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Abstract

In energy markets, joint historical and implied calibration is of paramount importance for practitioners
yet notoriously challenging due to the need to align historical correlations of futures contracts with
implied volatility smiles from the option market. We address this crucial problem with a parsimonious
multiplicative multi-factor Heath-Jarrow-Morton (HJM) model for forward curves, combined with a
stochastic volatility factor coming from the Lifted Heston model. We develop a sequential fast calibration
procedure leveraging the Kemna-Vorst approximation of futures contracts: (i) historical correlations and
Variance Swap (VS) term structures are captured through Level, Slope, and Curvature factors, (ii) VS
term structures can then be corrected for a perfect match via fixed-point algorithms, (iii) implied volatility
smiles are calibrated using Fourier-based techniques. Our model displays remarkable joint historical and
implied calibration fits - to both German power and TTF gas markets - and enables realistic interpolation
within the implied volatility hypercube.
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Introduction

In power markets, futures contracts deliver electricity continuously over a fixed period, rather than on a
fixed delivery date as is typical for commodities like oil. These contracts are settled either physically or
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financially with respect to the average spot price of electricity over the delivery period. Due to the inability
to efficiently store electricity in large quantities, these instruments are often referred to as swaps, as the
holder effectively exchanges the forward rate against the spot price of the commodity.

The unique characteristics of electricity markets, such as the need to maintain equilibrium between real-
time production and consumption, distinguish them from other commodity markets. Real-time delivery
is typically managed through intra-day and imbalance markets, which align production and consumption
levels and can exhibit frequent price spikes or even negative prices during periods of significant imbalance.
Moreover, financial futures with very short-term deliveries often show low correlation with long-term futures,
which are highly correlated among themselves. This behavior is accompanied by exponentially increasing
realized volatility as the time to delivery reduces, the so-called Samuelson (2016) effect.

Following the deregulation of European electricity markets, an extensive body of literature has emerged on
the modeling of electricity markets. We refer to the survey by Deschatre, Féron, and Gruet (2021) and the
book by Benth, Benth, and Koekebakker (2008) for an overview of key modeling approaches and market
dynamics.

Several approaches to energy market modeling are considered in the literature, differing in the choice of the
initial stochastic quantity to be modeled. The first class of models focuses on the spot price process, as seen
in works like Mishura, Ottaviano, and Vargiolu (2023); Schmeck and Schwerin (2021); Cortazar, Lopez, and
Naranjo (2017). Another approach, inspired by the LIBOR market model , see Brigo and Mercurio (2006),
models futures contracts with specific delivery periods (e.g., monthly contracts, as in Kiesel, Schindlmayr,
and Börger (2009), Gardini and Santilli (2024)), using these contracts as building blocks to derive the prices
of other contracts under no-arbitrage conditions. The third class of models, inspired by the well-known
Heath, Jarrow, and Morton (1992) (HJM) interest rate model, takes infinitesimal futures contracts as a
starting point and uses them to reconstruct futures contracts with any delivery period. This type of model
ensures consistent dynamics across all futures contracts while also guaranteeing the absence of arbitrage
between futures contracts with overlapping delivery periods.

Early commodity models primarily focus on historical calibration, which involves calibrating the covariance
structure of traded futures contracts’ returns; see for example Andersen (2010) for the calibration of a
HJM model to gas prices, Edoli, Tasinato, and Vargiolu (2013) for a multi-underlyings calibration using the
quadratic variations of two-factor models for each market, Gardini and Santilli (2024) where they calibrate a
LIBOR market Black-Scholes-type factor model using historical swap prices, and Féron and Gruet (2024) for
a historical calibration of a multi-factor HJM model using maximum likelihood and a Kalman filter where
they also comment on the number of factors to capture the historical covariance of futures’ returns.

Since April 2024, brokers have started quoting smiles for vanilla options on German power. These vanilla
options are written on monthly contracts, quarterly contracts, and calendar (yearly) contracts, which can
overlap. For example, the first quarter of 2025 and the calendar 2025 can have quoted smiles. Another
specificity of the power market is that for one calendar underlying, three or four smiles can be quoted. With
the increasing liquidity of the electricity derivatives market in Europe, there has been significant growth in
research in option pricing in power market models, see Schmeck and Schwerin (2021); Cortazar, Lopez, and
Naranjo (2017); Benth, Piccirilli, and Vargiolu (2017). However, few studies as in Piccirilli, Schmeck, and
Vargiolu (2021); Musti, Fanelli, and Maddalena (2016) address the challenge of implied calibration, which
involves calibrating model parameters to fit available option prices. Note that implied calibration in the
energy market is exceptionally challenging, as it requires the simultaneous calibration of multiple volatility
surfaces associated with different underlyings, which are interconnected through the futures price curve.

The most significant limitation of the models mentioned above is that they allow for either historical cali-
bration or implied calibration, but not both simultaneously. Hence the following questions:

Is joint historical and implied calibration possible in energy markets?
If so, can we do it with a parsimonious and tractable model?

We answer both questions affirmatively with a parsimonious multiplicative multi-factor Heath, Jarrow, and
Morton (1992) (HJM) model for forward curves, combined with a stochastic volatility factor coming from
the Lifted Heston model of Abi Jaber (2019).
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On the one hand, by capturing historical covariances and implied volatility levels, our model provides insights
on the correlation term structure between liquid and non-liquid futures contracts. On the other hand, implied
calibration allows the entire implied volatility smile, not just the At-The-Money (ATM) volatilities, to be
represented by the model. Moreover, the proposed implied calibration takes into account potential multiple
maturities for a given underlying futures contract. Thus, the joint historical and implied calibration matches
both the correlation between futures and quoted smiles –— a problem of paramount importance for market
practitioners — leading to more accurate pricing of exotic contracts like Asian options or swing options. One
potential difficulty is that implied calibration may affect the historical one, but we will see that this influence
is negligible. To the best of our knowledge, this paper is the first to address both calibration problems with
a single model, taking into account the entire implied volatility smile.

Contributions. More precisely, to solve the joint historical and implied calibration problem, we introduce
in Section 1 an HJM model with

(i) parsimonious parametric Level, Slope and Curvature risk-factors in order to capture both historical
covariances of rolling futures’ log returns and implied volatility levels with a few factors,

(ii) two piece-wise constant functions to perfectly match the implied volatility term structure, including
early maturities,

(iii) a stochastic volatility component coming from the lifted Heston model with three time-scales to match
the implied volatility skews.

