la,(kb−1)ma+ka

which, in matrix form, writes

G′(t) = G(t)

(
Q−

d∑
i=1

βi,bΛb ⊗ Ima −
d∑

i=1

βi,aImb
⊗ Λa

)
.

As G(0) = Imbma
, we conclude that

G(t) = exp

((
Q−

d∑
i=1

βi,bΛb ⊗ Ima
−

d∑
i=1

βi,aImb
⊗ Λa

)
t

)
= exp

((
Q− Λb ⊗ Ima

− Imb
⊗ Λa

)
t
)

thanks to the normalization choice.

If we assume that λ0 is distributed according to π0, then, using the same reasoning as above, the likelihood
writes

L(Q,Λb,Λa|t1, . . . , tN , i1, . . . iN , s1, . . . sN )

= π′

(
N∏

n=1

exp
((

Q− Λ̃b − Λ̃a
)
(tn − tn−1)

)
βin,snΛ̃sn

)
e

=

(
d∏

i=1

(βi,b)K
i,b

)(
d∏

i=1

(βi,a)K
i,a

)
π′

(
N∏

n=1

exp
((

Q− Λ̃b − Λ̃a
)
(tn − tn−1)

)
Λ̃sn

)
e

where Ki,b = Card({n, in = i, sn = b}) and Ki,a = Card({n, in = i, sn = a}).

From this expression we deduce that (i) we can merge RFQs at the bid across bonds and RFQs at the
ask across bonds to estimate the parameters of Q, Λb and Λa using the EM algorithm of Section 2.2 or
that of Section 2.3.1, and (ii) we can separately estimate the β coefficients. Regarding the former, the EM
algorithm presented above can be used on merged data. The latter (the estimation of the sensitivities) is
trivial: maximizing

∏d
i=1(β

i,b)K
i,b

subject to
∑d

i=1 β
i,b = 1 indeed boils down to setting βi,b proportional

to Ki,b, i.e. βi,b = Ki,b∑d
j=1 Kj,b – and similarly we obtain βi,a = Ki,a∑d

j=1 Kj,a .

3 New notions of price

3.1 A micro-price for corporate bond markets
3.1.1 Definition

In [32], Stoikov introduced the notion of micro-price for an asset traded through a limit order book. It is
defined as the asymptotic value of the expected mid-price, given all the information available (in the limit
order book).

It is reasonable to extend the ideas introduced in [32] to corporate bonds through the use of our model for
RFQ arrival. If we consider a reference price process (St)t that can be CBBT, CP+ or another composite,
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it is commonplace to assume a Brownian dynamics dSt = σdWt. However, if we know the current state of
liquidity, it makes more sense to consider a dynamics of the form

dSt = σdWt + κ(λa
t − λb

t)dt

where κ is a nonnegative constant. Then, the micro-price at time t is naturally defined by

Smicro
t = lim

T→+∞
E[ST |St, λ

b
t , λ

a
t ] = St + κ lim

T→+∞
E

[∫ T

t

(λa
s − λb

s)ds

∣∣∣∣∣λb
t , λ

a
t

]
if that limit exists.14

3.1.2 Mathematical analysis

To study this notion, let us define

vT (t, λ
b, λa) = E

[∫ T

t

(λa
s − λb

s)ds

∣∣∣∣∣λb
t = λb, λa

t = λa

]
.

If we write vT (t) the vector with coordinates (vT (t, λb,jb , λa,ja))1≤jb≤mb,1≤ja≤ma in lexicographic order, then
we have that vT solves

d

dt
vT (t) + Imb

⊗ λa
vec − λb

vec ⊗ Ima +QvT (t) = 0 and vT (T ) = 0

where λb
vec = (λb,1, . . . , λb,mb)′ and λa

vec = (λa,1, . . . , λa,ma)′, i.e.

vT (t) =

∫ T

t

exp(Q(s− t))(Imb
⊗ λa

vec − λb
vec ⊗ Ima

)ds.

Let us now assume as in Section 2.3.1 that (λb
s, λ

a
s)s and (λa

s , λ
b
s)s have the same distribution. Then, it is

straightforward to see that vT (t, λ, λ) = 0 for all λ ∈ {λ1, . . . , λm}. Moreover, writing λvec = (λ1, . . . , λm)′,
we have that Imb

⊗λa
vec−λb

vec⊗Ima
= Im⊗λvec−λvec⊗Im has all coordinates corresponding to symmetric

states equal to 0. Therefore, if we denote by the superscript ns vectors and matrices where all symmetric
states have been dropped, we have:

vns
T (t) =

∫ T

t

exp(Qns(s− t))(Im ⊗ λvec − λvec ⊗ Im)nsds.

