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Abstract
Since the recent surge in inflation and positive real interest rate, financial fragmentation risk

is again a matter a fear in the euro area. This paper proposes an evaluation of the fragmentation
risk building a novel high-dimensional dataset covering a wide range of fields within 10 European
countries over the period 2007-2024. This Big Data dataset has been exploited by a new machine
learning technique (XGBoost) to find evidence of the financial fragmentation risk in the Euro Area.
It turns out that the predicted long-term yield spreads of peripheral countries rise while those in
core countries’ rise remain contained or even decrease. This divergence in yield di↵erentials put a
lot of scrutiny on the action of the ECB and call for policy guidance to manage a new European
sovereign debt crisis.
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Non-technical summary

• The financial fragmentation risk in the Euro area has been rekindled since the COVID-
19 pandemic, the European energy crisis and the war in Ukraine. The induced eco-
nomic turmoil disrupts ECB’s mandate to tame inflation as the economic soundness
of highly indebted countries is a↵ected by the rate hikes;

• This paper leverages Big Data and machine learning techniques to predict financial
fragmentation risk within the Euro Zone;

• The Big Data dataset encompasses several macroeconomic and financial categories of
variables from ten Euro-Zone countries from March 2007 to January 2024 (monthly
frequency) and gathers more than 900,000 observations overall;

• XGBoost, a novel Gradient Boosted Machine technique, is used as our main Machine
Learning technique to extract the most significant features of our dataset in order to
predict 10-year sovereign spreads 6-months ahead;

• The main result of our analysis is in line with the recent literature regarding the
resurgence of Financial Fragmentation risk: peripheral countries are predicted to have
higher long-term yield spreads while core countries yield spreads’ rise remain contained
or even decreases;

• Our analysis categorizes Austria, the Netherlands and Finland as core countries while
peripheral countries are Portugal, Spain, Italy, Ireland, Greece as well as -for the first
time ever- France and Belgium;

• The divergence in yield spreads can be explained by “contagion” and/or “flight-to-
quality” behaviors from investors, revealing the dynamics between core and peripheral
countries;

• In conclusion, financial fragmentation risk is well and alive within the Euro zone,
calling for action from macroprudential experts and providing a working ground for
academic researchers.
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1 Introduction

The Great Financial Crisis in 2008 and the European Sovereign Debt crisis in 2011 unveiled
the Euro area’s vulnerabilities. Since then, the Euro area’s financial landscape, particularly
its sovereign bond market has been a focal point. The introduction of the Euro as a common
currency seemed to pave the way towards a convergence, in sovereign bonds across mem-
ber states. However, as debt and deficit concerns intensified and diverged between Euro
countries, investors began discerningly di↵erentiating between sovereign bonds issued by
Euro area countries, thereby sowing the seeds of fragmentation among core and peripheral
countries.

Financial fragmentation risk appears as the divergence in the sovereign bonds yield spreads
across countries. At the apogee of the Euro Area crisis, yield spreads for countries such as
Portugal, Spain and Greece skyrocketed. In contrast, those for countries like Austria, the
Netherlands or Finland remained relatively stable as shown in Figure 1.

Figure 1: Euro area sovereign spreads

Notes: 10-years sovereign bond spreads for Euro area countries under study (Austria, Belgium, Finland,

France, Greece, Ireland, Italy, the Netherlands, Portugal and Spain). The benchmark country is Germany.

Weekly data retrieved from Bloomberg. Grey sections indicate the timing of the Great Financial crisis, the

European Sovereign Debt Crisis and the COVID-19 crisis.

On the one hand, this divergence reflects “contagion” in sovereign bond markets, where
financial stress in one country raises borrowing costs in others (Favero & Missale, 2012).
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This relationship arises from investor perceptions of shared risks, such as potential Euro
area financial fragmentation, which amplifies spreads across countries. On the other hand,
in search of safer havens, investors might flock to bonds perceived as less risky, driving their
yields down, implying a “flight-to-quality” behavior from investors (Beber et al., 2009).
High-indebted countries running large deficits, and grappling with solvency concerns, wit-
nessed their borrowing costs increase, further straining their fiscal positions. In contrast,
countries perceived as economically sound enjoyed reduced borrowing costs, further solidify-
ing their stable economic position. This divergence in borrowing costs reflects heterogeneous
risk premia between countries using a unique currency. It therefore generates a risk of the
split into ”two-speed” Euro area opposing core and peripheral countries, reported as the
fragmentation risk. In response to the crises and the fragmentation risk, the European Cen-
tral Bank (ECB) and other European institutions embarked on a series of measures. The
Outright Monetary Transactions (OMT) program, unveiled by the ECB in 2012, aimed at
mitigating sovereign bond market fragmentation. By committing to potentially unlimited
purchases of sovereign bonds under specific conditions, the ECB sought to reassure market
concerns and foster integration.

While policy measures have reduced fragmentation risk over the past decade, the path
to complete integration remains fraught with challenges. Structural impediments, such as
incomplete banking integration, disparities in national regulations, and the absence of a
cohesive fiscal policy, continue to undermine the e↵orts towards a convincing Euro area
integration. 1

This paper proposes to propose novel forecast of the sovereign yield spreads to provide
evidence of financial fragmentation risk in the Euro area. The first objective is to identify
the divergence of spreads among peripheral and core countries in the Euro area. Highly
indebted countries should exhibit rising yield spreads driven by “contagion” whereas sound
economies would benefit from “flight-to-quality” and experience decreasing yield spreads.
The second objective is to identify which countries are core or peripheral in the Euro area.
As the economic and financial soundness of countries may change over time, their belonging
to one of the binary clusters is not guaranteed. Indeed, countries with rising debt and large
public deficit but being part of the core cluster may shift towards the peripheral cluster.
The converse scenario is also possible: a country whose debt stabilizes and whose public
deficit is sustainable can shift from the peripheral to the core cluster.

To this aim, we exploit Big Data, specifically a novel high-dimensional dataset. This dataset
gathers as much data as available for each of the ten countries under study, leading to a total
of 900,000 monthly observations over the March 2007 to January 2024 period. This paper
considers every aspect of a country’s economic landscape, ranging from labor market indica-
tors to sectorial data, from price indexes to housing & real estate markets, from government
finances to demographics. This paper is one of the first we have knowledge of to leverage
Big Data to predict financial fragmentation risk, yet such amount of data would not prop-
erly fit regular econometric models due to the “Curse of dimensionality” (Bellman, 1966).

1. See Candelon, Luisi & Roccazzella, 2022
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Figure 2: Euro area sovereign spreads

Notes: 10-year sovereign bond spreads for Euro area countries under study (Austria, Belgium, Finland,

France, Greece, Ireland, Italy, the Netherlands, Portugal, and Spain). The benchmark country is Germany.

Weekly data retrieved from Bloomberg.

As dimensions grow (i.e. the number of variables in the model), traditional econometric
models become less e�cient due to sparse data distribution and di�culties in identifying
relevant variable relationships. This sparsity reduces the reliability of parameter estimates
and exacerbates over-fitting. In contrast, machine learning models incorporate techniques
like regularization or variable selection, allowing them to manage high-dimensional spaces
more e↵ectively, to capture complex patterns, and to mitigate the limitations imposed by
dimensionality.

In this study, we explore the application of Machine Learning techniques in two critical
areas: (i) we conduct a horse race between 14 di↵erent Machine Learning techniques to
find which algorithm fits best our dataset and hence provide insights into the power of
Machine Learning in variable selection. Three main categories of Machine Learning frame-
works are selected, namely linear, non-linear and rule based methods. Each algorithm is
run for each country, collecting comparable accuracy metrics such as the Root Square Mean
Error (RMSE), Mean Absolute Error (MAE) and R2. We find that the gradient-boosting
framework within the rule-based category suits our dataset best. Hence, (ii) using the lat-
est advances in machine learning, and more specifically the XGBoost algorithm, this paper
aims at providing insights on the predictability power of Machine Learning applied to the
10-year yield spread of the ten Euro Area countries under study and finding evidence of
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the latent financial fragmentation risk. Indeed, our empirical results suggest that the frag-
mentation dynamics between core and peripheral country is still at work. More worryingly,
France and Belgium -two formerly core countries- have swung into the peripheral category,
bringing back the fragmentation risk in the frontstage.

This paper is structured as follows : the related literature is presented in Section 2 ; the
novel dataset is introduced in Section 3 ; Section 4 provides an in-depth explanation of the
di↵erent machine learning techniques and the horse race methodology. Finally, empirical
results are analyzed in Section 5.
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2 Literature Review

2.1 The determinants of sovereign bond yields and spreads

In order to understand the financial fragmentation risk, it is important to understand what
the determinants of sovereign bond yields and spreads are. They encompass macroeco-
nomic fundamentals, market dynamics, institutional frameworks and political factors. The
interaction of these elements became particularly evident during the European Sovereign
Debt (ESD) crisis, where yield spreads became particularly significant, capturing the senti-
ment of market participants regarding individual sovereign risk and the stability of specific
economies within the Euro area.

Macroeconomic fundamentals remain the main determinant of sovereign bond yields. A
country’s debt-to-GDP ratio, fiscal deficit and economic growth are among the primary
indicators analyzed by investors. Bernoth et al. (2004) highlight that deviations from fiscal
sustainability, especially in the context of the Maastricht criteria, are strongly correlated
with higher yield spreads. High debt ratios not only reflect a greater likelihood of repay-
ment challenges but also signal potential inflationary pressures, particularly in the absence
of fiscal discipline. Afonso et al. (2011) extend this analysis by quantifying the impact of
fiscal announcements on yields, finding that markets respond more sharply to unexpected
deviations from fiscal targets. Similarly, Aizenman et al. (2013) examine the role of macroe-
conomic imbalances, such as current account deficits and inflation, in driving spreads. Their
findings suggest that, beyond fiscal metrics, structural vulnerabilities in the economy exac-
erbate perceived risks, particularly during global downturns.

Market behavior is another critical determinant. The role of credit ratings in influencing
market dynamics is explored by Afonso et al. (2012). Their research shows that downgrades
by major credit rating agencies significantly widen yield spreads by signaling increased
sovereign risk to investors. Conversely, positive credit rating actions have a muted impact,
reflecting asymmetric market responses to good and bad news. Market volatility, often
represented by measures such as the VIX or the Euro STOXX 50 index, also plays a pivotal
role. Codogno et al. (2003) document how heightened volatility increases risk premiums,
disproportionately a↵ecting countries perceived as less stable. This dynamic underscores
the importance of maintaining macroeconomic and fiscal stability to bu↵er against external
shocks. Behavioral factors such as investor sentiment and herd behavior also contribute
to yield dynamics. Arghyrou and Kontonikas (2012) explore how self-fulfilling prophecies
during the ESD crisis led to liquidity crises in countries like Italy and Spain, even in the
absence of fundamental solvency issues.

Institutional factors, particularly the role of the European Central Bank (ECB), have sig-
nificantly shaped sovereign bond yields in the Euro area. The ECB’s ability to transmit
monetary policy uniformly across the Euro Area is crucial in determining yields and spreads.
Grandi (2019) investigates the bank lending channel of monetary policy in mitigating yield
divergence, finding that while measures like OMTs and QE have been successful in the
short term, persistent structural di↵erences among member states continue to pose chal-
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lenges. In addition, the introduction of unconventional monetary policies during the ESD
crisis marked a turning point. Altavilla et al. (2015) show that the ECB’s Quantitative
Easing (QE) measures lowered yields and spreads by reducing fragmentation in financial
markets and fostering liquidity. Additionally, Bernoth et al. (2004) highlight the success of
the ECB’s Securities Markets Programme (SMP) in alleviating pressures on bond markets
in peripheral countries. However, the lack of fiscal integration within the Euro area remains
a structural issue.