Such model is by construction arbitrage-free with respect to futures contracts with overlapping delivery
periods.

In Section 2, we present our Market data. We recall the typical liquid “absolute” futures quoting on
power markets, we detail a stripping algorithm to construct rolling futures contracts satisfying absence of
overlapping arbitrage and used to estimate historical covariances. Furthermore, we propose a novel multi-
contract SSVI parametrization to extract Variance Swap (VS) volatilities from listed options.

Then, we detail a novel three-step sequential calibration methodology relying on the Kemna and Vorst (1990)
(KV) approximation of futures contracts in order to

1) jointly capture historical rolling futures’ daily log returns covariances and implied (VS) volatility levels
via a non-linear – linear cone program, see Section 3,

2) correct and fit perfectly the VS volatility term structure via a fast fixed-point algorithm based on VS
prices, see Section 4.2,

3) fit the volatility smile’s shapes via Fourier inversion techniques as in Lewis (2001) for fast and efficient
vanilla option pricing, see Section 4.1.

It is worth noting that these three steps are decoupled, done sequentially and made highly tractable thanks
to the KV approximation. Our model displays remarkable joint historical and implied calibration fits to
both German power and TTF gas markets. In order to validate our calibration methodology, we show
a posteriori how close the KV approximated futures are to the arbitrage-free futures in terms of sample
trajectories, implied volatility smiles and correlations between futures contracts. Finally, we show that such
a fully calibrated model can be used to interpolate the implied volatility hypercube in a consistent manner.
The main calibration results are collected in Section 5. Additional model algorithmic insights and calibration
results are postponed to the appendices.

Related literature. The paper of Piccirilli, Schmeck, and Vargiolu (2021) is the work most closely related
in spirit to our approach, although there are several important differences. The authors propose a two-factor
model with Normal Inverse Gaussian Lévy factors, while our model is a stochastic volatility model with
a continuous process as the variance. Their calibration procedure considers only one smile per contract,
ignoring multiple maturities for a given futures contract. Our model accounts for these “early maturities”,
enabling a more refined calibration of the volatility term structure.
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Notations. For N ∈ N∗, we denote by SN
++ (resp. SN

+ ) the set of N × N definite (resp. semi-definite)
positive matrices, and ∥.∥w denotes a weighted Euclidean norm with weights w := (wi)i∈{1,···,N}2 ∈ RN

+

such that ∥u∥w:=
√∑N

i=1 wiu2i , u ∈ RN . We define similarly the weighted Frobenius norm ∥A∥Γ:=√∑N
i=1

∑N
j=i Γi,jA2

i,j , A ∈ RN×N , with matrix weights Γ := (Γi,j)i,j∈{1,···,N}2 ∈ RN×N
+ .

1 The model: HJM with lifted Heston

Fix a filtered probability space
(
Ω,F , (Ft)t≥0 ,Q

)
satisfying the usual conditions, where Q represents the

risk-neutral probability. We model the futures price curve under Q, i.e. the infinitesimal futures contract
prices (f(t, T ))0≤t≤T<∞, à la Heath, Jarrow, and Morton (1992) (HJM), enhanced with a stochastic volatility
component coming from the lifted Heston model of Abi Jaber (2019) in the form

df(t, T )

f(t, T )
= g(T )h(t)

√
Vt

N∑
i=1

σi(t, T )dW
i
t , f(0, T ) ∈ R+, 0 ≤ t ≤ T, (1.1)

where

• W := (Wt)t≥0 is an N -dimensional Brownian motion with a correlation matrix R ∈ SN
++.

• Each σi : R2
+ → R, i ∈ {1 · · · , N} is a deterministic continuous and bounded function, capturing the

“historical realized volatility”. We set σ = (σ1, . . . , σN )⊤.

• V is a stochastic variance process responsible for the “implied smile” of the form

Vt = 1 +

M∑
i=1

ciU
i
t , t ≥ 0 (1.2)

where the factors (U i)i=1,...,M , weighted by ci ≥ 0, are driven by the same Brownian motion B, but
mean-revert at different speeds 0 < x1 < x2 < . . . < xM :

dU i
t = −xiU i

t dt+
√
Vt dBt, U i

0 = 0, i = 1, . . . ,M. (1.3)

Here B = (Bt)t≥0 is a one-dimensional Brownian motion correlated withW , via (ρ̂i)i=1,...,N ∈ [−1, 1]N ,
to take into account the leverage effect such that

Bt =

N∑
i=1

ρ̂iŴ
i
t +

√√√√1−
N∑
i=1

ρ̂2i W
⊥
t ,

where W⊥ is a scalar Brownian motion independent from Ŵ which is a standard N -dimensional
Brownian motion constructed from W via the Cholesky decomposition (see, for example, Horn and
Johnson (2013))

R = L⊤L, Ŵt = L−1Wt, ∥ρ̂∥≤ 1, (1.4)

so that
d⟨B,W i⟩t = ρ̃i dt, ρ̃ = Lρ̂.

• g is a deterministic bounded positive function correcting the implied volatility levels.

• h is a deterministic bounded positive function correcting the implied volatility levels to match the
volatility term-structure for the contracts with several maturity dates.

For fixed t ∈ [0, T ], f(t, T ) represents the quote observed at date t of the contract that delivers a unit amount
of commodity between dates T and T + dT , where dT > 0 denotes an infinitesimal amount of time. The
special case t = T is seen as the spot price S of such a commodity: St := f(t, t), which is well-defined as
soon as limt→T f(t, T ) <∞.
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We prove in the next theorem that the model (1.1) is indeed well-defined leveraging results from Abi Jaber
(2019). In particular, we note that although the different factors U i can become negative, the variance
process V is always nonnegative, as illustrated on Figure 1. Furthermore, the variance process (1.2) is
Markovian in the state variables U := (U i)i=1,...,L with a state space corresponding to the set of u ∈ RM

such that:

1+

M∑
j=1

cjuj ≥ 0 and µ

i∑
j=1

cj
xj

+

i∑
j=1

cjuj ≥ µ
i∑

j=1

cj
xi+1

+

i∑
j=1

cjui+1 for i = 1, . . . ,M − 1,

where µ =
(∑M

k=1
ck
xk

)−1

see Abi Jaber, Bayer, and Breneis (2024).
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Figure 1: Trajectory of the stochastic variance factor (U i)i=1,2,3 (on the left) and the stochastic variance
(on the right) corresponding to the parameters x = (4.6 · 10−6, 9.712, 20.249) and c = (0.492, 0.68, 2.79).