If we add the assumption that the matrix Q is such that, in each asymmetric state, the intensity associated
with returning to at least one symmetric state is positive, then Qns is a strictly diagonally-dominant matrix
with negative diagonal terms and we have therefore, from Gershgorin circle theorem, that Qns is invertible
and that limT→+∞ exp(QnsT ) = 0. We conclude that

vns
T (t) = (Qns)−1 exp(Qns(T − t))(Im ⊗ λvec − λvec ⊗ Im)ns − (Qns)−1(Im ⊗ λvec − λvec ⊗ Im)ns

→T→+∞ −(Qns)−1(Im ⊗ λvec − λvec ⊗ Im)ns. (3)

Under the above assumptions, we can therefore define v(λb, λa) = limT→+∞ vT (t, λ
b, λa) and write

Smicro
t = St + κv(λb

t , λ
a
t ).

Of course, in practice, one never knows the current state of liquidity and rather uses a probability distribu-
tion π over the states. Then, one gets at time t a micro-price with mean

S̄micro
t = St + κ

∑
1≤jb≤m,1≤ja≤m

πjb,jav(λjb , λja) (4)

14For bonds, Brownian dynamics can only be valid in the short run. Nevertheless, we consider a long-term limit to define
the micro-price. This may seem problematic at first sight but, in our model, the long-term limit corresponds to a time horizon
equivalent to that of the return to a symmetric state of liquidity, which is typically short.
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and standard deviation15 given by

κ

√√√√√ ∑
1≤jb≤m,1≤ja≤m

πjb,jav(λjb , λja)2 −

 ∑
1≤jb≤m,1≤ja≤m

πjb,jav(λjb , λja)

2

.

3.1.3 Main remarks on our assumptions to obtain a micro-price

To be able to define the notion of micro-price and ensure that the limit exists, we imposed three structural
assumptions to our model for the flow of RFQs. We indeed impose that:

• the set of possible intensities is shared across the bid and the ask;

• the transition matrix Q is both that of (λb
t , λ

a
t ) and (λa

t , λ
b
t) – in the case of two liquidity states, high

and low, this means that the chance of any transition leading to or from an unbalanced state does not
depend on the side of the imbalance;

• any unbalanced state has a chance to be followed by at least one balanced state.

These assumptions are quite light and natural. What is more questionable is the linearity assumption in the
drift. It is however important to have in mind that intensities are not observed but that only the probability
to be in the different states can be estimated. This results in noisy estimates of κ as we shall see. Parsimony
clearly guided our modelling choice.

3.2 A fair transfer price
3.2.1 From a market making model to a fair transfer price

We now want to go beyond the notion of micro-price and use ideas coming from the market making litera-
ture to define a fair transfer price.

We consider a theoretical market maker receiving RFQs to buy and sell a bond (for a given unique size z
in this model). We model the number of RFQs at the bid and at the ask by MMPPs as above and do not
impose here, for the sake of generality, our symmetry assumptions that guaranteed the well-posedness of
the definition of micro-price.

We consider a reference price process (St)t and we assume that

dSt = σdWt + κ(λa
t − λb

t)dt.

Upon receiving at time t an RFQ at the bid (resp. at the ask), the market maker answers a price Sb
t = St−δbt

(resp. Sa
t = St + δat ) and this leads to a trade with probability f b(St − Sb

t ) = f b(δbt ) (resp. fa(Sa
t − St) =

fa(δat )) where f b (resp. fa) is a decreasing function from 1 to 0 (sometimes called S-function or S-curve).
The inventory process (qt)t of the market maker evolves subsequently as

dqt = zdN b
t − zdNa

t .

The cash process (Xt)t evolves therefore as

dXt = zSa
t dN

a
t − zSb

t dN
b
t = −Stdqt + zδbtdN

b
t + zδat dN

a
t

and the PnL process (PnLt)t = (Xt + qtSt)t as

dPnLt = zδbtdN
b
t + zδat dN

a
t + σqtdWt + κ(λa

t − λb
t)qtdt.

15This standard deviation only quantifies the uncertainty linked to the estimation of the current market liquidity state for
given values of the model parameters.
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A market maker wishing to capture the bid-ask spread while mitigating the risk (see [10, 11, 22]) typically
maximizes, over the set of predictable processes (δbt )t and (δat )t, the objective function

E

[∫ T

0

(
zλb

tδ
b
tf

b(δbt ) + zλa
t δ

a
t f

a(δat ) + κ(λa
t − λb

t)qt −
γ

2
σ2q2t

)
dt

]
for a given risk aversion parameter γ > 0.

Assuming that the theoretical market maker is able to identify in which state (λjb,b, λja,a) the market
is at any point in time, then the value functions (θjb,ja)1≤jb≤mb,1≤ja≤ma satisfy the following system of
Hamilton-Jacobi-Bellman (HJB) equations:

∂tθ
jb,ja(t, q) + κ(λja,a − λjb,b)q − 1

2
γσ2q2 +

∑
1≤kb≤mb,1≤ka≤ma

Q(jb−1)ma+ja,(kb−1)ma+ka
θkb,ka(t, q)

+ zλjb,bHb

(
θjb,ja(t, q)− θjb,ja(t, q + z)

z

)
+ zλja,aHa

(
θjb,ja(t, q)− θjb,ja(t, q − z)

z

)
= 0

with terminal condition θjb,ja(T, q) = 0, where Hb/a(p) = sup
δ∈R

f b/a(δ)(δ − p).