Another important determinant is political stability. Manganelli and Wolswijk (2007) em-
phasize that political uncertainty—whether from domestic governance issues or broader
geopolitical tensions—can lead to significant yield divergence. For instance, the heightened
uncertainty surrounding the war in Ukraine and its implications for the Euro area under-
score how political events influence bond market dynamics.

2.2 The impact of the Sovereign Debt Crisis (ESD)

The second step to understand the financial fragmentation risk in the Euro area is finding
evidence of it. This risk arises from the divergence in yield spreads that can be defined as
the persistent gap between the borrowing costs of core countries, such as Germany, Austria
and the Netherlands, and peripheral countries, including Greece, Italy and Spain. Hence,
this fragmentation risk undermines the principle of financial integration, which is founda-
tional to the European Monetary Union (EMU). The European Sovereign Debt crisis of
2010–2012 marked a pivotal period for the European Monetary Union revealing deep struc-
tural vulnerabilities. The perception by the market participants of di↵erent levels of risk
across countries within the Euro area significantly transformed the dynamics of sovereign
bond markets and revealed the financial fragmentation risk to the world.

Before the ESD crisis, sovereign bond yields in the Euro Area were remarkably low and
converged closely, reflecting market optimism about the benefits of monetary unification.
However, this apparent stability masked underlying risks. Favero and Missale (2012) argue
that sovereign bond markets were never fully integrated, even during the pre-crisis period.
Their findings demonstrate that despite low and co-moving spreads, market participants did
not perceive bonds from di↵erent Euro area countries as perfect substitutes. De Grauwe
and Ji (2013) argue that market complacency during the pre-crisis period led to insu�cient
risk di↵erentiation among Euro area countries, particularly between core and peripheral
economies. The global financial crisis of 2008–2009 acted as a precursor, exposing vulner-
abilities in fiscal sustainability and triggering an initial divergence in spreads as investors
reassessed sovereign risks. Candelon et al. (2022) emphasize that even before the crisis
formally began, early signs of fragmentation were evident in the di↵erentiated impacts of
the 2008 financial crisis. While core economies like Germany and France benefitted from
capital inflows, peripheral countries such as Greece, Italy, and Spain faced mounting pres-
sures, with rising debt-to-GDP ratios and deteriorating fiscal balances.
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The ESD crisis began in 2010 when Greece revealed significant revisions to its budget
deficit, prompting a loss of market confidence. This revelation led to a sharp rise in Greek
bond yields and spreads, signaling the onset of a solvency crisis. Unlike Greece, which
faced fundamental fiscal insolvency, other high-debt countries such as Spain, Portugal, and
Italy encountered liquidity crises driven largely by market panic and contagion e↵ects. The
interconnectedness of Euro Area economies means that shocks in one country often have
spillover e↵ects on others. This contagion mechanism, as explored by Metiu (2012), includes
both direct linkages through trade and financial channels and indirect e↵ects via changes
in market sentiment. De Grauwe and Ji (2013) highlight the role of self-fulfilling dynamics,
where rising yields increased borrowing costs, further straining public finances and deepen-
ing the crisis. Missio and Watzka (2011) document the spread of contagion across the Euro
Area, noting how market perceptions of one country’s fiscal distress influenced the yields
of others, particularly in the periphery. Simultaneously, investors fled to safe-haven assets
such as German Bunds, amplifying the divergence in spreads. This phenomenon of ”flight-
to-quality” was particularly acute during the peak of the crisis in 2011, with Italian bond
yields surpassing 7% and Spanish yields following closely. Conversely, the ”flight-to-quality”
mechanism exacerbates these e↵ects, as capital moves from distressed economies to safer
ones. Beber et al. (2009) provide evidence of ”flight-to-quality” and ”flight-to-liquidity”
phenomena during periods of market distress. Their research reveals that investors dispro-
portionately allocate funds to low-risk, highly liquid assets like German Bunds when faced
with systemic uncertainty. This behavior amplifies yield spreads, particularly for coun-
tries with weaker fiscal positions or less liquid bond markets. The crisis also highlighted
the issue of redenomination risk—the fear that some countries might leave the Eurozone
and redenominate their debt in a devalued national currency. De Santis (2015) shows how
this risk significantly influenced bond spreads during the crisis, particularly in peripheral
countries, as markets priced in the possibility of a Euro area breakup. Studies by Zaghini
(2016) on corporate bond markets and Gabrieli and Labonne (2018) on interbank lending
also highlight how the investors’ behavior during the crisis also extends beyond sovereign
bond markets.

Policy responses to the crisis evolved over time, beginning with ad hoc bilateral loans to
Greece and eventually culminating in the creation of the European Stability Mechanism
(ESM) in 2012. However, the most decisive interventions came from the European Central
Bank (ECB). Mario Draghi’s ”Whatever it takes” speech in July 2012 marked a turning
point, signaling the ECB’s commitment to preserving the Euro. This announcement was
followed by the launch of the Outright Monetary Transactions (OMT) program, which al-
lowed the ECB to purchase sovereign bonds of distressed countries under strict conditions.
Altavilla et al. (2015) demonstrate the e↵ectiveness of the ECB’s actions in reducing spreads
and restoring market confidence.

Despite the ECB e↵orts to narrow yield spreads and the fiscal reforms undertaken by
several Euro area countries, the COVID-19 pandemic reignited concerns about financial
fragmentation within the Euro area. The implementation of large-scale fiscal measures to
address the economic impact of the pandemic led to surging debt levels, particularly in pe-
ripheral countries. Candelon et al. (2022) emphasize that the divergence between core and
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peripheral countries persisted beyond the ESD crisis, albeit at reduced levels, as structural
imbalances and high debt levels remained unresolved. Costola and Iacopini (2023) provide
further evidence that fragmentation risk remains a pressing issue. Using a time-varying
cointegration framework, they propose an indicator to assess the probability of fragmen-
tation in the Eurozone sovereign bond market. Their findings reveal that the probability
of fragmentation increases during systemic stress events, such as the COVID-19 pandemic
and decreases in response to ECB interventions aimed at stabilizing markets.

This residual fragmentation reflects ongoing concerns about fiscal sustainability, economic
resilience and the adequacy of institutional frameworks, especially regarding the lack of
fiscal integration within the Euro. Addressing those concerns requires both short-term in-
terventions and long-term structural reforms. In the short term, the ECB’s unconventional
monetary policies, such as asset purchase programs and targeted longer-term refinancing
operations, have been e↵ective in mitigating immediate risks. However, long-term solutions
must address the root causes of fragmentation. Proposals for Eurobonds or a centralized
fiscal authority aim to pool risks and ensure more uniform market treatment of Euro area
sovereigns. Corsetti and Dedola (2016) argue that the absence of such centralized fiscal
authority creates asymmetric exposure to market pressures, as individual countries bear
the full burden of risk perception. This dynamic was at play during the ESD crisis, when
the solvency concerns of weaker economies were not counterbalanced by collective fiscal
guarantees. Additionally, the crisis underscored the importance of fiscal integration with
ongoing debates about the potential role of Eurobonds and mutualized debt as tools for
addressing future crises (Ando et al. (2023) ; Gilbert et al. (2013)).

2.3 Machine Learning

The existing literature on financial fragmentation, while extensive, faces limitations in ad-
dressing the complexity and dynamism of global macroeconomic and financial markets.
Traditional econometric approaches often fail to account for a broad range of variables,
such as demographic trends, survey data and market sentiment, which play critical roles
in shaping the investor’s behavior. Moreover, by construction, these methods typically
struggle to capture the intricate relationships and interactions among these diverse set of
variables. In contrast, Machine Learning (ML) techniques —such as LASSO, decision trees
or neural networks—excel at modeling such complexities by leveraging their ability to iden-
tify non-linear patterns and manage large datasets e↵ectively.

The advent of Big Data has further highlighted the constraints of traditional econometric
models, particularly their susceptibility to the ”Curse of dimensionality” (Bellman (1966)).
This issue arises when an overabundance of predictors (i.e. explanatory variables) intro-
duces high parameter estimation errors, limiting the statistical reliability of the model.
Machine Learning algorithms, with their built-in capabilities for variable selection and reg-
ularization, e↵ectively address this challenge. By focusing on the most relevant variables
and ignoring less informative ones, these methods significantly enhance model precision and
reduce overfitting.
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The adoption of machine learning techniques has pushed the boundaries of research in finan-
cial economics, expanding the scope of data analysis and significantly improving predictive
accuracy. Recent literature has demonstrated the potential of ML to redefine research
methodologies in the field. For instance, Strader et al. (2020) identify promising direc-
tions for applying Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
and other artificial intelligence techniques to stock market prediction. Similarly, Gu et al.
(2020) show that ML-based approaches, such as decision trees and ANNs, deliver substan-
tial economic gains in asset pricing forecasts, outperforming traditional regression-based
models by a significant margin. Moreover, Fouliard et al. (2021) demonstrate the utility of
ML in developing early warning indicators for macro-financial crises, further solidifying its
role in predictive modeling.

Machine learning has also found applications in sovereign bond markets, particularly in
predicting bond spreads. Early contribution by Castellani and Santos (2006) explored the
potential of ML for forecasting the monthly yield of 10-year U.S. Treasury bonds. More
recently, Kim et al. (2020) compared various ML models, such as recurrent neural networks
(RNNs), long short-term memory (LSTM), and support vector regression (SVR), in an-
alyzing credit default swap (CDS) term structures. Their results demonstrated that ML
approaches consistently outperformed traditional models, such as the Nelson-Siegel frame-
work, in forecasting future term structures.

The Euro Area has similarly benefited from ML applications in sovereign bond spread anal-
ysis. Three recent studies stand out in advancing this field. First, Arakelian et al. (2019)
employed recursive partitioning strategies, including Random Forest and regression trees, to
stratify European sovereign risk using macroeconomic fundamentals and contagion metrics.
Their findings reveal a marked decline in Euro Area CDS contagion after the European
Sovereign Debt Crisis (2013–2017), attributed to improved contagion mitigation strategies.
Second, Balduzzi et al. (2022) highlight the temporal variability in the relationship between
macroeconomic fundamentals and Euro Area CDS spreads. By employing LASSO regres-
sion, they identify distinct macro-sensitive regimes, explaining fluctuations in sovereign risk
pricing over time. Their study underscores the evolving dynamics of sovereign bond markets
and the limitations of static models in capturing such changes. Third, Belly et al. (2022)
explore the e↵ectiveness of multiple ML techniques—including XGBoost, SVR, Elastic Net
regression, Random Forest, and ANN—in valuing and pricing Euro Area sovereign risk.
Their findings demonstrate that ML methods not only outperform traditional Bayesian
Model Averaging (BMA) approaches but also capture the multifaceted drivers of sovereign
risk. These include macroeconomic indicators, global financial factors, and public senti-
ment, with the latter derived from innovative data sources such as Google Trends.