The simulation scheme is described in Appendix D.

Theorem 1.1. Fix T > 0. Let g, h : [0, T ] → R and σ(·, T ) : [0, T ] → RN be bounded and measurable
functions. Then, there exists a unique strong solution (U i)i=1,...,M to (1.3) such that V given by (1.2)
remains non-negative. Furthermore, the process f(·, T ) defined by

f(t, T ) = f(0, T ) exp

(
−g

2(T )

2

∫ t

0

h2(s)Vsσ
⊤(s, T )Rσ(s, T ) ds+ g(T )

∫ t

0

h(s)
√
Vsσ

⊤(s, T ) dWs

)
, t ∈ [0, T ],

(1.5)

is the unique strong solution to (1.1). In particular, f(·, T ) is a true martingale.

Proof. The equation (1.1) can be rewritten as a one-dimensional diffusion,

df(t, T )

f(t, T )
= h(t)

√
Vt

√
σ(t, T )⊤Rσ(t, T )dW̃t, d⟨B, W̃ ⟩t = σ(t, T )⊤ρ̃dt, t ∈ [0, T ], (1.6)

where the Brownian motion W̃ is given by

W̃t =

N∑
i=1

σi(t, T )√
σ(t, T )⊤Rσ(t, T )

W i
t , 0 ≤ t ≤ T.

The factor processes U i can be written as

U i
t =

∫ t

0

e−xi(t−s)
√
Vs dBs, i = 1, . . . ,M, 0 ≤ t ≤ T,
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so that the variance dynamics (1.2) reads

Vt = 1 +

∫ t

0

(
M∑
i=1

cie
−xi(t−s)

)√
Vs dBs = 1 +

∫ t

0

K(t− s)
√
Vs dBs, 0 ≤ t ≤ T, (1.7)

where K(t) :=
∑M

i=1 cie
−xit. The equation (1.7) means that V is a Volterra square-root process understood

in the sense of (Abi Jaber, Larsson, and Pulido, 2019, Section 6). An application of (Abi Jaber, 2019,
Theorem A.1) yields the existence and uniqueness of strong solution (U i)i=1,...,M , such that the variance
process V ≥ 0, as well as the existence and uniqueness of the strong solution to (1.6) given by (1.5). The
proof of the martingality of f(·, T ) follows exactly the proof of (Abi Jaber, Larsson, and Pulido, 2019, Lemma
7.3) taking into account that the correlation coefficient in (1.6) is time-dependent.

In practice, the infinitesimal futures contracts given by (1.1) are not observed in the market and therefore
must be related to market traded futures contracts. Using practitioners’ vocabulary, “absolute” or “calendar”
futures contracts delivering electricity on a fixed calendar delivery period [Ts, Te] are typically quoted in
organized markets until a few days before their first delivery date i.e. for dates t such that 0 ≤ t ≤ Ts − δ, δ
equal to a few days. We recall in Section 2.1 the typical futures quoting in power markets. From the model
perspective, the unitary absolute futures contract delivering continuously a unitary power unit of electricity
over [Ts, Te] is given by1 by

Ft(Ts, Te) :=
1

Te − Ts

∫ Te

Ts

f(t, T )dT, 0 ≤ t < Ts. (1.8)

ensuring the absence of arbitrage opportunity for futures contracts with overlapping delivery periods.

On the other hand, a “rolling” futures contract is a contract that depends on the observation date, t ≥ 0,
and maintains a constant time to delivery, Ts > 0, with a fixed and contiguous delivery period of duration
Te−Ts > 0. As a result, the contract’s delivery period adjusts as the observation date changes, ensuring that
the contract always quotes. However, its quote is typically not directly observable in the market. Instead,
it must be derived using no-arbitrage principles based on market quotes available at each observation date.
Its quote is expressed in our model by the formula

Ft(t+ Ts, t+ Te) =
1

Te − Ts

∫ t+Te

t+Ts

f(t, T )dT, t ≥ 0. (1.9)

Example 1.2 (Distinction between rolling and absolute futures). For example, on the 20th of August
2024, the next absolute monthly futures contract quoting on the market corresponds typically to the contract
September 2024 delivering electricity between the 1st to the 30th of September 2024. Fixing Ts to seven days,
and Te−Ts to thirty days, one can define a month-ahead rolling contract delivering electricity from the 27th

of August to the 25th of September 2024. On the 21st of August 2024, such rolling contract becomes the one
delivering electricity from the 28th of August to the 26th of September 2024, while the forward September
2024 keeps the same delivery period.

1.1 The Kemna-Vorst approximation

The dynamics of the futures contract F.(Ts, Te) cannot be written explicitly in our model, since (1.8) involves
an arithmetic mean, and not a geometric one. For this reason, we will use the Kemna and Vorst (1990)
approximation to write for t ∈ [0, Ts]

dFt(Ts, Te)

Ft(Ts, Te)
≈ 1

Te − Ts

∫ Te

Ts

df(t, T )

f(t, T )
dT

= h(t)
√
Vt

N∑
i=1

(
1

Ts − Te

∫ Te

Ts

g(T )σi(t, T ) dT

)
dW i

t

= h(t)
√
VtΣt(Ts, Te)

⊤dWt, (1.10)

1We will assume that the discount rate r = 0.
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where

Σ.(Ts, Te) :=
1

Te − Ts

∫ Te

Ts

g(T )σ(., T )dT. (1.11)

Consequently, the approximated dynamics F̃.(Ts, Te) of the futures contract is given by

dF̃t(Ts, Te)

F̃t(Ts, Te)
= h(t)

√
VtΣt(Ts, Te)

⊤dWt, t ∈ [0, Ts], F̃0(Ts, Te) = F0(Ts, Te). (1.12)

We stress that Σ.(Ts, Te) = Σ.(Ts, Te; g, σ) depends essentially on g and σ, but for the sake of brevity, we
omit these arguments.