Under mild assumptions on the functions f b and fa (see for instance [7]), the optimal bid and ask quotes
of the market maker if the current state of the market is (λjb,b, λja,a) write

δb,i,⋆t = δ̄b
(
θjb,ja(t, qt−)− θjb,ja(t, qt− + z)

z

)
δa,i,⋆t = δ̄a

(
θjb,ja(t, qt−)− θjb,ja(t, qt− − z)

z

)
.

If the matrix Q is irreducible, an ergodic limit exists, i.e. there exists a constant c such that we have
limT→∞ θjb,ja(t, q) − c(T − t) = θjb,ja∞ (q) (see [24] for a general framework), and we can define a time-
independent notion of skew by

skewjb,ja
∞ = δ̄a

(
θjb,ja∞ (0)− θjb,ja∞ (−z)

z

)
− δ̄b

(
θjb,ja∞ (0)− θjb,ja∞ (z)

z

)
.

This skew “projects” the asymmetry of the market liquidity into the price space because of the market
maker’s need to quote asymmetrically in order to account for that asymmetric liquidity (even in the ab-
sence of inventory).

The notion of Fair Transfer Price we propose (from now on FTP) is then defined as the mid-price of a
market maker with infinite horizon and no inventory, i.e. it is defined at time t by:

SFTP
t = St +

1

2
skew∞.

It corresponds to the average between the price answered to a buyer and the price answered to a seller by
a theoretical market maker with no inventory, if they were requested – hence the dimension of fairness.

Of course, in practice, one never knows the current state of liquidity and rather uses a probability distribu-
tion π over the states. One gets at time t an FTP with mean

S̄FTP
t = St +

1

2

∑
1≤jb≤mb,1≤ja≤ma

πjb,jaskewjb,ja
∞ (5)

and standard deviation given by

1

2

√√√√√ ∑
1≤jb≤mb,1≤ja≤ma

πjb,ja
(
skewjb,ja

∞
)2 −

 ∑
1≤jb≤mb,1≤ja≤ma

πjb,jaskewjb,ja
∞

2

.
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3.2.2 Main remarks on FTP

It is a priori hard to relate our concept of FTP to those used in the case of LOBs. However, since top-of-book
volumes in LOBs are inversely related to the appetite of liquidity takers (the clients in a dealer market),
FTP shares a lot of good characteristics with the weighted mid-prices of LOBs. Bid/ask imbalances in
LOBs are indeed comparable to bid/ask asymmetries in client flows, though in the opposite direction. A
very high volume at the bid (relatively to the ask) in an LOB is similar to a situation, in a dealer market,
where the clients are more willing to buy than to sell, and in this context a market maker has to skew their
quotes towards the right, pushing the FTP upwards. This is in line with a weighted mid-price above the
mid-price in an LOB.

At first sight, the notion of FTP depends strongly on the reference price chosen to build the market making
model. This dependence is real but it is not the serious caveat it might seem. If indeed we replace (St)t
by (St + ξ)t, then the functions f b and fa should be shifted accordingly in the estimation procedure if we
assume that trading decisions depend on the absolute values (as opposed to relative) of proposed prices.
Subsequently, value functions should be translated by a term ξq and it is easy to see that the FTP would
be unchanged since the functions δ̄b and δ̄a are themselves translated by ±ξ. Of course, this invariance is
limited to constant shifts, but, still, it shows that differences between (relevant) reference prices should be
partially or entirely compensated by their impact on the definition / estimation of f b and fa.

In the definition of FTP, the transaction size z inputted in the market making model plays a role although it
might seem arbitrary. This transaction size z is typically the reference size for which market makers stream
prices in corporate bond markets. One can naturally generalize the concept to consider other sizes.

Another important point is that the FTP depends on the risk aversion parameter γ inputted into the ob-
jective function. This seems to be a problem since the parameter γ can be chosen arbitrarily. However,
the choice of γ leaves one degree of freedom, and this is rather an opportunity. In Section 4, we use γ to
calibrate the model to bid-ask spreads.

Many improvements can be made to the market making model in line with what exists in the literature,
like considering several transaction sizes (see [7]), taking account of client tiering (see [4]), using the pos-
sibility to externalize part of the flow (see [4, 3]), replacing the quadratic running penalty – linked to the
mean/quadratic variation objective function proposed in [11] – by a more complicated one, etc.16 One can
also decide to use a multi-bond market making model instead of a single-bond one (see for instance [5], [6]
and [23]). In fact, the notion of FTP is versatile and one can choose the market making model they want.
It must be noted that the role of the market making model is, here, not to provide quotes that will be
used inside a trading algorithm, but only that of projecting information regarding liquidity levels, liquidity
imbalances and volatility into the price space. In particular, there is no real problem in keeping the market
making model relatively simple (as soon as liquidity dynamics is taken into account), all the more since one
can rely on the degree of freedom provided by the risk aversion parameter γ to match a desired target (see
Section 5).