In this paper, we acknowledge the previous literature both in the field of financial fragmen-
tation and of machine learning by first running a horse race between 14 machine learning
techniques in order to identify the algorithm that fits our dataset best. Then, we predict
the 10-year sovereign spread of ten Euro Area countries over a 6-month horizon by leverag-
ing the advanced XGBoost algorithm, providing valuable information for policymakers and
investors.
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3 Data

This paper introduces a novel dataset that stands out in its dimensionality. Aptly fitting the
criteria of “Big Data”, this dataset is characterized by its high dimensionality, encompassing
a diverse range of categories of variables across ten countries (namely Austria, Belgium,
Finland, France, Greece, Ireland, Italy, the Netherlands, Portugal and Spain). The dataset
includes monthly time series obtained through Bloomberg, over the March 2007 to January
2024 period, leading to a total of 902,741 individual observations, as detailed in Table 1.
All those observations fall within the distinct categories presented in Table 2.

Table 1: Variable and observation count

Country Number of variables Number of observations

Austria 193 39,179

Belgium 635 128,905

Finland 467 94,801

France 1,363 276,689

Greece 325 65,975

Ireland 368 74,704

Italy 316 64,148

Netherlands 197 39,991

Portugal 210 42,630

Spain 373 75,719

Total 4,447 902,741

The 10-year sovereign spread is a prevalent metric among market participants and aca-
demics for evaluating sovereign risk. We build our 10-year sovereign spread as the di↵erence
between a country’s 10-year sovereign yield and the risk-free rate. For this purpose, we adopt
the German 10-year bond yield as the risk-free rate, reflecting its widespread acceptance as
the standard measure in both market practice and academic research for calculating Euro
Area spreads.

The vastness and granularity of this dataset not only provide a comprehensive view of
each country’s economy but also present unique challenges and opportunities for data pro-
cessing, analysis and modeling. By leveraging the dataset’s potential, this paper is able
to identify intricate relationships between the idiosyncratic characteristics of countries and
their yield spread, potentially generating more accurate and precise predictions. Hence,
the introduction of this novel dataset represents a notable contribution to the field, en-
abling a more refined and comprehensive understanding of Euro area country’s yield spread
dynamics.
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Table 2: Categories of variables for each country

National Accounts Services Sector Whole Economy Activity

Surveys & Cyclical Indicators International Trade Monetary Sector

Labor Market Price Indexes Government Finance & Debt

Retail Sector Housing & Real Estate Financial Indicators

Industrial Sector Household Sector Demographics

Tables 3 and 4 present descriptive statistics for sovereign bond yields and bond spreads
in eleven and ten Euro area countries respectively.For each country, the mean, median, stan-
dard deviation, variance, range, interquartile range (IQR), skewness, kurtosis, minimum,
and maximum values are reported. This subset of data consists of 203 monthly observations
per country, spanning from March 2007 to January 2024, with all figures rounded to two
decimals.

Table 3 presents the descriptive statistics for sovereign bond yields across eleven Euro
area countries. The mean bond yields reflect notable di↵erences in borrowing costs across
the Euro area, with Greece exhibiting a significantly higher mean yield of 7.20%, highlight-
ing heightened risk premium and credit risk perceptions. Portugal, Italy and Ireland also
report higher mean yields, above 3%, relative to core Euro Area countries such as Ger-
many, France, Finland, Austria and the Netherlands in which mean yields are below 2%
on average. Median values align with mean yields for most countries indicating symmetric
distributions. Greece’s median yield of 5.32% is notably lower than its mean, hinting at pos-
itive skewness driven by periods of elevated yields, such as during the European Sovereign
Debt crisis . The standard deviation and variance indicate variability in bond yields, with
Greece showing the highest standard deviation at 6.13, signifying high volatility relative to
other Euro area nations. This heightened volatility is further evidenced by Greece’s wide
range of yields (from 0.60% to 32.60%), reflecting episodes of severe market stress during
financial crises. Portugal and Ireland also exhibit substantial volatility (standard deviation
above 2.85 for both countries), underscoring the uncertainty and risk during their periods
of economic turmoil. Conversely, countries like Austria, Finland, France, Germany and the
Netherlands demonstrate relatively lower variability as indicated by their lower standard
deviations (below 1.6), variance (below 2.5) and narrower ranges (below 540 basis points).
The IQR, which measures the di↵erence in yields between the 75th and 25th percentiles of
each countries’ distribution, further highlights this trend with Greece and Ireland showing
the widest interquartile ranges (390 bps and above) while core countries exhibiting narrower
IQRs, indicating relative stability. Skewness values reveal the asymmetry in bond yield dis-
tributions. Positive skewness in Greece, Portugal and Ireland reflects episodes of sharply
increased yields while Italy, Spain, Belgium and France show minimal skewness, suggesting
a more symmetric distribution of yields over the sample period. Kurtosis values provide
insight into the distributional tails, with Greece having a high kurtosis value indicating
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a distribution with frequent extreme values typically associated with financial instability.
Other countries, such as Austria and Belgium, display more moderate kurtosis, suggesting
a lower occurrence of extreme values.

Table 3: Descriptive statistics for Euro area sovereign bond yields

Country Mean Median Std. Dev Variance Range IQR Skew. Kurt. Min Max

Austria 1.83 1.73 1.57 2.47 5.33 2.68 0.24 1.68 -0.44 4.89

Belgium 2.04 2.08 1.63 2.66 5.36 2.96 0.15 1.56 -0.39 4.97

Finland 1.72 1.54 1.52 2.31 5.24 2.60 0.33 1.78 -0.43 4.80

France 1.88 1.99 1.48 2.20 5.22 2.49 0.18 1.71 -0.41 4.81

Germany 1.46 1.31 1.48 2.19 5.32 2.34 0.42 2.03 -0.70 4.62

Greece 7.20 5.32 6.13 37.60 32.01 5.19 2.06 7.82 0.60 32.60

Ireland 3.06 2.59 2.86 8.16 11.76 3.90 0.90 2.92 -0.31 11.45

Italy 3.20 3.48 1.56 2.44 6.49 2.71 -0.02 1.87 0.54 7.03

Netherlands 1.69 1.63 1.53 2.35 5.36 2.48 0.32 1.84 -0.55 4.81

Portugal 3.87 3.21 2.96 8.77 15.64 2.84 1.31 4.97 0.03 15.67

Spain 2.84 2.98 1.79 3.21 6.79 2.87 0.12 1.78 0.04 6.83

Notes: Bond yields across 11 Euro area countries under study, based on 203 monthly observations

per country from March 2007 to January 2024.

Table 4: Descriptive statistics for Euro area sovereign bond spreads

Country Mean Median Std. Dev Variance Range IQR Skew. Kurt. Min Max

Austria 0.37 0.29 0.24 0.06 1.13 0.27 1.24 4.25 0.04 1.18

Belgium 0.57 0.44 0.43 0.18 2.64 0.37 2.16 8.56 0.06 2.70

Finland 0.26 0.24 0.16 0.03 0.79 0.15 1.01 3.56 -0.01 0.78

France 0.42 0.36 0.22 0.05 1.28 0.22 1.63 6.85 0.04 1.31

Greece 5.74 3.68 6.04 36.43 30.58 6.47 2.09 7.86 0.21 30.79

Ireland 1.60 0.60 2.13 4.54 9.09 1.26 1.75 4.65 -0.66 8.43

Italy 1.73 1.56 0.94 0.88 5.01 0.90 1.18 4.73 0.20 5.20

Netherlands 0.23 0.20 0.13 0.02 0.78 0.18 1.29 5.48 0.03 0.81

Portugal 2.40 1.47 2.54 6.44 13.77 2.40 2.01 7.03 0.11 13.88

Spain 1.38 1.08 1.06 1.13 5.46 0.69 1.75 5.94 0.04 5.50

Notes: Bond spreads across 10 Euro area countries under study, based on 203 monthly observations

per country from March 2007 to January 2024. Germany is used as the benchmark for each other

country.

The descriptive statistics in Table 4 o↵er insights into the properties of the sovereign
bond spreads of each Euro area country under study relative to Germany, which serves
as the benchmark country (risk-free). The mean values reveal variation in spread levels
across countries. Greece exhibits the highest average spread at 5.74%, while countries such
as Austria, Belgium, Finland, France or the Netherlands maintain lower average spreads.
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Countries like Ireland, Italy, Portugal and Spain are in between, with spreads above 1%
on average but below 3%. Median values align again with mean values for most countries,
suggesting generally symmetric distributions with Greece being an exception due to its sig-
nificantly higher median and a broad range of spreads. The standard deviation and variance
provide insights into the volatility of spreads with Greece, Ireland and Portugal showing the
highest values. Conversely, countries like Austria, Finland, France and the Netherlands dis-
play lower volatility, highlighting their relative stability. The range further accentuates the
variability among countries with Greece, Ireland, Italy, Portugal and Spain showing exten-
sive ranges (above 500 bps), whereas Finland and the Netherlands exhibit narrower ranges
(below 100 bps). The interquartile range (IQR) follows similar patterns with Greece and
Portugal standing out due to their wider IQRs. Skewness and kurtosis provide information
on the distributional shape of spread yields. Positive skewness values across most countries
indicate right-skewed distributions, suggesting the presence of periods with abnormally high
spreads, particularly in countries such as Greece, Belgium and Portugal (above 2), where
the risk premia were markedly higher during periods of financial distress. High kurtosis
values for several countries, especially Belgium, Greece and Portugal indicate heavier tails,
suggesting frequent extreme values or outliers in their spread distributions.

These descriptive statistics highlight the substantial heterogeneity in bond yields and spreads
behaviors across Euro area countries with distinct contrasts in average levels, volatility and
distributional characteristics. These di↵erences may give hints on whether a country be-
longs to the core or the peripheral country clusters. These di↵erences highlight the divergent
divergent credit risk perceptions and market conditions that have characterized Euro area
sovereign bond markets over the past decade, reflecting both structural di↵erences and the
impact of economic and financial crises on specific member states.
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4 Comparing Machine Learning techniques : a Horse Race

In this section, we begin by detailing each of the 14 Machine Learning techniques included
in our horse race. Subsequently, we present the results of this horse race.

4.1 Overview of the Machine Learning techniques

In order to find evidence of Financial Fragmentation, this paper exploits our novel high-
dimensional dataset. With so much data, conventional econometric models are not suitable.
This is why we employ machine learning. Indeed, machine learning o↵ers a plethora of tech-
niques for variable selection, aiding in the identification of the most informative predictors in
high-dimensional datasets. In this paper, we perform a horse race of linear, non-linear and
rule-based techniques to find which machine learning methodology best fits our data. The
14 Machine Learning techniques competing in this horse race are : (1) Standard LASSO,
(2) Boosted LASSO, (3) Group LASSO, (4) Sparse-Group LASSO, (5) Ridge regression,
(6) Elastic Net regression, (7) Support Vector Regression, (8) Feedforward Neural Network,
(9) Decision Trees, (10) Regularized Trees, (11) Boosted Trees, (12) Stochastic Gradient
Boosting, (13) Extreme Gradient Boosting and (14) LightGBM, as presented in Table 5.