The equation (1.12) admits

F̃t(Ts, Te) = F0(Ts, Te) exp

(
− 1

2

∫ t

0

h2(r)VrΣ
⊤
r (Ts, Te)RΣr(Ts, Te) dr (1.13)

+

∫ t

0

h(r)
√
VrΣ

⊤
r (Ts, Te) dWr

)
, t ∈ [0, Ts],

as the unique strong solution, recall Theorem 1.1 for the existence and uniqueness of V .

Recall that futures contracts’ quotes F := F.(Ts, Te) defined by (1.8) are free from arbitrage opportunities in
the case of overlapping delivery periods. In contrast, arbitrage may arise in the Kemna-Vorst approximated
futures prices F̃ := F̃.(Ts, Te) from (1.13), as they do not strictly satisfy (1.8). However, such approximated

futures’ quotes F̃ offer a tractable approach for calibration including

• the explicit computation of their covariances and variance swaps’ volatilities as detailed in Section 3.1,

• the fast pricing of call and put options written on such futures contracts using a Fourier inversion
technique as shown in Subsection 4.1.

Once the model (1.1) is calibrated using the Kemna-Vorst approximated futures F̃ , we will illustrate numer-
ically a posteriori that, not only are the trajectories of the arbitrage-free futures’ quotes’ F similar to the
ones of F̃ , but also that their instantaneous correlation term structure and associated vanilla option prices
are nearly identical. Indeed, all these quantities with respect to futures with quotes given by (1.8) can be
approximated by Monte-Carlo techniques as detailed in Section 5.2.

One may notice that there was no need for the approximation of futures contracts if the initial model (1.1)
was additive and not multiplicative. However, an additive model has several serious disadvantages, which
we analyze in Appendix A.3.

From now on, we fix a delivery period [Ts, Te] and use the approximation F̃. everywhere instead of the exact
dynamics. Accordingly, we also use the notation Σ. := Σ.(Ts, Te), leaving the delivery period implicit when
there is no ambiguity.

1.2 Variance swap price and volatility

By definition, the variance swap price with maturity T > 0 is the expected integrated quadratic variation
of the futures contract following the dynamics (1.12) given by

VST := E⟨logF ⟩T ≈ E⟨log F̃ ⟩T =

∫ T

0

h(t)2Σ⊤
t RΣtdt ≥ 0, (1.14)

and the variance swap volatility σVS satisfies the equation σ2
VST = VST , so that

σVS =

√
1

T

∫ T

0

h(t)2Σ⊤
t RΣt dt. (1.15)
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Note that the variance swap price and volatility in our model do not depend on the parameters of the
stochastic variance component (1.2) as it was chosen in such a way that EVt ≡ 1, t ≥ 0. Moreover, since the
variance swap volatility is a zero-order approximation of the ATM volatility level as shown by Bergomi and
Guyon (2011), it allows us to formalize the idea of the “implied volatility smile level” in a very tractable
way. We will discuss in more detail the advantages of this approach over the direct calibration of the ATM
volatilities in Section 4.2.

Given a family of futures contracts whose smiles are quoting, these volatilities (1.15) define the implied
volatility term structure that we will aim to calibrate at the first and second calibration steps. Although
variance swaps are not traded in the power market, their prices can be extracted efficiently from the prices
of vanilla option quotes, as we will show in Section 2.2.2.

1.3 A Nelson-Siegel parametrization for the volatility functions σ

Back in 1985, Charles B. Nelson and Andrew F. Siegel proposed in Nelson and Siegel (1987) the following
“parsimonious” parametrization for the instantaneous forward rate r with m ≥ 0 days to maturity

r(m) := β0 + β1e
−m

τ + β2
m

τ
e−

m
τ , β0, β1, β2 ∈ R, τ > 0, (1.16)

as an alternative to the previously used polynomial fitting techniques to match the yields of US Treasury
bills of maturity m, obtained in their formulation by integrating from zero to m the forward rate (1.16)
and dividing by m. They showed that such expression of the forward rate has a desirable non-explosive
asymptotic behavior, and is capable of reproducing humps, S-shapes, and monotonic curves.

In our case, the volatility functions σ in the HJM model (1.1) aim at capturing with parsimony both the
realized covariance term structure of a family of rolling futures contracts’ daily log returns as well as the VS
volatility term structure of the futures contracts whose smiles quote on the market.

Inspired by the Nelson–Siegel parametrization (1.16), we specify three possible forms for the volatility shape
functions (σi)i∈{1···,N}, which will yield respectively three distinct types of factors, named Level (L), Slope

(S) and curvature (C), including

• one L-factor which has a constant volatility function in order to capture the long-term volatility level
of the curve

σ1(t, T ) = σL, 0 ≤ t ≤ T, (1.17)

• S-factors having an exponentially increasing volatility as time to maturity decreases to capture the
Samuelson (2016) effect

σi+1(t, T ) = σS,ie
−T−t

τS,i , 0 ≤ t ≤ T, i ∈ {1, . . . , Ns}, (1.18)

• C-factors aiming at capturing “humps” in the volatility term-structure, thereby capturing potential
“anti-Samuelson effect” for long-term deliveries, i.e. a decreasing volatility with time to maturity, such
that

σj+Ns+1(t, T ) = σC,j
T − t
τC,j

e
− T−t

τC,j , 0 ≤ t ≤ T, j ∈ {1, . . . , Nc}, (1.19)

with Ns, Nc ∈ N such that N := 1 +Ns +Nc. We display in Figure 2 the three distinct volatility shapes in
terms of time to maturity.

9



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time-to-maturity

0.0

0.2

0.4

0.6

0.8

1.0

Vo
la

til
ity

C

Volatility shape functions
Level
Slope
Curvature
Curvature approximated by two Slopes

Figure 2: Illustrations of the respective Level (plain blue), Slope (plain orange) and Curvature (plain
green) volatility shapes with parameters σL = 0.1, σS = σC = 1, τS = 0.1 and τC = 0.2. We also plot the
approximation of curvature by two opposed slope shapes (dotted green) with σS1

= σS2
= 8.18, τS1

= 0.212
and τS2 = 0.188.