4 From theory to practice

4.1 Introduction
In the above sections, we have extended the notion of micro-price to our OTC framework and defined the
new concept of Fair Transfer Price. To be able to use these notions in practice we need to estimate several
parameters.

First, we need to estimate the parameters of the MMPPs. We detailed in Section 2 some estimation proce-
dures based on EM algorithms. Then, to compute the micro-price and/or to estimate the dynamics of the
reference price in the market making model, we need to estimate the constant κ and this is typically done

16The introduction of asymmetric inventory costs, linked to repo rates for instance, is not recommended if the goal is to
define a fair price between two parties that would apply symmetrically.
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with a linear regression of price moves on terms of the form
∑

1≤jb≤m,1≤ja≤m πjb,jav(λjb , λja), following
Eq. (4). When it comes to using FTP, the volatility parameter σ is also necessary and classical estimators
can be used for that matter. One also needs to estimate the parameters used in the modelling of the con-
version of an RFQ into a trade, i.e. the parameters of f b and fa once a parametric functional form has
been chosen – f b and fa are typically chosen logistic and the estimation procedure boils down to a logistic
regression. In addition to the estimation of parameters, the use of FTP requires to choose a risk aversion
parameter and solve an HJB equation to get optimal quotes.

In what follows, we illustrate our approach and the different concepts of prices on corporate bond data.
For that purpose, we use an anonymized dataset of RFQs on high-yield corporate bonds kindly provided
by J.P. Morgan. It contains, for each RFQ, the date and time of the request, the bond requested, the
direction of the request (buy or sell), the notional (odd lots have been removed from the dataset), the price
answered to the client, current market (in fact composite) prices at the bid and at the ask, and the status
– i.e. whether the price was accepted by the client or not. Because some requests are only sent to gather
information, we focused on RFQs that led to a trade with J.P. Morgan or with another dealer (this piece of
information, but of course not the identity of the other dealer, is known as we focus on RFQs sent through
multi-dealer-to-client platforms). Our dataset contains bonds from 4 different sectors.17 It covers more than
half a year of trading, over the post-covid period.18

4.2 Estimation of the Markov-modulated Poisson process
For the estimation of the parameters of the bidimensional Markov-modulated Poisson process, we consider
the multi-bond extension (see Section 2.3.2) to carry out the process at the sector level. To be able to
illustrate our notion of micro-price, we also rely on the exchangeability assumption of Section 2.3.1.

In the EM algorithm of Section 2.3.1, one must choose the number m of intensities, set their initial values
and those of the coefficients of the transition matrix. To obtain a first naive estimation of the intensities
of the Markov-modulated Poisson processes for each sector, we start by computing the number of RFQs
per day at the bid and at the ask. The results are plotted in Figures 1, 2, 3 and 4. We clearly see that
liquidity is volatile and that upward or downward bumps may be simultaneous across bid and ask (see for
instance what happens around t = 60 and t = 90 in Figure 1), but also asymmetric with one side seeing a rise
or a decrease in liquidity while the other does not (see for instance what happens around t = 75 in Figure 2).

For each sector, we decide to consider two intensities (m = 2), and initialize them using the average over
the bid and ask sides of the quantile of order 10% (for the low liquidity state) and 90% (for the high liq-
uidity state) of the distribution of the number of RFQs per day. To initialize Q, we use very naive values
corresponding to independence between the intensities at the bid and at the ask and a transition rate from
low to high or high to low equal to 1 (per day).

We ran the EM algorithm of Section 2.3.1 over our RFQ database, sector by sector (using the trick of the
multi-bond extension – see Section 2.3.2). To normalize likelihoods, we used classical regression techniques.
We noticed convergence of the values of λ1, λ2 and the coefficients of the matrix Q after approximately
50 steps. The resulting parameters of the MMPPs are reported in Table 1. We clearly see that, for the 4
sectors, the algorithm manages to separate low liquidity from high liquidity. We also see that the transition
matrices are different across sectors: high transition rates and a relatively high probability to jump from
an imbalanced state to the opposite imbalanced state in the case of Sector 1, a very stable (resp. unstable)
low/low-liquidity (resp. high/high-liquidity) state in the case of Sector 2, and low transition rates for Sec-
tor 4.

17For confidentiality reasons, we do not give the id of the bonds nor that of the sectors.
18For confidentiality reasons, we do not document the exact period of time. Throughout the paper, the unit for times is in

days since the beginning of the period, excluding weekends. Nights have also been excluded so that the beginning of the next
trading day follows the end of the current one – trading hours have been set from 7am to 5pm.
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Figure 1: Number of RFQs per day at the bid and at the ask for Sector 1.
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Figure 2: Number of RFQs per day at the bid and at the ask for Sector 2.
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Figure 3: Number of RFQs per day at the bid and at the ask for Sector 3.
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Figure 4: Number of RFQs per day at the bid and at the ask for Sector 4.
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Sector λ1 λ2 Q