4.1.1 Linear Techniques

The group of linear techniques encompasses the LASSO, the Ridge and the Elastic Net
regressions. Before examining each linear technique in detail, it is worth noting that they
su↵er from scale dependency. The algorithm’s e↵ectiveness in selecting variables and as-
signing coe�cients is influenced by the scale of the predictor variables. Linear techniques
penalize the absolute size of coe�cients, shrinking less important coe�cients toward zero.
However, the magnitude of each variable’s coe�cient depends on the variable’s scale. For
example, in a dataset with two predictors, one measured in thousands and the other in
single units, LASSO would penalize the larger-scaled variable more heavily because its raw
coe�cient value would typically be larger, regardless of its relative importance. This imbal-
ance can lead LASSO to shrink coe�cients unevenly, selecting or discarding variables based
on their scale rather than their true contribution to the model. To mitigate this e↵ect, we
standardize the predictor variables (mean of zero and standard deviation of one). By stan-
dardizing our data, we ensure that each variable’s scale is comparable, allowing LASSO to
more accurately apply penalties based on variable importance rather than scale di↵erences.
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1 The LASSO models

First, the LASSO regression is a statistical method that performs both variable selection
and regularization in order to enhance the prediction accuracy of the statistical model it
produces. It modifies the OLS objective function by adding a penalty equivalent to the
absolute value of the magnitude of coe�cients. Mathematically, the LASSO objective func-
tion can be expressed as:

min
�

1

n

nX

i=1

(yi � ŷi)
2 + �1

pX

j=1

|�j |, (1)

Where, yi is the observed response for the i-th observation, ŷi is the predicted response,
calculated as ŷi = Xi�, where Xi is the variable vector for the i-th observation, and � is
the vector of coe�cients, n is the number of observations, p is the number of predictors
and �1 is the tuning parameter that controls the strength of the penalty imposed on the
coe�cients. By shrinking the coe�cients, LASSO controls the model’s complexity, ensuring
that it captures the underlying pattern in the data without being overly sensitive to the
training set. The regularization parameter �1 plays a critical role here; as �1 increases, the
flexibility of the LASSO model decreases, leading to less complex models. The second term
of the equation is called the L1 penalty term.

Over the years, the regular LASSO methodology has been improved. New variants of
LASSO have been developed, notably the Boosted LASSO, the Group LASSO and the
Sparse-Group LASSO. Boosted LASSO merges the concepts of LASSO and boosting, a
powerful ensemble technique. Boosting involves building a model from the training data,
then creating a second model that attempts to correct the errors from the first model. By
combining this with LASSO’s regularization and its selection capabilities, Boosted LASSO
can handle complex datasets with intricate structures more e↵ectively than regular LASSO.
Group LASSO extends the LASSO technique to situations where predictors can be naturally
grouped, and the groups, rather than individual predictors, are of interest. In this variant,
the L1 penalty term is applied to the norms of the coe�cients of the groups, rather than to
the individual coe�cients. Group LASSO ensures that either all the coe�cients in a group
are zero or none of them are, thus respecting the intrinsic grouping in the data. Finally,
Sparse-Group LASSO is a sophisticated hybrid that combines the ideas of both group and
sparse LASSO. It allows for both group-wise and individual variable selection, making it a
powerful tool for models where both individual and grouped variable e↵ects are of interest.
This variant is particularly useful in models where some groups of variables are known to
be important but there is also a need to identify individual variables of significance outside
these groups. Sparse-Group LASSO applies a mixed penalty, combining the L1 penalty
term to encourage sparsity at the individual level and a group-level L2 penalty term.
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2 The Ridge model

Second, the Ridge regression is a technique used to analyze multiple regression data that
su↵er from multicollinearity. When multicollinearity occurs, least squares estimates are un-
biased but their variances are large so they may be far from the true value. Ridge regression
stabilizes the regression estimates in such a way that it reduces the standard errors. The
key idea of Ridge regression is to add a degree of bias to the regression estimates, which
in return reduces the standard errors. It modifies the OLS objective function by adding a
penalty equivalent to the square of the magnitude of the coe�cients. The Ridge regression
objective function can be written as:

min
�

1

n

nX

i=1

(yi � ŷi)
2 + �2

pX

j=1

�2
j . (2)

As for the LASSO method, �2 is the tuning parameter that controls the amount of shrink-
age: the larger the value of �2, the greater the amount of shrinkage. Through �2, the Ridge
method applies a penalty to the size of coe�cients. However, unlike LASSO which can
eliminate some coe�cients altogether by setting them to zero, Ridge regression only shrinks
the coe�cients. This is particularly useful when dealing with data where all variables are
important and should be retained in the model. The second term of the equation is called
L2 penalty term.

3 The Elastic Net model

Third and last among the linear methods, Elastic Net is a regularization and variable se-
lection method that combines the properties of both LASSO and Ridge regressions. Elastic
Net aims to overcome limitations of both Ridge and LASSO by combining their penalty
terms. Hence, the objective function of Elastic Net can be written as:

min
�

nX

i=1

(yi � ŷi)
2 + �1

pX

j=1

|�j |+ �2

pX

j=1

�2
j . (3)

Here, �1 and �2 are the parameters that control the L1 (LASSO) and L2 (Ridge) penalty
terms, respectively. Elastic Net thus balances the properties of LASSO and Ridge regres-
sion methods. The L1 penalty term facilitates variable selection, making the model simpler
and more interpretable. The L2 penalty term shrinks the coe�cients towards zero, but not
exactly zero, which stabilizes the model estimation process. In our benchmark, we put the
same weight on the L1 and L2 penalty terms, that is 50% on each penalty term. One of the
significant advantages of Elastic Net is its ability to handle correlated predictors e↵ectively.
In situations where there are groups of correlated variables, LASSO tends to select only
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one variable from a group and ignore the others. Elastic Net, by contrast, tends to select
groups of correlated variables. In addition, Elastic Net provides a continuum of solutions
that range from Ridge to LASSO depending on the parametrization of the �. By tuning
the parameters �1 and �2, one can explore a range of models between the two extremes.

To visualize the LASSO, Ridge and Elastic Net methods in action, it is possible to plot
the regularization paths (the coe�cients) against the regularization parameter (�). Figure
3 presents coe�cient paths for the three types of regularization methods using simulated
data (50 observations for 200 variables with only 10 contributing to the response). Each
panel in the figure visualizes how the coe�cients for various variables evolve as the regu-
larization strength, represented by �, changes. The x-axis in each plot is on a logarithmic
scale, indicating increasing values of � from left to right. This corresponds to a transition
from weak to strong regularization. The y-axis denotes the values of the coe�cients (or
weights) associated with each variable, where each colored line represents the path of a
single variable’s coe�cient across di↵erent values of �.

Figure 3: LASSO, Ridge and Elastic Net paths
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The first panel displays the coe�cient paths for the LASSO model. As �1 increases and
regularization strengthens, most coe�cients are progressively driven to zero, with only a
select few remaining non-zero at the highest values of �1. This behavior is a consequence
of the LASSO method’s L1 penalty term, which induces sparsity in the model. For small
values of �1, the penalty term has minimal impact, allowing many coe�cients to remain
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active. As �1 grows, however, the L1 penalty becomes more influential, eliminating the
smaller coe�cients while retaining only those that are most impactful for the model.

The second panel illustrates the coe�cient paths for the Ridge model. Here, the trends
di↵er from those observed in the LASSO paths. Although the Ridge model similarly causes
coe�cients to diminish as �2 increases, none of the coe�cients are forced to zero; instead,
they decrease smoothly across the entire range of �1. Unlike LASSO, Ridge regression
employs an L2 penalty, which penalizes the square of the coe�cients, leading to gradual
shrinkage without zeroing out any of the coe�cients. This penalty structure allows all
variables to remain active, with their magnitudes reduced according to the strength of the
regularization.

The third panel shows the coe�cient paths for the Elastic Net model, which combines
the penalty terms of both LASSO (L1) and Ridge (L2). This panel reflects a mix of spar-
sity and smooth shrinkage: as �1,2 increases, some coe�cients shrink to zero as in LASSO,
while others decrease gradually as in Ridge. The parameter ↵ controls the balance between
both L1 and L2 penalty terms. Here, ↵ = 0.5, so the L1 and L2 penalties contribute
equally, merging LASSO’s sparsity with Ridge’s smooth shrinkage.

4.1.2 Non-Linear Techniques

Previous machine learning techniques were linear, but in a complex network introducing
non-linear approaches could be useful. Among these, Support Vector Regression (SVR) and
Neural Networks (NN) stand out for their versatility and power.

1 The Support Vector Regression (SVM) model

On one hand, Support Vector Regression (SVR) works by finding a curve that best fits the
data while allowing some flexibility in error tolerance. Indeed, unlike traditional regression
models, SVR allows a tolerance " around the predictions, within which errors are not pe-
nalized. This tolerance is known as the "-tube or support vectors. Observations within this
tube are considered close enough and don’t add to the error, while observations outside the
tube are penalized based on how far they fall from it. This approach helps SVR capture the
general trend of the data without over-fitting to noise. Since observations must share the
same scale to form the "-tube, we standardize our data sample (mean of zero and standard
deviation of one).

To achieve this, SVR minimizes the coe�cients (represented as the weight vector kwk)
of the function that best fits the data, ensuring a flatter, simpler model that generalizes
well to big data. Simultaneously, the model introduces slack variables (i.e. measures of
constraint deviation) ⇠i and ⇠⇤i for each observation i, representing deviations outside the
"-tube. These slack variables allow for some observations to lie outside the margin when
necessary, especially when the data cannot be perfectly fit within the "-tube.
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Combining those terms yields the SVR objective function and can be formulated as fol-
lows:

minimize
w,b,⇠,⇠⇤

1

2
kwk2 + C

nX

i=1

(⇠i + ⇠⇤i ), (4)

Where C is the regularization parameter that controls the trade-o↵ between the model’s
complexity with the amount of error tolerated outside the "-tube. A larger C places more
emphasis on reducing deviations outside the margin, while a smaller C prioritizes a simpler
model with potentially higher deviations.

The constraints for this optimization problem enforce that the residuals of each predic-
tion lie within the "-tube, with exceptions allowed only for the slack variables:

yi � (w · xi + b)  "+ ⇠i, (5)

(w · xi + b)� yi  "+ ⇠⇤i , (6)

Where ⇠i, ⇠⇤i � 0. These constraints ensure that, for data points within the "-tube, no
penalty is incurred, while points outside the tube are penalized in proportion to their dis-
tance from the tube boundary.

To solve this problem, SVR can be reformulated to allow the ”kernel trick” -a method
to implicitly map data into higher-dimensional spaces without explicitly computing these
transformations- to be applied. This is the reason is why SVR is interesting to us since it is
is particularly powerful for regression tasks where a non-linear relationship may exist. The
problem then becomes:

maximize
↵,↵⇤

� 1

2

nX

i=1

nX

j=1

(↵i � ↵⇤
i )(↵j � ↵⇤

j )K(xi,xj) +
nX

i=1

(↵i � ↵⇤
i )yi � "

nX

i=1

(↵i + ↵⇤
i ), (7)

subject to
nX

i=1

(↵i � ↵⇤
i ) = 0, 0  ↵i,↵

⇤
i  C. (8)

Here, K(xi,xj) is our kernel function allowing us to unlock the model’s non-linearity. In
addition, ↵i and ↵⇤

i are the Lagrange multipliers representing how much each observation
influences the position and shape of the regression function. The solution to this formula-
tion results in the regression function that depends only on a subset of observations : those
outside the "-tube.
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Finally, the SVR prediction for a new observation is calculated using the learned regression
function. The final prediction function is:

f(x) =
nX

i=1

(↵i � ↵⇤
i )K(xi,x) + b, (9)

Where ↵i and ↵⇤
i are the optimized Lagrange multipliers, K(xi,xj) is our kernel function

and b is the error term. Figure 4 presents the result of a SVR prediction using simulated
data and a Gaussian kernel to illustrate the model’s non-linearity capability. The blue line
depicts the SVR prediction while the grey points are the original and simulated data. The
red dashed line is the "-tube.