The use of both L and S factors is not new, see for example Kiesel, Schindlmayr, and Börger (2009),
Gardini and Santilli (2024). By contrast, we are not aware of previous works trying to calibrate C factors
to power markets. Notice in particular that both S- and C-factors vanish when time to maturity goes to
infinity, i.e. T − t→∞, hence only the L-factor remains in such regime and therefore captures the long-term
volatility level of the energy curve.

Consequently, such L-S-C parametrization writes explicitly as

σ(t, T )⊤dWt = σLdW
1
t +

Ns∑
i=1

σS,ie
−T−t

τS,i dW i+1
t +

Nc∑
j=1

σC,j
T − t
τC,j

e
− T−t

τC,j dW j+Ns+1
t . (1.20)

In a similar spirit as Nelson and Siegel (1987) who noted that their parametrization (1.16) can be easily fitted
to market data by least-squares, given a provisional τ > 0, fixing the parameters (τS,i)i=1,...,Ns

, (τC,i)j=1,...,Nc

in (1.20) leads to an efficient calibration problem for the parameters σL, (σS,i)i=1,...,Ns , (σC,i)j=1,...,Nc of the
L-S-C factors, and their correlation matrix R formulated as a linear cone program ensuring that R remains
non-negative definite as detailed in Section 3.

Remark 1.3 (Are L-S-C volatility shapes redundant?). On the one hand, notice that taking (σS , τS)|τS→∞
in a S-factor parametrization (1.18) yields a L-factor parametrization (1.17). Moreover, by considering two
perfectly anti-correlated S-factors with identical parameters σS,1, σS,2 and distinct mean reversion rates, it
is possible to approximate the behavior of a C-factor parametrization (1.19) as illustrated in green dots in
Figure 2. Thus, it is indeed reasonable to restrict oneself to S-factors only to identify systematically in the
market those distinct level, slope and curvature volatility behaviors but to the price of losing parsimony, as
was done in for example in Féron and Gruet (2024). On the other hand, a single curvature shape cannot
approximate properly either a level or a slope volatility shape, nor a level shape can approximate neither a
slope or a curvature shape.

1.4 Joint calibration: overview and snapshots

The main practical advantage of our model is the possibility to decouple the joint calibration problem into
three independent optimization problems to be solved consecutively.

1) A combined historical and implied calibration of the parameters (σ,R) to capture with parsimony
i.e. with a minimum number of deterministic risk factors, the historical correlation of rolling futures
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contracts’ daily log returns as well as the overall term structure of the implied volatility deduced from
the market quotes of vanilla options.

2) An exact calibration correction of the term structure of the implied VS volatility not captured in step
1), thanks to the functions g and h.

3) A calibration of the entire shape of the smile using the parameters of the stochastic variance process
V in (1.2), that is (c, x) = (ci, xi)i=1,...,M and ρ̃ = (ρ̃i)i=1,...,N .

We stress that all the three calibration steps are performed successively, without the need to modify the
parameters calibrated in previous steps. The flow chart in Figure 3 illustrates the successive calibration
procedure with the data used in each step as well as the resulting calibrated model parameters.

Step 1: Joint historical and implied VS term structure calibration
Data: Historical covariances

and variance swaps

Step 2: VS term structure fit correction

Calibrated (σ,R)

Data: Variance swaps

Step 3: Implied smile calibration

Calibrated (g, h)

Data: Call and put options

Output: Calibrated (σ,R, g, h, c, x, ρ̃)

Calibrated (c, x, ρ̃)

Figure 3: Overview of the calibration methodology in three iterative steps, including input data and
calibrated parameters obtained at each step.

In Figure 4, we provide a calibration snapshot that summarizes the results of all three calibration steps for
the case of the German Power market (DE PW) as of the 1st of July 2024. For this date, N = 5 L-S-C
risk factors with Ns = 3, Nc = 1, and M = 3 stochastic volatility factors were used, which yields 192

(resp. 11) calibrated parameters for step 1 (resp. step 3). Our model achieves an excellent fit of the historical
volatilities and correlations in step 1, a perfect fit of the VS term structures in step 2 and a remarkable fit
of the whole implied volatility surface in step 3, see also Figure 15. More detailed specification of model
factors and calibrated parameters will be described further in Section 5.1.

2Our choice of 19 parameters (5 factors) remains conservative compared to the literature on historical calibration in power
markets: Féron and Gruet (2024) consider 5 S-factors (20 parameters), Gardini and Santilli (2024) use 10 factors with 100
parameters to fit the realized volatility of 144 futures from six different markets, and a PCA study in Koekebakker and Ollmar
(2005) supports a similar order of factors.