Sector 1 10.83 73.03


−14.01 4.37 4.37 5.27
19.32 −60.91 12.54 29.05
19.32 12.54 −60.91 29.05
23.67 15.00 15.00 −53.67



Sector 2 8.44 58.28


−4.55 1.00 1.00 2.55
18.53 −28.31 0.13 9.65
18.53 0.13 −28.31 9.65
14.77 16.73 16.73 −48.23



Sector 3 15.73 81.78


−9.98 2.79 2.79 4.40
20.53 −23.73 0.02 3.18
20.53 0.02 −23.73 3.18
9.87 4.17 4.17 −18.21



Sector 4 7.33 28.32


−1.67 0.48 0.48 0.71
1.92 −2.02 0.00 0.10
1.92 0.00 −2.02 0.10
0.84 0.11 0.11 −1.06



Table 1: Estimated parameters of the Markov-modulated Poisson process for the four sectors.

Once the parameters of the MMPPs have been estimated, we can evaluate at each point in time the prob-
ability to be in each state (see Section 2.2.3). In Figures 5, 6, 7 and 8, we document the distribution of
the values taken by the probability π0,1 (resp. π1,0) to be in a low/high-liquidity (resp. high/low-liquidity)
state. We clearly see that high values of these probabilities are quite rare: it is hard to be certain that a
desquilibrium in RFQs indeed corresponds to an underlying asymmetric regime.
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Figure 5: Distribution of the values taken by π0,1 and π1,0 for Sector 1.
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Figure 6: Distribution of the values taken by π0,1 and π1,0 for Sector 2.
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Figure 7: Distribution of the values taken by π0,1 and π1,0 for Sector 3.
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Figure 8: Distribution of the values taken by π0,1 and π1,0 for Sector 4.

4.3 Micro-price
4.3.1 Estimation of κ

In order to illustrate our concept of micro-price, we need first to estimate the parameter κ in the dynamics
of bond prices. For each sector, we consider 4 bonds amongst those available in the database. We first
compute the functions v given by Eq. (3) and then use Eq. (4) to perform a linear regression and estimate κ
for each bond. We also compute the arithmetic volatility σ and the weight β associated with each bond
(see Section 2.3.2). The results are reported in Table 2.

The estimated values for κ are not all significantly different for 0 (given the standard deviations reported),
but it is nevertheless interesting to notice that the figures are positive for all bonds. This tends to prove
that imbalance in the flow of RFQs has a consistant predictive power on the variation of the price, hence
the interest of the concept of micro-price.

4.3.2 Micro-price in practice

In Table 3, we took the last composite mid-price and bid-ask spread in the dataset for each of the 16
bonds we focus on, and computed the corresponding micro-price when we are 100% sure that the market is
imbalanced, one way or the other.

Of course, and this is confirmed by the above histograms, one can seldom be certain to be in any of the
two imbalanced states. In practice, the micro-price must therefore be computed as an expectation over the
different possible states, i.e. as a function of the current estimates of the probabilities to be in each state.
In particular, the micro-prices exhibited in Table 3 correspond to theoretical bounds for the micro-price
that would be used in practice.
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Sector Bond β κ (stdev) σ

1 1 0.10 2.29 (0.55) 18.39
2 0.10 0.25 (0.49) 15.43
3 0.06 2.83 (1.66) 22.55
4 0.05 0.33 (2.23) 19.75

2 1 0.19 0.57 (0.19) 13.75
2 0.14 0.90 (0.22) 16.05
3 0.11 0.65 (0.16) 9.80
4 0.10 0.86 (0.68) 20.36

3 1 0.11 0.61 (0.34) 9.93
2 0.09 0.05 (0.16) 18.41
3 0.06 0.11 (0.08) 12.23
4 0.05 0.08 (0.11) 18.68

4 1 0.21 0.04 (0.02) 13.00
2 0.12 0.01 (0.01) 24.09
3 0.12 0.08 (0.04) 16.91
4 0.07 0.09 (0.05) 12.67

Table 2: Estimations of β, κ and σ.

Sector Bond Mid-price Bid price Ask price Micro-price π1,0=1 Micro-price π0,1=1

1 1 103.593 103.098 104.088 101.652 105.534
2 97.107 96.614 97.600 96.892 97.322
3 99.146 98.631 99.661 96.752 101.541
4 94.187 93.049 95.325 93.909 94.465

2 1 99.823 99.291 100.355 98.819 100.827
2 99.270 98.603 99.936 97.700 100.840
3 99.649 98.815 100.483 98.513 100.784
4 98.903 97.570 100.235 97.970 99.835

3 1 95.338 94.674 96.001 93.634 97.041
2 92.394 91.860 92.927 92.252 92.535
3 97.137 96.484 97.790 96.819 97.455
4 94.839 94.220 95.458 94.810 94.867

4 1 102.632 102.151 103.112 102.252 103.011
2 104.785 104.327 105.242 104.717 104.853
3 104.824 104.293 105.355 103.994 105.654
4 108.438 107.991 108.884 107.500 109.375

Table 3: Micro-price for the different bonds in imbalanced states.