Figure 4: Support Vector Regression prediction with "-tube and Gaussian kernel
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Notes: The blue line depicts the SVR prediction while the grey points are the original and simulated data.

The red dashed line is the "-tube. This SVR model uses 200 simulated observations and a Gaussian kernel.

2 The Feedforward Neural Network (FNN) model

On the other hand, Neural Networks (NN) are a series of algorithms, modeled loosely after
the human brain, that are designed to recognize patterns and make predictions. They con-
sist of layers of interconnected nodes (or ”neurons”) that process input data in a way that
allows the network to learn and make complex decisions. Among the wide range of Neural
Network sub-models, we are interested in Feedforward Neural Networks (FNN) since they
are e↵ective with time series, can learn non-linear relationships and make accurate regres-
sion predictions. The working of a feedforward neural network involves two phases: (i) the
Feedforward phase and (ii) the Backpropagation phase.
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In the Feedforward phase, our data (non-standardized) is introduced into the input layer of
the FNN model and propagates through each hidden layer sequentially until reaching the
final output layer. In each hidden layer, the network computes a weighted sum of the inputs
and applies an activation function, introducing non-linearity to enhance the model’s capac-
ity for pattern recognition. This forward propagation continues until the FNN generates a
prediction at the final output layer. Figure 5 illustrates the functioning of a FNN with one
hidden layer and 3 neurons. Our FNN model is designed to process the data through 10
hidden layers with 5 neurons.

Then, the Backpropagation phase begins. After a prediction is generated, the FNN cal-
culates the error, defined as the di↵erence between the predicted output and the actual
target value. This error is then propagated backward through the network layers, with
the goal of adjusting the weights to minimize the error. Weight adjustment is achieved
through a gradient descent optimization algorithm, which systematically reduces the error
by modifying the weights in proportion to their contributions to the prediction error. This
iterative refinement of weights enhances the model’s accuracy over successive training cycles.

Figure 5: Architecture of a Feedforward Neural Network (FNN)

Let’s consider a FNN with L layers, where each layer l contains a certain number of neu-
rons. Each neuron in a layer computes a weighted sum of its inputs, adds a bias, and
then applies a non-linear activation function. A single neuron j in layer l receives input
signals x1, x2, . . . , xn from the neurons in the previous layer, each associated with a weight
w1j , w2j , . . . , wnj . The neuron computes a weighted sum of these inputs:

zj =
nX

i=1

wijxi + bj , (10)
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Where bj is a bias term that allows the neuron to adjust its output independently of the
input. This weighted sum zj is then passed through an activation function �(z), which
introduces non-linearity to the model and enables the network to approximate non-linear
patterns in the data.

In our model, we use the Tanh activation function as our activation function in the hidden
layers, defined as:

�(z) =
ez � e�z

ez + e�z
, (11)

Where z is the weighted sum of the inputs plus the bias term, as described in Equation
(10). The Tanh function maps values to a range between �1 and 1, which centers the data
around zero, reduces bias in activations and improves convergence during training.

In a FNN, data is processed through multiple layers by iteratively applying the weighted
sums, bias adjustments and Tanh activations in each hidden layer. For layer l, we denote
the transformation from the previous layer’s output a(l�1) as:

z
(l) = W

(l)
a
(l�1) + b

(l), (12)

Where W
(l) represents the weight matrix for layer l, b(l) is the bias vector, and z

(l) repre-
sents the weighted input to layer l. The output of layer l is then calculated by applying the
Tanh activation function element-wise to each value in z

(l):

a
(l) = tanh(z(l)), (13)

This feedforward process is repeated through each hidden layer, allowing the network to
learn non-linear transformations of the data. After processing through our 10 hidden layers,
the data reaches the final output layer for prediction.

In prediction tasks, the output layer uses a linear activation function, as it allows the
network to output a continuous range of values. This is particularly important for pre-
dicting values like bond spreads, which can vary widely depending on the country under
study. Unlike the Tanh activation function that restricts values between [�1, 1], the linear
activation function in the final output layer simply outputs the weighted sum of the inputs
without additional transformation. The final prediction, ŷ, is given by:

ŷ = W
(L)

a
(L�1) + b(L), (14)

Where L is the output layer, W(L) is the weight matrix, and b(L) is the bias term.
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The feedforward phase ends by obtaining the predicted value and allows to enter the second
phase : training the model. Training involves backpropagation, an optimization method
that calculates gradients of a loss function with respect to each weight and bias in the FNN.
For n number of samples, we measure the di↵erence between the predicted output ŷ and
the actual target value y using the following loss function :

L(y, ŷ) = 1

n

nX

i=1

(yi � ŷi)
2, (15)

During backpropagation, the network updates weights by moving in the opposite direc-

tion of the gradient to minimize the loss. For each weight w(l)
ij in layer l, the update rule

is:

w(l)
ij  w(l)

ij � ⌘
@L
@w(l)

ij

, (16)

Where ⌘ is the learning rate, a parameter that controls the size of each adjustment. This
iterative update continues until the network converges to an optimal set of weights that
minimizes the loss and provides a definitive final prediction.

4.1.3 Rule-based Techniques

Rule-based techniques involve methods that infer logical rules from the data. Among those
techniques, tree-based methods are able to capture complex interactions among variables
through their branching structure and are inherently explainable because each split in the
tree follows a decision criterion. Tree models include Decision Trees, Regularized Trees and
Boosted Trees. In addition to tree models, a second category of methods has emerged : the
Stochastic Gradient Machines. They encompass a range of machine learning techniques that
optimize a cost function iteratively. This category includes Stochastic Gradient Boosting
(SGB), XGBoost and LightGBM.

1 Tree-based models

Tree-based models are a category of machine learning algorithms structured around hierar-
chical decision-making, where predictions are generated through a series of binary decisions
that split the data into increasingly refined subsets. Originally designed for classification
tasks, tree-based models have been e↵ectively adapted for prediction.

Decision Tree models have the simplest setup. When designed for predicting values, they
operate by recursively partitioning the data based on variable values, creating a hierarchical
structure of splits to approximate the target variable. The tree begins with a root node
that represents the entire dataset. At each node, the model selects the variable and corre-
sponding threshold that best divides the data to minimize prediction error. The decision
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tree model seeks to minimize the variance of the target variable within each subset (i.e the
datasets after a split) by choosing splits that reduce the overall error. For a given node,
the model evaluates candidate splits on variable x to find the split x  s that minimizes
the Mean Squared Error (MSE) across the resulting subsets. For a split that divides the
data D into subsets Dleft and Dright based on a threshold s, the optimal split minimizes the
objective:

MSE =
|Dleft|
|D| Var(Dleft) +

|Dright|
|D| Var(Dright), (17)

Where Var(Dleft) and Var(Dright) represent the variance of the target variable in the left and
right subsets, respectively, and |D| denotes the number of samples in the original dataset.
The split that results in the lowest weighted average variance is chosen, as it best reduces
the prediction error at that node.

Once the tree structure is fully established, each path from the root node to a terminal
leaf node represents a set of conditions based on variable values that lead to a final pre-
diction. At each leaf node, the model makes a prediction based on the mean value of the
target variable within that subset:

ŷ =
1

|Dleaf|
X

i2Dleaf

yi, (18)

Where Dleaf is the set of instances that reach that leaf node, and yi represents the observed
value of the target variable for each instance i. This average provides a stable prediction
based on the samples that meet the conditions defined by the path through the tree.

Figure 6: Decision Tree applied to housing prices
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The decision tree stops growing when it reaches a pre-set maximum depth or when fur-
ther splits do not meaningfully reduce the prediction error. This structure allows decision
trees to capture non-linear relationships and interactions between variables without requir-
ing any assumptions about the underlying data distribution. using simulated data, Figure 6
illustrates a decision tree model predicting the prices of 100 houses based on two variables:
the amount of square meters and the number of bedrooms. At each node, the tree makes a
split based on a threshold value for one of these variables, dividing the dataset in subsets
to reduce prediction error. Each terminal leaf node shows a predicted house price (in thou-
sands) depending on the two variables. The ”n” value at each node indicates the number
of samples in that subset, and the percentage reflects the proportion of the dataset in that
group. A house with less than 2,227 square meters (first node), more than 4 bedrooms
(second node) and less than 1,761 square meters (third and terminal leaf node) is predicted
to have a price of 383,000 euros.

Regularized Trees are enhanced decision trees that incorporate constraints to prevent over-
fitting, thereby improving the model’s ability to generalize. In a standard decision tree,
splits are made to minimize the variance in each subset using Mean Squared Error (MSE)
as the splitting criterion. However, regularized trees add penalties to this process, balancing
prediction accuracy with model simplicity. One common regularization approach is prun-
ing, which either restricts tree growth during training (pre-pruning) or removes branches
after the tree is fully grown (post-pruning). Pre-pruning stops the tree from splitting fur-
ther when a stopping criterion is met (e.g., maximum depth). Post-pruning, on the other
hand, begins with a fully grown tree and systematically removes branches that contribute
minimally to reducing prediction error. This can be formulated as minimizing an objective
function that includes a complexity term:

Objective = MSE + ↵⇥ Complexity(T), (19)

Where ↵ is the regularization parameter and Complexity(T) represents the complexity of

the tree T (e.g., the number of leaf nodes or tree depth). This penalty term discourages
overly complex trees, ensuring that the final model avoids capturing noise in the training
data.Another regularization technique is to penalize splits based on certain criteria, e↵ec-
tively adding a threshold for variance reduction. By setting this threshold, splits are only
allowed if they result in a substantial improvement in the target variable’s prediction accu-
racy, reducing unnecessary splits that may lead to overfitting.

However, a single decision tree may su↵er from high variance and overfit the training data.
To address these limitations, ensemble methods like Stochastic Gradient Machines are em-
ployed. Methods such as Boosted Trees, Stochastic Gradient Boosting (SGB), XGBoost
or LightGBM sequentially build trees that correct the errors of previous trees and then
combine the average of the predictions of the final trees to create a more accurate model.

This is the case for Boosted Trees, which combine multiple decision trees to form a more
accurate predictive model by iteratively focusing on errors. Boosted Trees work through an

29



Bouillot, Candelon & Kool

additive process, where each new tree attempts to correct the residual errors of the preced-
ing trees. This approach involves sequentially building trees and updating the model with
each iteration, ultimately creating an ensemble of trees. The boosted model at iteration t
is represented as:

Ft(x) = Ft�1(x) + ⌘ · ht(x), (20)

Where Ft�1(x) is the model from the previous iteration, ht(x) is the new tree trained
on the residuals (errors) of Ft�1(x), and ⌘ is the learning rate, the parameter controlling
the contribution of each new tree to the overall model. By adjusting ⌘, the model can be
more cautious in its updates, which helps prevent overfitting.