11



rD
ay

1

rW
ee

k1

rW
ee

k2

rA
ug

 2
4

rS
ep

 2
4

rQ
4 

24

rQ
2 

25

rQ
3 

25

rC
al

 2
5

rC
al

 2
6

0.5

1.0

1.5

2.0

2.5

An
nu

al
iz

ed
 v

ol
at

ilit
y

Calibration step 1): Calibrated annualized volatility term structure

1L3S1C
market

rD
ay

1-
rW

ee
k1

rW
ee

k1
-rW

ee
k2

rW
ee

k2
-rA

ug
 2

4
rA

ug
 2

4-
rS

ep
 2

4
rS

ep
 2

4-
rQ

4 
24

rQ
4 

24
-rQ

2 
25

rQ
2 

25
-rQ

3 
25

rQ
3 

25
-rC

al
 2

5
rC

al
 2

5-
rC

al
 2

6
rQ

3 
25

-rC
al

 2
6

rQ
2 

25
-rC

al
 2

5
rQ

4 
24

-rQ
3 

25
rS

ep
 2

4-
rQ

2 
25

rA
ug

 2
4-

rQ
4 

24
rW

ee
k2

-rS
ep

 2
4

rW
ee

k1
-rA

ug
 2

4
rD

ay
1-

rW
ee

k2
rD

ay
1-

rA
ug

 2
4

rW
ee

k1
-rS

ep
 2

4
rW

ee
k2

-rQ
4 

24
rA

ug
 2

4-
rQ

2 
25

rS
ep

 2
4-

rQ
3 

25
rQ

4 
24

-rC
al

 2
5

rQ
2 

25
-rC

al
 2

6
rQ

4 
24

-rC
al

 2
6

rS
ep

 2
4-

rC
al

 2
5

rA
ug

 2
4-

rQ
3 

25
rW

ee
k2

-rQ
2 

25
rW

ee
k1

-rQ
4 

24
rD

ay
1-

rS
ep

 2
4

rD
ay

1-
rQ

4 
24

rW
ee

k1
-rQ

2 
25

rW
ee

k2
-rQ

3 
25

rA
ug

 2
4-

rC
al

 2
5

rS
ep

 2
4-

rC
al

 2
6

rA
ug

 2
4-

rC
al

 2
6

rW
ee

k2
-rC

al
 2

5
rW

ee
k1

-rQ
3 

25
rD

ay
1-

rQ
2 

25
rD

ay
1-

rQ
3 

25
rW

ee
k1

-rC
al

 2
5

rW
ee

k2
-rC

al
 2

6
rW

ee
k1

-rC
al

 2
6

rD
ay

1-
rC

al
 2

5
rD

ay
1-

rC
al

 2
6

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n 

va
lu

e

Calibration step 1): Calibrated correlation term structure

1L3S1C
market

Au
g 

24

Se
p 

24

Q4
 2

4

Q2
 2

5

Q3
 2

5

Ca
l 2

5 
Se

p

Ca
l 2

5 
De

c

Ca
l 2

6 
M

ar

Ca
l 2

6 
De

c

Ca
l 2

7 
De

c

0.30

0.35

0.40

0.45

0.50

0.55

0.60

An
nu

al
ize

d 
VS

 v
ol

at
ilit

ie
s

Calibration step 2): calibrated annualized Variance Swap (VS) volatilities
step 1)
step 2)
market

0.2 0.1 0.0 0.1 0.2
log(K/F0)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Calibration step 3): Calibrated IV smile for Aug 24
market
bid-ask
model

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
log(K/F0)

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Calibration step 3): Calibrated IV smile for Q4 24
market
bid-ask
model

0.2 0.0 0.2 0.4
log(K/F0)

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54
Calibration step 3): Calibrated IV smile for Cal 25 (Dec)

market
bid-ask
model

Figure 4: Snapshot of the calibration results on the German power market on the 1st July 2024: fit of the
realized volatility (upper left) and correlation (upper middle) term structures of rolling futures in step 1
over one year and a half of historical data; fit of the VS volatility (upper right) term structure in step 1
(orange) and the corrected fit obtained in step 2 (blue); fit of the smile slices in step 3 of the respective
futures contracts delivering electricity during August 24 (lower left), the forth Quarter of 2024 (lower

middle) and the whole calendar year 2025 (with maturity December 2024; lower right).

2 Market data

2.1 Futures contracts’ quotes

The market data used to calibrate the futures contracts’ instantaneous correlation term structure are the
realized closing market quotes of unitary base-load3 futures contracts i.e. typically the price per MWh for
the delivery of electricity every hour of a given delivery period4. We present here several types of liquid
futures contracts on power markets, these notations that will be used further in Section 4.

• Day-ahead contracts, denoted by DA X with X ∈ N∗, typically the day-ahead contract (DA1) whose
price is set by auction for the delivery of electricity for the following day, with Ts set to the first hour
of delivery the next day and Te equals Ts plus one day.

• Week-ends, working days or week-ahead contracts, and also balance of month contracts which quotes
the price of delivery of electricity up to the completion of the current month. Again, in theses cases,
Ts is set accordingly depending on the observation date, and Te equals Ts plus, respectively, two days,
five days and the number of days until the end of the running month.

• Monthly contracts denoted by Mon YY: delivering during a fixed month “Mon” of the year “YY”. For
these contracts, Ts an Te are equal to the first and the last day of the delivery month.

• Quarterly contracts denoted by QX YY: delivery period is the “X”-th quarter of the year “YY” with
X ∈ {1, 2, 3, 4}. Here, the first quarter corresponds to the first three months of the year, the second
one corresponds to the forth-sixth months, and so on. In this case, Ts is equal to the first date of the
first month of the quarter, and Te is the last day of the last quarter month.

• Calendar contracts denoted by Cal YY: contracts delivering during the whole year 20YY. Ts and Te
correspond to the fist and the last days of the year.

3The other main traded profile, although less liquid, is the peak-load delivering electricity during working hours of the week.
We chose to focus on the base-load data for illustrating our approach.

4A precise specification of the contract can be found at https://www.eex.com/en/markets/power/power-futures for the
German power market and at https://www.theice.com/products/27996665/Dutch-TTF-Gas-Futures for futures traded on the
TTF gas market.
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Similarly, we use the notation rContract to refer to the rolling future contract with same time to delivery
and delivery duration as Contract.

2.1.1 Stripping optimization to construct rolling futures contracts

Recall that, except for the day-ahead contract, a rolling futures contract with time to delivery Ts and delivery
duration Te−Ts is typically not exchanged on standard markets5, and therefore its quote cannot be observed
directly. Yet, it is possible to construct the quotes of such Phist ∈ N∗ rolling futures contracts from the ones
of the absolute futures contracts observed on the market via a stripped forward curve defined as follows.

Definition 2.1 (Stripped forward curve). Fix an observation date t0 ≥ 0 and consider a family of M ′ ∈ N∗

absolute futures contracts’ quotes (
Fmkt
t0 (T j

s , T
j
e )
)
j∈{1,···,M ′} ,

and denote T̄ := maxj∈{1,···,M ′} T
j
e . Then, a stripped forward curve, at observation date t0, is a smooth6

price curve
(
fmkt(t0, T )

)
T∈[t0,T̄ ]

such that the absence of superposition arbitrage opportunities is verified,

i.e. such that the equality constraints

Fmkt
t0 (T j

s , T
j
e ) =

1

T j
e − T j

s

∫ T j
e

T j
s

fmkt(t0, T )dT, j ∈ {1, · · · ,M ′} (2.1)

are all satisfied. In particular, the quote of any rolling contract at date t0 can be obtained from the stripped
forward curve fmkt by the following formula

Fmkt
t0 (t0 + Ts, t0 + Te) :=

1

Te − Ts

∫ t0+Te

t0+Ts

fmkt(t0, T )dT, (2.2)

and we define its historical τd-delayed log returns at date t0 by

rmkt
t0 (τd) := log

Fmkt
t0 (t0 + Ts, t0 + Te)

Fmkt
t0−τd

(t0 + Ts, t0 + Te)
, (2.3)

where the delivery period is held fixed, so that their respective sample Fourier spectra (resp. auto-correlations)
don’t display any significant frequency peak (resp. lag) i.e. absence of weekly effect from working days to
week-ends (resp. independent increments assumption) hold valid with such log returns construction, see for
example (Cartea and Figueroa, 2005, Figure 4) or (Gardini and Santilli, 2024, Figure 3).