23



In what follows, we study how the micro-price evolves depending on the probabilities of the different states
of the MMPP, for the first bond of each sector. Notice that, in our case, the respective values of π0,0

and π1,1 have no impact on the micro-price: only π0,1 and π1,0 matter.

In Figure 9, we plot the micro-price as a function of π0,1, when π1,0 = 0. Figure 10 documents similarly
the micro-price as a function of π0,1, when π1,0 = 0.3. To study the impact of the uncertainty on the
parameter κ, we also plot the micro-prices corresponding to values of κ one standard deviation above and
below our estimation. Composite bid-ask spreads are also reported in the Figures.

Naturally, when π0,1 = π1,0, the micro-price is equal to the mid-price. As expected, we also see that a rise
in π0,1 leads to an increase in micro-prices. In Figure 9, we see that micro-prices are within the composite
bid-ask spread for moderate values of π0,1 but beyond for large values (except for Bond 4.1). Values beyond
the bid-ask spread could be seen as a real trading signal, but it is important to have in mind that the
results obtained for high values of π0,1 have to be taken with care because the linear regressions have been
carried out with only a few high values for π0,1 (see the above histograms). We see in Figure 10 that when
π1,0 = 0.3, most values remain inside the bid-ask spread. In fact, we see in Figures 11, 12, 13 and 14 that
micro-prices are significantly outside of the bid-ask spread for extreme values of π0,1 and π1,0 (in opposite
directions) only, i.e. when one is really sure that the flow is imbalanced.
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Figure 9: Micro-price for different bonds as a function of π0,1 when π1,0 = 0.
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Figure 10: Micro-price for different bonds as a function of π0,1 when π1,0 = 0.3.
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Figure 11: Micro-price for Bond 1.1 as a function of π0,1 and π1,0.
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Figure 12: Micro-price for Bond 2.1 as a function of π0,1 and π1,0.
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Figure 13: Micro-price for Bond 3.1 as a function of π0,1 and π1,0.
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Figure 14: Micro-price for Bond 4.1 as a function of π0,1 and π1,0.

4.4 Fair Transfer Price
Let us now come to the case of Fair Transfer Prices. For that purpose, we need to fit S-curves, choose a
risk aversion parameter and solve a HJB equation.

4.4.1 Estimation of S-curves

For the functions f b and fa defined in Section 3.2.1, we assume a logistic form. We noticed no systematic
difference between the bid and ask sides. Consequently, we considered

f b(δ) = fa(δ) =
1

1 + eα+
β

δ0
δ
=: f(δ),

where δ0 is the current composite bid-ask spread of the bond, and the parameters α and β are estimated
with a logistic regression.
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Figure 15: Intensity function f for the different sectors.
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With this parametrization, the functions appeared to be almost uniform accross sectors (as shown in Fig-
ure 15), and we therefore estimated, for the sake of simplicity, a single S-curve using the entire dataset,
independently of the sector. We obtained the following (rounded) values: α = −0.7 and β = 3.1.

4.4.2 Solving HJB equations

Our concept of FTP relies on the bid and ask quotes of a theoretical market maker that knows the current
state of the market. To solve the stochastic optimal control problem of that market maker and obtain the
associated quotes, one needs to compute numerically the value functions.

Let us recall that, in the model of Section 3, the value functions (θjb,ja)1≤jb≤mb,1≤ja≤ma of the market
maker satisfy the following system of Hamilton-Jacobi-Bellman (HJB) equations:19

∂tθ
jb,ja(t, q) + κ(λja,a − λjb,b)q − 1

2
γσ2q2 +

∑
1≤kb≤mb,1≤ka≤ma

Q(jb−1)ma+ja,(kb−1)ma+ka
θkb,ka(t, q)

+zλjb,bHb

(
θjb,ja(t, q)− θjb,ja(t, q + z)

z

)
+ zλja,aHa

(
θjb,ja(t, q)− θjb,ja(t, q − z)

z

)
= 0

with terminal condition θjb,ja(T, q) = 0.

We need to compute or approximate numerically the solution of this system of equations in order to compute
FTPs. A natural approach is to use a Euler scheme, preferably implicit. In that case, relevant boundary
conditions can be chosen by adding risk limits to the inventory of the theoretical market maker, and the
equations become

∂tθ
jb,ja(t, q) + κ(λja,a − λjb,b)q − 1

2
γσ2q2 +

∑
1≤kb≤mb,1≤ka≤ma

Q(jb−1)ma+ja,(kb−1)ma+ka
θkb,ka(t, q)

+zλjb,b1{q+z≤q̄}H
b

(
θjb,ja(t, q)− θjb,ja(t, q + z)

z

)
+zλja,a1{q−z≥−q̄}H

a

(
θjb,ja(t, q)− θjb,ja(t, q − z)

z

)
= 0

with terminal condition θjb,ja(T, q) = 0, where q̄ > 0 corresponds to the risk limit, i.e. the market maker
refuses any trade that would bring the inventory out of the interval [−q̄, q̄]. If q̄ is large enough, this has
almost no impact on the bid and ask quotes of the market maker at q = 0 that are used to compute FTPs.