After a specified number of iterations T , the final prediction for any input x is the cu-
mulative sum of the initial prediction and all adjustments from each tree in the ensemble:

ŷ = FT (x) = F0(x) +
TX

t=1

⌘ · ht(x). (21)

2 The Stochastic Gradient Machine (SGM) models

Stochastic Gradient Boosting (SGB) is similar to Boosted trees but the di↵erence lies in
the introduction of randomness in the training process. Indeed, each new tree is trained
on a random subsample of the data, rather than the entire dataset. In Stochastic Gradient
Boosting, each tree ht(x) is trained on a random subsample St ✓ D, where D is the entire
dataset. Using equation (20) as a basis, the SGB model at iteration t is can be formulated
as:

Ft(x) = Ft�1(x) + ⌘ · ht(St). (22)

After all iterations are complete, the final prediction ŷ for a given input x is the cumu-
lative output of all the trees in the ensemble:

ŷ = FT (x) = F0(x) +
TX

t=1

⌘ · ht(St), (23)

Where T is the total number of iterations (trees). This cumulative approach leverages
each tree to incrementally reduce error by addressing the residuals of the previous trees,
resulting in a stronger predictive model for the target variable.

XGBoost, or eXtreme Gradient Boosting, is an optimized version of gradient boosting
that incorporates additional regularization. It minimizes a regularized loss function that

30



includes both a predictive loss (e.g., Mean Squared Error) and a regularization term to
penalize model complexity. The objective function in XGBoost is:

Obj(Ft) =
nX

i=1

L(yi, Ft�1(xi) + ht(xi)) + ⌦(ht), (24)

Where L(yi, ŷi) is the loss function measuring the di↵erence between the actual and pre-
dicted values for the i-th observation, ht is the new tree, and ⌦(ht) = �T + 1

2�
P

j w
2
j is a

regularization term. Here, T is the number of leaves in the tree, wj represents the weights of
each leaf, and � and � are regularization parameters that control the complexity of each tree.

XGBoost optimizes the objective function by using a second-order Taylor expansion of
the loss function, which incorporates both the gradient (first derivative) and the Hessian
(second derivative) to calculate the optimal weights for each leaf. This makes the updates
more precise and allows the model to converge faster than standard gradient boosting.
Mathematically, for a given loss L(y, ŷ), the gradients gt and Hessians ht at iteration t are:

gt =
@L(y, Ft�1(x))

@Ft�1(x)
, ht =

@2L(y, Ft�1(x))

@Ft�1(x)2
. (25)

After a new tree is built to minimize the sum of the gradients and Hessians, XGBoost
uses this tree to update the model’s predictions. Each new tree, ht(x), is added to the
cumulative prediction function Ft�1(x), which represents the predictions from all previous
trees. This addition is scaled by the learning rate, ⌘. The updated prediction function
after adding the new tree at iteration is the same as equation (20). The function Ft(x)
now incorporates the refined adjustments made by the latest tree to improve accuracy. By
adding ht(x), which has been trained to correct the remaining residual errors (gradients)
from previous iterations, the overall model incrementally improves its fit to the target val-
ues. XGBoost then repeats this process iteratively, building additional trees that continue
to correct residual errors from previous predictions. The final prediction for a given input
x after T iterations (trees) is:

ŷ = FT (x) = F0(x) +
TX

t=1

⌘ · ht(x), (26)

Where F0(x) is the initial prediction (the mean of the target values) and the cumulative
sum represents the incremental improvements made by each tree. Note that in this paper,
XGBoost is ahead other machine learning methods in our horse race.

Finally, LightGBM (Light Gradient Boosting Machine) is an advanced gradient boosting
framework. It is particularly optimized for large datasets and high-dimensional data, using
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a unique approach called ”Leaf-wise growth” which distinguishes it from XGBoost’s ”Level-
wise tree growth”. Those two growth patterns are illustrated in Figure 7. In panel (a), we
see XGBoost’s level-wise tree growth approach in which the tree grows layer by layer (from
top to bottom), with all nodes at the same level being split before moving on to the next
layer. This level-wise strategy ensures that the tree remains balanced, as all branches grow
at the same rate. However, this approach can be less e�cient because it splits some nodes
that contribute minimally to reducing the overall error. Panel (b) illustrates LightGBM’s
leaf-wise tree growth approach. LightGBM grows the tree by expanding the leaf node
with the highest potential to reduce the error, as determined by a splitting criterion. This
method focuses on optimizing the most informative branches first, which results in a more
asymmetric, unbalanced tree structure. By growing deeper on the most promising leaves,
the model can capture patterns more e�ciently, leading to faster convergence. However,
leaf-wise growth may also lead to overfitting if the tree grows too deep in certain areas,
especially without constraints like maximum depth.

Figure 7: Leaf-wise and Level-wise tree growth

Although their leaf growth strategy is di↵erent, the objective function of LightGBM is
the same as the one of XGBoost, presented in equation (24). However, the key distinction
is how LightGBM builds trees. The Leaf-wise approach involves evaluating each leaf node’s
potential splits and selecting the one that maximally reduces the objective function, rather
than splitting all nodes in parallel.

On a more technical touch, LightGBM also includes a Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB), which improve computational e�ciency.
GOSS is a sampling method that retains a higher proportion of samples with large gradients
(high error) while randomly sampling from smaller gradients, ensuring the model focuses
on samples where prediction error is highest. EFB combines mutually exclusive features
into a single feature, reducing dimensionality and enhancing processing speed. These opti-
mizations make LightGBM highly e�cient for large and sparse datasets.
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4.2 The Horse Race

Given the specific characteristics of our database and the empirical objectives of this paper,
comparing various Machine Learning techniques is an indispensable practice which provides
insights into the e�cacy and applicability of di↵erent algorithms. This sub-section aims to
systematically compare the selected Machine Learning techniques. The necessity behind this
comprehensive evaluation is rooted in the diverse nature of these methods, each harboring
unique strengths and limitations that may a↵ect the selection accuracy of the variables in
our dataset.

4.2.1 The race setup

In order to compare accurately all Machine Learning models, the horse race employs three
accuracy metrics : the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE)
and R2. Those metrics have been chosen since they are easily comparable between models
and provide the level of accuracy needed to settle the winner of the horse race. This horse
race aims at highlighting the best-performing algorithm, that is the one characterized by
the lowest RMSE and MAE and the highest R2.

RMSE measures the average magnitude of prediction errors, with a particular sensitiv-
ity to larger errors. It is calculated by taking the square root of the mean of the squared
di↵erences between predicted and actual values. The formula for RMSE is :

RMSE =

vuut 1

n

nX

i=1

(yi � ŷi)2, (27)

where yi represents the actual value, ŷi the predicted value, and n the number of observa-
tions. Because errors are squared before averaging, RMSE penalizes large errors more than
smaller ones, making it particularly useful in contexts where large deviations are undesir-
able. RMSE is expressed in the same units as the target variable, providing an interpretable
measure of the model’s average prediction error.

MAE, on the other hand, represents the average of the absolute di↵erences between pre-
dicted and actual values, without squaring the errors. It is calculated as :

MAE =
1

n

nX

i=1

|yi � ŷi|. (28)

Unlike RMSE, MAE does not disproportionately penalize large errors, which makes it a
more direct indicator of the average prediction error across all observations. This attribute
makes MAE useful in situations where all errors, regardless of magnitude, should be treated
equally. As with RMSE, MAE is expressed in the same units as the target variable, o↵ering
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an easily interpretable measure of the average absolute error in predictions.

R-squared (R2), quantifies the proportion of variance in the target variable that is explained
by the model. It is calculated using the formula :

R2 = 1�
Pn

i=1(yi � ŷi)2Pn
i=1(yi � ȳ)2

, (29)

where ȳ is the mean of the actual values. R2 ranges from 0 to 1, with 1 indicating that the
model perfectly explains the variance in the target variable and 0 indicating that the model
does no better than a simple mean prediction. In some cases, R2 can be negative, implying
that the model performs worse than a baseline model that predicts the mean. Unlike RMSE
and MAE, which directly measure error magnitudes, R2 provides insight into the overall
explanatory power of the model, making it a useful indicator of model fit in relation to the
variability in the data.

Prior to unleashing the horses on the racetrack, some parameters are chosen to ensure com-
parability and maximizing each of the techniques performances. First, the predictors are
standardized before fitting the models. Standardizing is particularly important for models
using penalties on the size of the coe�cients, such as LASSO, Ridge or Elastic net models.
Standardization also improves the interpretability of coe�cients and the ability to rank the
coe�cient’s importance by the relative magnitude of its post-shrinkage coe�cient estimate.
Second, we use cross-validation both as a method for model selection and parameter tuning
as well as a tool for forecast performance evaluation. This method is a widely-used approach
in machine learning, that divides the dataset into two distinct subsets: a training set used
to fit the model and a test set used to evaluate its performance on unseen data (i.e. realized
data points that are hidden from the model). In this paper, cross-validation is applied with
80% of the dataset being used for training and 20% for testing.

For model selection and parameter tuning, this train/test cross-validation approach allows
for the optimization of hyperparameters by repeatedly evaluating the model’s forecasting
performance on the test set across di↵erent parameter settings. By systematically adjusting
hyperparameters and observing their impact on the test set performance, we can identify
configurations that enhance model accuracy and prevent overfitting. This approach is par-
ticularly relevant for regularized models, such as LASSO and Ridge regression, as well as for
models like neural networks, decision trees and stochastic gradient machines, where precise
hyperparameter tuning is essential to balance the model’s complexity and generalization.
Regularized models benefit from cross-validation by selecting the optimal regularization
strength, represented by the parameter �, which prevents overfitting by penalizing exces-
sive complexity. This is crucial because an overly strong penalty can lead to underfitting,
while a weak penalty can result in overfitting. Cross-validation helps find the balance, en-
abling these models to generalize e↵ectively. In models such as neural networks, decision
trees or stochastic gradient machines, cross-validation plays an important role in hyperpa-
rameter tuning. For neural networks, which are prone to overfitting due to their non-linear
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flexibility, cross-validation assists in setting parameters like the learning rate and the net-
work depth to achieve optimal generalization. Similarly, for decision trees and stochastic
gradient machine models, cross-validation aids in tuning parameters such as tree depth and
learning rate to optimize model complexity. By using cross-validation to test various con-
figurations, these models can capture underlying trends without overfitting.

In terms of forecast performance evaluation, this train/test cross-validation framework pro-
vides a direct assessment of how the model will perform forecasts on unseen data, reflecting
its accuracy and reliability. By reporting metrics such as Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), or R2, we obtain an overview of the model’s accuracy and
generalization capability. Figure 8 presents an example of cross-validation using simulated
data with an upward seasonal trend on an Elastic Net model (50% L1 and 50% L2 penalty
terms). The model is trained using data represented by the blue line in order to forecast
the test data, represented by the red line. The model’s forecasted values are represented by
the green dashed line. Cross-validation helps not only finding the optimal value for � (i.e.
the strength of the regularization on the penalty terms) but also estimate the forecasting
accuracy of the model with RMSE (5.07), MAE (3.87) and R2 (0.68) metrics.

Figure 8: Cross-validation example with simulated data
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4.2.2 The race results

In this horse race, each machine learning technique represents a competing horse, with each
country serving as an individual race. The race consists of three heats, corresponding to
each of the accuracy metrics used: RMSE, MAE, and R2. This setup results in a total
of 30 distinct races for 14 competing models. The overall winner will be the model that
performs best across the most races, thereby demonstrating its ability to generate accurate
forecasts and its reliability when applied to the countries’ diverse datasets. The results for
each metric are provided in tables 6 to 8.