In order to formulate the stripping optimization problem, we use the same notations as in Definition 2.1,
and we set the daily time grids

Tn(t0) :=
{
t0 = T0 < T1 < · · · < Tn = T̄

}
,

T j
nj :=

{
T j
s = T j

0 < T j
1 < · · · < T j

nj = T j
e

}
, j ∈ {1, · · · ,M ′},

where n ∈ N∗ (resp. nj ∈ N∗, j ∈ {1, · · · ,M ′}) denotes the number of days in the time interval [t0, T̄ ] (resp.
in [T j

s , T
j
e ], j ∈ {1, · · · ,M ′}).

As detailed in Definition 2.1, the stripping optimization problem aims to build a stripped daily forward curve
from a family of absolute forwards’ quotes Fmkt(t0) :=

(
Fmkt
t0 (T j

s , T
j
e )
)
j∈{1,···,M ′} observed on the markets

such that

5Although at some specific observation dates t0, a rolling future with time to delivery δ > 0 and delivery duration ∆T > 0
may coincide with the absolute futures contract delivering on [Ts, Te] if{

δ = Ts − t0

∆T = Te − Ts
.

6fmkt can be uniquely defined when some additional regularizing criterion is imposed.

13



(i) the absence of superposition arbitrage opportunities (2.1) is satisfied;

(ii) a smoothing criterion is applied ensuring the well-posedness of the algorithm: the sum of daily incre-
ments of the curve squared is minimized.

Then, the daily stripped forward curve at observation date t0 is given by
(
fmkt(t0, Ti)

)
i∈{0,···,n−1} :=

(ŝ(t0, Ti))i∈{0,···,n−1}, where ŝ is defined as the unique minimizer of

min
s∈An(Fmkt(t0))

n−1∑
i=1

(si − si−1)
2
, (2.4)

with An(Fmkt(t0)) denoting the set of admissible curves defined by

An(Fmkt(t0)) :=

(sl)l∈{0,···,n−1} ∈ Rn

∣∣∣∣∣ Fmkt
t0 (T j

s , T
j
e ) =

nj−1∑
l=0

wj,Tl
sl, j ∈ {1, · · · ,M ′}

 ,

and where, for j ∈ {1, · · · ,M ′}, (wj,Tl
)l∈{0,···,nj−1} ∈ [0, 1]n

j

denotes the family of daily weights associated

to the forward Fmkt
t0 (T j

s , T
j
e ) depending on the profiling of the underlying delivery, e.g. 1

365.25 for a calendar
contract in base profile.

The optimization problem (2.4) can be reformulated as a Quadratic Program with linear equality constraints
in the sense of (Boyd and Vandenberghe, 2004, Chapter 4, 4.4) and admits a unique solution by strict
convexity. Market data should be without absence of arbitrage to ensure the existence of such solution.
Some day-ahead futures contracts may display negative quotes, hence sl ∈ R, l ∈ {0, · · · , n− 1} in general,
yet it is possible to look for a non-negative stripped curve by adding the constraints sl ∈ R+, l ∈ {0, · · · , n−1}
if all the quoting market futures contracts are non-negative. The interested reader may look at (Benth and
Koekebakker, 2008, Chapter 7) for additional insights on stripping including seasonal effects.

2.1.2 Estimated covariance of rolling futures’ log returns on past historical data

Given a family of stripped forward curves
((
fmkt(th, Ti)

)
th≤Ti≤T̄

)
h∈{0,···,H}

constructed at various observa-

tion dates (th)h∈{0,···,H} by solving the stripping optimization problem (2.4), we can reconstitute any family

of Phist ∈ N∗ rolling forward contracts
(
Fmkt
th

(th + T k
s , th + T k

e )
)
k∈{1,···,Phist}

satisfying th + T k
e ≤ T̄ , k ∈

{1, · · · , Phist} for any h ∈ {0, · · · , H} using (2.2), and then estimate a family of time series of their respective

realized daily log returns

((
rmkt,k
th

(τd)
)
h∈{0,···,H}

)
k∈{1,···,Phist}

by setting τd = 1 day in (2.3).

Without any surprise, the rolling futures’ log returns display heavy tails across all deliveries, and particularly
for short-term ones. Since the futures’ log returns’ historical covariances will be used to calibrate a log normal
distribution under the KV approximation (1.10) in the first calibration step, i.e. calibrate (σ,R), with σ
specified in (1.20), we first filter out futures contracts’ log returns’ large values away from three standard
deviations (computed on the whole time-series) and setting them equal to three standard deviations, in the
same spirit as in Cartea and Figueroa (2005).

Then, we construct a biased averaged covariance estimator of such daily log returns in order to assign higher
weights to newer data points and diminishing weights to older data, and we extract some confidence bounds
when weighting differently the past observations. We postpone to Appendix B.1 the detailed estimation
procedure.

Finally, we extract the futures contracts’ volatilities by taking the square root of the diagonal of the resulting
covariance estimator, and their correlations by normalizing their respective covariances by the corresponding
volatilities. Figure 5 displays the resulting realized correlation and volatility term structures on the German
power market from January 1st 2023 to July 1st 2024.
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Figure 5: Left: averaged historical correlation matrix of rolling futures contracts’ daily log returns on the
German market; right: averaged historical volatility term structure of rolling futures contracts’ daily log
returns. The covariance estimator and confidence intervals are derived by averaging estimated covariances
over a family of span parameters λ going from 30 to 365 days to put more weights on recent observations,

see Appendix B.1.