Euler schemes can be time-consuming when the number of states mb × ma is large, or even unfeasible if
the one-asset market making model is replaced by a multi-asset one. Using the same approach as in [6], we
propose in the following paragraphs a quadratic approximation of the value functions.

Let us replace the Hamiltonian functions Hb and Ha by the quadratic functions

Ȟb : p 7→ αb
0 + αb

1p+
1

2
αb
2p

2 and Ȟa : p 7→ αa
0 + αa

1p+
1

2
αa
2p

2.

A natural choice for the functions Ȟb and Ȟa derives from Taylor expansions around p = 0. In that case,
we have

∀i ∈ {0, 1, 2}, αb
i = Hb(i)(0) and αa

i = Ha(i)(0).

For (jb, ja) ∈ {1, . . . ,mb}×{1, . . . ,ma}, we denote by θ̌jb,ja the approximation of θjb,ja associated with the
functions Ȟb and Ȟa. The functions (θ̌jb,ja)1≤jbmb,1≤ja≤ma

verify

0 = ∂tθ̌
jb,ja(t, q) + κ(λja,a − λjb,b)q − 1

2
γσ2q2

+
∑

1≤kb≤mb,1≤ka≤ma

Q(jb−1)ma+ja,(kb−1)ma+ka
θ̌kb,ka(t, q) + z

(
λjb,bαb

0 + λja,aαa
0

)
19We state the equations in the general case, i.e. not in the case of the extension of Section 2.3.1, although our illustrations

rely on the exchangeability assumption.
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+
(
λjb,bαb

1

(
θ̌jb,ja(t, q)− θ̌jb,ja(t, q + z)

)
+ λja,aαa

1

(
θ̌jb,ja(t, q)− θ̌jb,ja(t, q − z)

))
+

1

2z

(
λjb,bαb

2

(
θ̌jb,ja(t, q)− θ̌jb,ja(t, q + z)

)2
+ λja,aαa

2

(
θ̌jb,ja(t, q)− θ̌jb,ja(t, q − z)

)2)
,

and of course we consider the terminal condition θ̌jb,ja(T, q) = 0.

To write the approximations of the value functions in a simple way, let us introduce for i ∈ {0, 1, 2} and k ∈ N

∆b
i,k = αb

iz
k and ∆a

i,k = αa
i z

k.

For (jb, ja) ∈ {1, . . . ,mb} × {1, . . . ,ma}, let us consider three differentiable functions Ajb,ja : [0, T ] → R,
Bjb,ja : [0, T ]→ R, and Cjb,ja : [0, T ]→ R solutions of the system of ordinary differential equations

A′
jb,ja

(t) = 2
(
λjb,b∆b

2,1 + λja,a∆a
2,1

)
Ajb,ja(t)

2 − 1
2γσ

2

−
∑

1≤kb≤mb,1≤ka≤ma
Q(jb−1)ma+ja,(kb−1)ma+ka

Akb,ka
(t)

B′
jb,ja

(t) = 2
(
λjb,b∆b

1,1 − λja,a∆a
1,1

)
Ajb,ja(t) + 2

(
λjb,b∆b

2,2 − λja,a∆a
2,2

)
Ajb,ja(t)

2

+κ(λja,a − λjb,b) + 2
(
λjb,b∆b

2,1 + λja,a∆a
2,1

)
Ajb,ja(t)Bjb,ja(t)

−
∑

1≤kb≤mb,1≤ka≤ma
Q(jb−1)ma+ja,(kb−1)ma+ka

Bkb,ka(t)

C ′
jb,ja

(t) =
(
λjb,b∆b

0,1 + λja,a∆a
0,1

)
+
(
λjb,b∆b

1,2 + λja,a∆a
1,2

)
Ajb,ja(t)

+
(
λjb,b∆b

1,1 − λja,a∆a
1,1

)
Bjb,ja(t) +

1
2

(
λjb,b∆b

2,3 + λja,a∆a
2,3

)
Ajb,ja(t)

2

+ 1
2

(
λjb,b∆b

2,1 + λja,a∆a
2,1

)
Bjb,ja(t)

2 +
(
λjb,b∆b

2,2 − λja,a∆a
2,2

)
Ajb,ja(t)Bjb,ja(t)

−
∑

1≤kb≤mb,1≤ka≤ma
Q(jb−1)ma+ja,(kb−1)ma+ka

Ckb,ka
(t),

with terminal conditions Ajb,ja(T ) = 0, Bjb,ja(T ) = 0 and Cjb,ja(T ) = 0.

Then, for all (jb, ja) ∈ {1, . . . ,mb} × {1, . . . ,ma}, we have:
θ̌jb,ja(t, q) = −q2Ajb,ja(t)− qBjb,ja(t)− Cjb,ja(t).

Moreover, asymptotic results on value functions continue to hold on their approximations.

This kind of approximations has been used in [4, 5] with great success in terms of risk management. We
investigate the quality of the approximation in terms of FTPs below.