1 The RMSE results

Table 6 compiles the Root Mean Square Error (RMSE) values. Across the RMSE table,
XGBoost consistently achieves lower RMSE scores relative to other models, winning 70%
of the races. In order to understand the magnitude of XGBoost’s RMSE value, we compare
it to a linear technique (Elastic Net) and to a non-linear technique (Support Vector Regres-
sion) since they are usually the techniques displaying the lowest RMSE in their respective
categories. In particular, XGBoost achieves the lowest RMSE values in Belgium (0.142),
France (0.078), Greece (1.639), Italy (0.277), The Netherlands (0.043), Portugal (0.664) and
Spain (0.248). Other techniques win in Austria (SGBoosting), Finland (Regularized trees)
and Ireland (LightGBM).

In peripheral countries, other models exhibit higher RMSE values, such as in Italy, where
Elastic Net records an RMSE of 0.381, 37% higher than XGBoost, while Support Vector
Regression (SVR) reaches 0.474, a 71% increase. Similarly, in Portugal, Elastic Net’s RMSE
is 55% higher than XGBoost, and SVR’s is 89% higher. In Greece, XGBoost achieves an
RMSE of 1.639, by comparison, Elastic Net records a significantly higher RMSE of 6.947,
which is 324% above XGBoost’s level, indicating a substantial gap in performance. Sim-
ilarly, Support Vector Regression in Greece has an RMSE of 2.575, which is 57% higher
than XGBoost, further emphasizing XGBoost’s e↵ectiveness in controlling error magnitude
in this country. In Spain, XGBoost achieves an RMSE of 0.248, again setting a low bench-
mark. Here, Elastic Net’s RMSE reaches 0.303, a 22% increase over XGBoost, while SVR
records an RMSE of 0.325, 31% higher than XGBoost’s value.

In core countries such as Belgium, XGBoost achieves an RMSE of 0.142. Comparatively,
Elastic Net records an RMSE of 0.219, which is 54% higher than XGBoost. Support Vector
Regression (SVR) in Belgium shows an even larger discrepancy with an RMSE of 0.274,
representing a 93% increase over XGBoost’s benchmark value. In France, XGBoost achieves
an RMSE of 0.078, establishing the lowest error model. Elastic Net’s RMSE is 0.113, which
is 45% higher than XGBoost while SVR records an RMSE of 0.178, an increase of 128%
over XGBoost. In the Netherlands, XGBoost reaches an RMSE of 0.043, sharing the lowest
error value with another Stochastic Gradient machine technique : SGBoosting. Elastic Net
achieves a higher RMSE of 0.059, which is 37% above XGBoost, while SVR records an
RMSE of 0.046, showing a 7% increase over XGBoost.
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Overall, the RMSE results highlight XGBoost as the most e↵ective model for minimiz-
ing prediction errors across the countries under study, consistently outperforming linear
models such as LASSO, Ridge and Elastic Net as well as surpassing non-linear models like
Support Vector Regression and Feedforward Neural Networks. Although XGBoost emerges
as the winning model in the majority of cases, it encounters some competition from other
techniques within its own category, such as SG Boosting, LightGBM and Regularized Trees.
These models occasionally achieve better results, demonstrating that -while XGBoost is the
most reliable overall- other gradient-boosting and tree-based techniques can also be e↵ective.

2 The MAE results

Table 7 presents the results for the Mean Absolute Error (MAE) values. Again, XGBoost
consistently establishes itself as the most e↵ective model in the countries under study, win-
ning 80% of the races. Similarly to the analysis of the RMSE results, XGBoost serves
here as the benchmark model and its performance is compared against the ones of Boosted
LASSO as a representative of linear models and Support Vector Regression (SVR) as a
representative of non-linear models, since they are the best performers. Overall, , XGBoost
achieves the lowest MAE values in Austria (0.065), Belgium (0.086), Finland (0,051), France
(0.057), Greece (0.884), The Netherlands (0.031), Portugal (0.346) and Spain (0.170). The
LightGBM technique wins by a slight margin in Ireland (0,153) and Italy (0,203).

In peripheral countries like Greece, XGBoost achieves an MAE of 0.884, setting a rela-
tively low benchmark in a country where MAE values are generally high : above 1 in 12 out
of 14 models. In comparison, SVR records a significantly higher MAE of 1. 414, which is
60% above XGBoost’s value, indicating a substantial di↵erence in error reduction capability
between these two models. Boosted LASSO performs even less e↵ectively, with an MAE of
1. 627, which is 84% higher than XGBoost. In Portugal, XGBoost maintains its position as
the most accurate model with an MAE of 0.346. Boosted LASSO records an MAE of 0.430,
which is 24% higher than XGBoost, while SVR, with an MAE of 0.674, exhibits a 95%
increase over XGBoost’s. In Spain, XGBoost achieves an MAE of 0.170. In comparison,
Boosted LASSO has an MAE of 0.220, which is 29% higher than XGBoost’s value and SVR
records an MAE of 0.239, 41% higher than XGBoost.

In core countries, such as Austria, XGBoost achieves an MAE of 0.065 while Boosted
LASSO records an MAE of 0.072, approximately 11% higher than XGBoost, indicating
that while Boosted LASSO performs reasonably well, it still falls short of XGBoost’s pre-
cision in minimizing error. SVR in Austria shows an even larger deviation with an MAE
of 0.078, which is 20% higher than XGBoost. In Belgium, XGBoost achieves an MAE of
0.086, once again establishing itself as the model with the lowest error. Boosted LASSO
records an MAE of 0.108, which is 26% higher than XGBoost. SVR, with an MAE of
0.120, performs even less favorably, showing a 40% increase over XGBoost. In Finland,
XGBoost attains an MAE of 0.051 while Boosted LASSO achieves 0.052, which is just 2%
higher than XGBoost, indicating that Boosted LASSO performs quite closely to XGBoost
in this particular country. Nevertheless, XGBoost still maintains a slight edge in minimiz-
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ing errors. SVR, on the other hand, records an MAE of 0.061, which is 20% higher than
XGBoost’s value. In France, XGBoost records an MAE of 0.057, maintaining its position
as the most accurate model. Boosted LASSO, by contrast, shows an MAE of 0.065, which
is 14% higher than XGBoost. SVR records a considerably higher MAE of 0.101 in France,
which is 77% above XGBoost’s value. In the Netherlands, XGBoost achieves an MAE of
0.031. Boosted LASSO records an MAE of 0.051, which is 65% higher than XGBoost while
SVR, with an MAE of 0.033, performs more closely to XGBoost, showing only a 6% increase.

In summary, XGBoost consistently achieves the lowest MAE values across Austria, Bel-
gium, Finland, France, and the Netherlands, demonstrating superior predictive accuracy
relative to both linear and non-linear models. While Boosted LASSO occasionally performs
closely to XGBoost, particularly in Finland, it generally exhibits higher error rates. SVR,
although competitive in some countries, particularly in the Netherlands, also consistently
falls short of XGBoost’s level of precision. The most competitive model comes again from
the same category as XGBoost : LightGBM. The latter wins in Ireland and Italy, providing
evidence that gradient-boosting models are more adequate than linear and non-linear ones.

3 The R2
results

Finally, table 8 presents the results for the R2 values. For a third time, XGBoost performs
particularly well, winning 60% of the races. Again, XGBoost serves as the benchmark and
is compared to Boosted LASSO and Support Vector Regression, both of which are the
top performers within their respective categories. Overall, XGBoost claims the highest R2

values in Belgium (0.916), France (0.896), Italy (0.912), the Netherlands (0.804), Portugal
(0.947) and Spain (0.929). Other rule-based techniques contribute to additional wins, with
Regularized Trees performing best in Finland (0.68), SG Boosting in Austria (0.857), and
LightGBM in Ireland (0.988). For the first time, a linear technique wins a race; Boosted
LASSO in Greece (0.937).

In peripheral countries, like Greece, XGBoost must concede its first defeat in a race against
a linear technique. Indeed, XGBoost achieves an R2 value of 0.937, while Boosted LASSO
records an R2 of 0.938. This race is particularly close, indicating that XGBoost performs
nearly on par with Boosted LASSO in Greece. However, SVR shows a substantially lower
R2 of 0.845, representing a 10% reduction in explained variance compared to XGBoost. In
Italy, XGBoost attains an R2 of 0.912 while Boosted LASSO records an R2 of 0.890, only
2% lower than XGBoost, showing that Boosted LASSO remains a strong linear alternative.
SVR, on the other hand, achieves an R2 of 0.744, which is 18% lower than XGBoost, indi-
cating a notable gap in explanatory power. In Portugal, XGBoost records an R2 of 0.947,
the highest among all models but Boosted LASSO’s R2 of 0.940 is only 1% lower. However,
SVR’s R2 in Portugal is 0.810, which is 14% below XGBoost’s. In Spain, XGBoost achieves
an R2 of 0.929, setting a high benchmark for model performance. Boosted LASSO records
an R2 of 0.867, which is 7% lower than XGBoost while SVR, with an R2 of 0.879, performs
somewhat better than Boosted LASSO but still falls short to XGBoost by around 5%.
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In core countries, such as Belgium, the R2 value for XGBoost is 0.916, setting a high
benchmark for model e↵ectiveness. By comparison, Boosted LASSO records an R2 of
0.812, which is 11% lower than XGBoost. This discrepancy suggests that Boosted LASSO,
while performing reasonably well, lacks the capacity to explain the variance as e↵ectively as
XGBoost in the Belgian dataset. SVR, with an R2 of 0.691, performs even less favorably,
showing an R2 value that is 25% lower than XGBoost. In France, XGBoost achieves an
R2 value of 0.896, again establishing itself as the most e↵ective model in terms of variance
explanation. Boosted LASSO, by contrast, records an R2 of 0.847, which is 5% lower than
XGBoost, indicating that although Boosted LASSO performs relatively well, it does not
match XGBoost’s predictive capacity. SVR records a significantly lower R2 of 0.466 in
France, which is 48% below XGBoost’s value. In the Netherlands, XGBoost attains an R2

of 0.804 while Boosted LASSO records an R2 of 0.547, which is 32% lower, reflecting a con-
siderable gap in predictive performance. On the other hand, SVR records an R2 of 0.780,
which is slightly lower than XGBoost by 3%, indicating that SVR performs competitively
in this particular country.

The R2 analysis demonstrates XGBoost’s superiority in capturing data variance, establish-
ing it as the most e↵ective model. Consistently achieving the highest R2 values, XGBoost
outperforms both Boosted LASSO and Support Vector Regression (SVR). In countries like
Belgium, Greece, Ireland, Italy, Portugal and Spain, XGBoost explains a larger proportion
of the variance, reflecting its capacity for accurate predictions. While Boosted LASSO oc-
casionally performs competitively, particularly in Greece, Ireland and Portugal, it generally
records slightly lower R2 values, revealing limitations in its explanatory power relative to
XGBoost. SVR, despite being the best non-linear alternative, exhibits more significant
deficits in R2, particularly in Belgium, Finland and France.

In conclusion, synthesizing the insights from RMSE, MAE, and R2 metrics make XGBoost
emerge as the most accurate and reliable model by winning 70% of the races (21 out of 30).
It consistently demonstrated low error rates (both RMSE and MAE) and high explanatory
power (R2) across the countries’ datasets. Although other models, such as SG Boosting or
LightGBM, performed comparably or even better in certain countries, XGBoost’s stability
and performance across all three metrics make it the definitive winner in this horse race. In
light of those results, XGBoost’s consistent ability to balance error minimization with high
explanatory variance suggests this model would be the preferred choice for predicting Euro
area sovereign bond spreads. Hence, we choose XGBoost as our model for the remainder of
the paper.
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5 Empirical Results

This empirical section builds on the results of the horse race, where XGBoost emerged as
the most accurate and reliable model for forecasting Euro area bond spreads. The horse race
not only demonstrated XGBoost’s superiority over 13 competing models, including LASSO
models, Support Vector Regression and other rule-based techniques, but also showed its re-
liability in capturing the relationships among the hundreds of variables supplied in our novel
big dataset. Leveraging this predictive power, we first conduct a country-specific empirical
analysis o↵ering a detailed examination of the predicted yield spreads and their implications
for financial fragmentation within the Euro Area. Then, we provide an evaluation of bond
spread dynamics by creating a correlation heatmap with a dissimilarity measure which sheds
light on the persistent core-periphery divide in the Euro area. Through this methodology,
the empirical section not only confirms XGBoost’s capabilities but also provides insights
into the financial risks and market trends shaping the future of the European Monetary
Union.