4.4.3 FTP in practice

To compute FTPs as proposed in Section 3.2.1, we still have to choose the risk aversion of the theoretical
market maker. A natural way to choose γ is to calibrate it to composite bid and ask prices, i.e. we assume
that the quotes of the theoretical market maker correspond to that of the market when inventory is equal to 0.

The optimal strategy of the theoretical market maker is obtained by solving numerically the HJB equation,
using an implicit Euler scheme, and through a quadratic approximation of the value function. Depending
on the numerical method we use, γ calibrated to composite bid and ask prices takes different values.20
However, in terms of FTP, the results obtained with the two numerical methods are almost identical, as
shown in Table 4 (FTP (a) corresponds to the Euler scheme and FTP (b) to the quadratic approximation).
As for micro-prices, in practice, one can never be certain to be in any given state, and the FTP has to be
computed as an expectation over the different possible states, depending on the current estimate. Therefore
the FTPs exhibited in Table 4 correspond to bounds for the FTPs that would be used in practice. Notice
that the adjustments given by FTPs are of lower magnitude than those suggested by micro-prices. As for
micro-prices, we study how FTPs evolve depending on the probabilities. Figure 16 documents FTPs as a
function of π0,1, when π1,0 = 0 while Figure 17 documents FTPs as a function of π0,1, when π1,0 = 0.3. We
see that adjustments are always small. This is linked to the fact that, even when the market is imbalanced,
market makers can slightly skew their quotes to deter risk-increasing trades and transform requests into
trades when trades would result in a less risky position (less inventory in absolute value in our case). This
strongly relies on our implicit assumption that S-curves are the same independently of the liquidity regime.
However, we found no empirical evidence of the influence of intensities on fill rates.

20The values of γ vary across bonds. This comes from our choice of a simple market making model to illustrate our concepts.
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Bond γ (a) γ (b) Bid price Ask price π1,0=1: FTP (a) FTP (b) π0,1=1: FTP (a) FTP (b)
1.1 4.5 · 10−9 5.1 · 10−9 103.098 104.088 103.458 103.458 103.728 103.729
1.2 8.9 · 10−9 9.1 · 10−9 96.514 97.600 97.092 97.092 97.122 97.122
1.3 4.4 · 10−8 5.2 · 10−8 98.631 99.661 99.038 99.037 99.254 99.255
1.4 8.5 · 10−7 1.6 · 10−6 93.049 95.325 94.167 94.172 94.207 94.202
2.1 6.1 · 10−8 6.9 · 10−8 99.291 100.355 99.682 99.681 99.964 99.965
2.2 7.0 · 10−8 8.3 · 10−8 98.603 99.936 99.106 99.104 99.433 99.435
2.3 1.1 · 10−7 1.2 · 10−7 98.815 100.483 99.554 99.553 99.743 99.744
2.4 1.3 · 10−7 1.6 · 10−7 97.570 100.235 98.824 98.824 98.981 98.981
3.1 4.9 · 10−7 5.6 · 10−7 94.674 96.001 95.195 95.193 95.480 95.482
3.2 6.1 · 10−7 7.6 · 10−7 91.860 92.927 92.364 92.365 92.423 94.422
3.3 7.0 · 10−7 9.6 · 10−7 96.484 97.790 97.104 97.107 97.169 97.166
3.4 4.3 · 10−7 7.7 · 10−7 94.220 95.458 94.815 94.824 94.860 94.851
4.1 1.2 · 10−7 1.3 · 10−7 102.151 103.112 102.523 102.525 102.740 102.738
4.2 1.3 · 10−7 1.7 · 10−7 104.327 105.242 104.691 104.701 104.878 104.868
4.3 1.8 · 10−7 2.2 · 10−7 104.293 105.355 104.697 104.706 104.951 104.942
4.4 1.5 · 10−8 1.6 · 10−8 107.991 108.884 108.377 108.377 108.498 108.498

Table 4: FTP for the different bonds in imbalanced states.
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Figure 16: FTP for different bonds as a function of π0,1 when π1,0 = 0.
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Figure 17: FTP for different bonds as a function of π0,1 when π1,0 = 0.3.

Conclusion
In this paper, we developed a new approach to model liquidity in corporate bond markets. This approach,
which can be used in any OTC market where clients request dealers for prices, relies on Markov-modulated
Poisson processes. The statistical estimation procedure we proposed is based on an EM algorithm and can
be used either at the bond level or at a more macroscopic level (at the sector level for instance). Although
asymmetric states are hard to identify with great confidence, we showed that flow imbalances contain in-
formation about the evolution of the price and use flow asymmetries to generalize the notion of micro-price
proposed by Stoikov in the context of markets organized around limit order books. We also coined a new
concept inspired by the recent market making literature: Fair Transfer Price. It is related to the quotes
proposed by a market maker who takes flow imbalances into account and therefore projects liquidity asym-
metries onto the price space. We noticed that the price adjustments associated with FTP are often small,
smaller than those associated with micro-prices.
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