5.1 The country-specific analysis

For the ten Euro area countries included in this analysis, we use XGBoost models to pre-
dict the 10-year sovereign bond yield spread six months into the future. Figures 9 to 18
illustrate the time series of observed and predicted spread values for each country. Overall,
the predictions align with the initial hypothesis, underscoring the heterogeneous dynamics
of sovereign bond yield spreads across the Euro area. Specifically, Austria, Finland and the
Netherlands are expected to have significantly lower yield spreads while Italy and Greece
are predicted to face notably higher spreads. Meanwhile, the outlook for France, Belgium,
Spain, Ireland and Portugal is projected to be relatively stable, although their predicted
yield spreads slightly exceed the most recently observed data points.

The observed yield spreads for Austria, Finland and the Netherlands (figures 9, 10, and
11, respectively) display a notable increase at the start of 2022. This rise can be attributed
to the heightened financial and economic uncertainty stemming from the war in Ukraine,
coupled with the energy crisis that exacerbated inflationary pressures and prompted the
European Central Bank (ECB) to adopt a tighter monetary policy stance. Following this
initial spike, the spreads gradually stabilized over the course of 2022 and 2023. The six-
month-ahead predictions for these countries reveal a distinct and pronounced downward
trend in yield spreads. This outcome aligns with the expectation that Austria, Finland
and the Netherlands, as core Euro area countries, benefit from ”flight-to-quality” behavior.
During periods of heightened uncertainty, investors tend to shift toward safer assets. This
”flight-to-quality” behavior leads to an increased demand for assets associated with core
countries, which are perceived as more financially stable and thus less risky. Consequently,
this shift in the investors’ preferences results in a contraction of yield spreads for the core
economies, reflecting their status as financial safe havens during times of economic and
geopolitical instability.
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On the other hand, for Italy and Greece (figures 17 and 18), the actual bond spreads
show significant volatility during the early 2010s, peaking during the European Sovereign
Debt Crisis, followed by a gradual decline in subsequent years. The narrower spreads can be
attributed to measures such as the ECB’s introduction of unconventional monetary policies,
including the Outright Monetary Transactions (OMT) program which played a critical role
in reassuring investors of the Euro area’s commitment to safeguarding financial stability.
The establishment of the European Stability Mechanism (ESM) and fiscal consolidation
e↵orts also contributed to mitigating sovereign risk perceptions. Although those develop-
ments reduced investor uncertainty, fostering a period of relative market normalization and
lower bond spreads, the recent period exhibits renewed volatility and higher spreads. The
XGBoost model predicts a notable upward movement in spreads over the six-month hori-
zon, indicating revived concerns about Greece and Italy’s fiscal sustainability and economic
soundness. This predicted rise in spreads hence aligns with the broader pattern of ”con-
tagion” behavior observed among peripheral Euro area countries. Contagion refers to the
phenomenon where economic or financial instability in one country spreads to others. This
behavior is particularly relevant within the Euro Area, where shared monetary policies and
deeply integrated financial systems create channels through which shocks in one country
can quickly influence others. In the case of Greece and Italy, both nations have historically
exhibited vulnerabilities that make them susceptible to such contagion e↵ects. Greece’s
high public debt levels, structural deficits and history of fiscal crises amplify its exposure
to shifts in investor confidence. Similarly, Italy’s significant public debt and prolonged eco-
nomic stagnation leave it vulnerable to risk repricing in global markets. When investors
perceive heightened risks in one peripheral country, such as Greece, the fear of similar
vulnerabilities in Italy can trigger a chain reaction. This results in rising risk premiums
across peripheral countries. For Greece and Italy, this “contagion” behavior amplifies the
divergence in spreads compared to core Euro area countries, further reinforcing financial
fragmentation. Furthermore, the magnitude of the predicted increase in yield spreads needs
to be considered, particularly in the case of Greece. The Greek yield spreads are predicted
to reach levels not observed in the past five years, a development that raises significant
concerns. Indeed, the combination of higher bond yields with structural domestic deficit
imbalances leads to increased pressure on Greek finances, heightening the risk of a new
European Sovereign Debt crisis.

Finally, the five remainder countries –France, Belgium, Portugal, Ireland and Spain- rep-
resent a diverse spectrum of the Euro area’s financial structure, with France and Belgium
usually considered as core countries while Portugal, Ireland and Spain often categorized
as peripheral countries. In France and Belgium (figures 12 and 13), the observed spreads
display relative stability following the resolution of the ESD crisis, maintaining a narrow
range with slight fluctuations. On the contrary, Spain, Ireland and Portugal (figures 14,
15 and 16, respectively) experienced significant financial pressures during the crisis, with
spreads peaking sharply before decreasing and stabilizing in the years that followed the ESD
crisis, benefiting from the same risk-mitigating measures as Italy and Greece. However, the
recent period of economic uncertainty and geopolitical instability rekindled the financial
risk associated to each of the countries, highlighted by an increase in yield spreads in 2022
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and then stabilized. The XGBoost models for each country project a continuation of this
stable trend, with predicted yield spreads showing minimal variation over the six-month
horizon. The results suggest that those countries benefits from an intermediary position
within the Euro area, attracting moderate investor confidence while avoiding the extremes
spread movements experienced by core or peripheral countries. Ireland’s economic recovery,
underpinned by robust fiscal consolidation as well as Portugal and Spain’s reduced fiscal
vulnerabilities have contributed to their relative stable spread levels. Although they remain
sensitive to external investor sentiment due to their classification as peripheral countries,
they have transitioned to a more stable position. More worryingly, the fiscal and economic
situation in France and Belgium seems to have deteriorated, moving both countries closer
to this intermediate status, straddling the core-periphery divide. While still benefiting from
lower bond yields compared to peripheral countries, they also display residual investor con-
cerns, leading to flatter predicted spread trends relative to the downward trends experienced
by core countries.

Figure 9: Austria
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Figure 10: Finland
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Figure 11: The Netherlands
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Figure 12: France
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Figure 13: Belgium
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Figure 14: Spain
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Figure 15: Ireland
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Figure 16: Portugal
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Figure 17: Italy
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Figure 18: Greece
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5.2 The Euro area’s yield spread dynamic

The correlation heatmap presented in figure 19 visualizes the pairwise relationships between
the predicted 10-year bond spreads of the countries under study, structured into two distinct
clusters. The heatmap is based on the dissimilarity measure 1�⇢i,j , where ⇢i,j represents the
pairwise average correlation coe�cient between the predictions for countries i and j. Higher
correlation values (closer to 1) indicate stronger similarities in predicted spread dynamics,
while lower values reflect greater divergence. The two clusters are demarcated by rectangles,
emphasizing the dichotomy between the peripheral and core countries within the Euro Area.

The first cluster, predominantly encompassing Greece, Italy, Portugal, Ireland and Spain,
aligns with the group of usual peripheral countries in the literature. This grouping re-
flects high levels of interdependence in their predicted spread dynamics, suggesting that
these countries are subject to similar investor behavior patterns. These patterns stem from
shared vulnerabilities, such as higher debt levels, fiscal deficits and susceptibility to conta-
gion e↵ects during periods of financial instability.

The second cluster, consisting of Austria, Finland and the Netherlands, represents the core
countries within the Euro area. These nations exhibit high intracluster correlations in their
predicted spreads, reflecting their shared status as safe-haven economies benefiting from
”flight-to-quality” behavior. The low correlation between this cluster and the peripheral
countries highlights the financial fragmentation risk within the Euro area, underscoring the
persistent divergence in investor perceptions between these two groups of countries.

Interestingly and for the first time to our knowledge, France and Belgium have switched
sides and joined the peripheral countries, reflecting their struggling economic and financial
situations. Considered as core countries in the literature because of their strong fiscal posi-
tions, stable economic growth and high investor confidence, they benefited from low bond
yields and acted as anchors of stability within the area, aligning with other core countries.
In contrast, peripheral countries often face higher debt burdens, greater fiscal vulnerabili-
ties and increased susceptibility to market pressures such as “contagion”, leading to higher
risk premiums and borrowing costs. Thus, the reclassification of Belgium and France as
peripheral countries would signal a significant and worrisome shift in the region’s economic
and financial landscape and could exacerbate the financial fragmentation risk within the
Euro Area. Indeed, as a large, systemically important country, France’s relegation to the
periphery would strain the Euro area’s cohesion, raising concerns about the e↵ectiveness of
shared monetary policies in stabilizing the economic bloc. Similarly, Belgium’s transition
would further reduce the pool of core countries, leaving fewer nations capable of absorb-
ing market shocks and reinforcing investor confidence. This would heighten vulnerabilities
across the Euro Area, increasing the risk of contagion and threatening the stability of the
entire monetary union.
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Figure 19: Correlation Heatmap with 2 Clusters
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6 Conclusion

This paper proposes a novel high-dimensional dataset covering a wide range of fields within
10 European countries over 2007-2024 to forecast the sovereign yield spread in the Euro
area. It proposes to compare the di↵erent ML techniques to provide the most accurate
forecasts and shows that XGBoost presents the best predictive ability among the ML tech-
niques. Forecasts suggest that the predicted long-term yield spreads of peripheral countries
rise while those in core countries’ rise remain contained or even decrease. It therefore sug-
gest a increase in the fragmentation risk in the Euro Area.

The implications of the findings of this paper are manifold. The consequences induced
by the financial fragmentation risk go well beyond financial markets and impact the real
economy. Elevated borrowing costs for peripheral countries can curtail public and private
investment, potentially leading to subdued growth trajectories and exacerbated unemploy-
ment levels, exacerbating financial fragmentation. It also endangered the strategy toward
sustainable public debt in peripheric countries. The stability of the Euro Area necessarily
requires financial fragmentation. Discourses surrounding the completion of the banking
union, regulatory harmonization, public deficit limitations and potential strides towards a
fiscal union are key elements to reduce the risk of fragmentation.

From a policy perspective, the evidence of financial fragmentation risk necessitates a re-
evaluation of the existing European financial frameworks and mechanisms, especially in
the context of cross-country cooperation and support. Governments in peripheral countries
need to be acutely aware of their nation’s vulnerabilities and should consider implementing
measures to stabilize their public deficit and to bolster their financial systems. Conversely,
for core countries, the results serve as a reminder of the interconnected nature of global
finance. While they might exhibit resilience in the face of shocks, the repercussions in pe-
ripheral nations could eventually ripple back, a↵ecting not only their stability but all of the
Euro Area’s.

Although the e↵ects of the ECB’s policies to bridge the chasm between core and peripheral
nations has been a success in the past decade, the ECB must not overlook this financial
fragmentation risk, especially in the current context of high inflation, high amount of gov-
ernment debt and worsening public deficits.
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