2.2 Options data

2.2.1 Typical options quoted in power markets

We are interested in calibrating a diverse set of volatility smiles corresponding to different underlying futures
contracts. The most liquid options are typically written on three types of underlying futures contracts: the
first few months, quarters and calendar contracts. These liquid options are linear combinations of vanilla
options like call spreads, put spreads, butterflies or fences. The descriptions of vanilla options can be found
on the ice website (ICE).7

Vanilla options on monthly or quaterly futures have a single maturity: they expire several business day
before the first day of the delivery period. However, vanilla options on calendar futures can have different
maturities. The December maturity is generally the most liquid. The other maturities such as September,
June and March — referred to as early expiries — are also quoted. To avoid confusion, the maturity
month (of the year preceding the delivery year) is specified in the option name. For example, “Cal 26 Mar”
corresponds to the smile with maturity at the end of March 2025. The precise maturities can be found on
the site of the European Energy Exchange (EEX)8.

For our numerical experiments, we use the following ten implied volatility smiles from the German power
option market corresponding to eight different underlying futures contracts: Aug 24, Sep 24, Q4 24, Q2 25,
Q3 25, Cal 25 Sep, Cal 25 Dec, Cal 26 Mar, Cal 26 Dec, Cal 27 Dec.

2.2.2 Variance swaps deduced from option prices

Variance swap volatility can be interpreted as an overall smile level and will be used for the first two steps
of calibration, recall Figure 3. As we already mentioned, such contracts are not quoted on power markets.
However, we show how the variance swap prices can be extracted from vanilla option prices. Recall the
variance swap prices in our model is given by (1.14).

These prices can be expressed as prices of European options with logarithmic payoff, further referred to as

7https://www.ice.com/products/65898946/German-Power-Financial-Base-Options
8https://www.eex.com/en/market-data/power/equity-styled-options
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log-contracts, that can be extracted from the implied volatility smile by the Carr and Madan (1998) formula:

VST = −2E log
FT

F0
= 2

∫ F0

0

P (T,K)

K2
dK + 2

∫ ∞

F0

C(T,K)

K2
dK, (2.5)

where P (T,K) and C(T,K) denote respectively the prices of put and call vanilla options.

Notations. The calibration will be performed on call and put options written on the futures contracts
F i := F.(T

i
s , T

i
e) for i ∈ 1, . . . , Pimp, where the i-th futures contract is identified with its delivery period

[T i
s , T

i
e ]. For i ∈ {1, · · · , Pimp}, we denote by Ni the number of (sorted) maturities (T i

j )j∈1,...,Ni
i.e. the

number of smiles, associated to the underlying F i. The implied market data contains a family of European
call and put option prices{

Callmkt,i(T i
j ,K)

}
K∈K i

j

,
{
Putmkt,i(T i

j ,K)
}
K∈K i

j

j ∈ {1, . . . , Ni}, i ∈ {1, . . . , Pimp},

where Pimp ∈ N∗ denotes the number of underlyings, K i
j denotes the set of strikes corresponding to maturity

T i
j , and Callmkt,i(T i

j ,K) (resp. Putmkt,i(T i
j ,K)) denotes the price of the European call option with maturity

T i
j , strike K, and underlying F i. We denote by σmkt,i

BS (T i
j ,K) the corresponding Black implied volatility.

The price of the variance swap with underlying F i and maturity T i
j is deduced from the call and put options

by (2.5) as follows

VSiT i
j
:= 2

∫ F i
0

0

Putmkt,i(T i
j ,K)

K2
dK + 2

∫ ∞

F i
0

Callmkt,i(T i
j ,K)

K2
dK, (2.6)

where F i
0 stands for the initial price of the i-th underlying futures contract.

Typically, the number of strikes per smile (no more than 9) presented in market data is not enough to
apply the discretized formula (2.6) directly. Thus, a consistent smiles arbitrage-free extrapolation model is
needed. An example of such a model for surface parametrization is given by the SSVI parametrization of
Gatheral and Jacquier (2014). However, in our case, multiple surfaces are present at the same time, and a
more general model is needed. Thus, we will propose a multi-contract SSVI parametrization of the implied
volatility surfaces for all contracts which allows us to interpolate and extrapolate the smiles and compute
the integrals in (2.6) numerically.

Multi-contract SSVI parametrization. Initially introduced by Gatheral and Jacquier (2014), the Sur-
face SVI (SSVI) parametrization specifies the total implied variance w(T, k) = σ2

BS(T, k)T , with correspond-
ing to time to maturity T and log-moneyness k := log K

F0
. Namely, the implied total variance of i-th futures

contract is given by

wi(T, k) =
θT,i

2

(
1 + ρiϕ(θT,i)k +

√
(ϕ(θT,i)k + ρi)2 + (1− ρ2i )

)
, (2.7)

where

• θT,i := σ2
BS,i(T, 0)T is the at-the-money (ATM) total variance of the underlying F i;

• ρi ∈ [−1, 1] is a skew parameter interpreted as a spot-vol correlation for the contract F i;

• ϕ is a parametric function satisfying a list of conditions to guarantee the absence of static arbitrage.

Due to the presence of multiple surfaces to be parametrized together, we specify individual correlation pa-
rameters ρi ∈ [−1, 1] for each contract F i, and a common function ϕ since we assume the same nature
of volatility across all the underlying futures contracts. This choice appears consistent with observed mar-
ket data and allows us to simultaneously parametrize all the volatility surfaces using a small number of
parameters. We set

ϕ(θ) :=
η

θγ(1 + θ)1−γ
, γ ∈ (0, 0.5],
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and
η(1 + max

i=1,...,Pimp

|ρi|) ≤ 2,

which is consistent with the empirically-observed term structure of the volatility skew and such that (2.7)
generates static-arbitrage-free surfaces for the respective futures contracts (Gatheral and Jacquier, 2014,
Remark 4.4).

A calibrated multi-contract SSVI model allows itself for an efficient smile interpolation and extrapolation
for a fixed maturity T as well as for a surface extrapolation for the contracts being in the calibration set.
However, in contrast to the HJM stochastic volatility model (1.1), it cannot generate a volatility surface for

a futures contract F ĩ not present in the calibration set unless its ATM volatility σBS,̃i(T, 0) and correlation
parameter ρĩ are provided. Thus, it can interpolate individual volatility surfaces, but not the volatility
hypercube. That is why we limit our use of this parametrization to the evaluation of the implied variance
swap prices (2.5). In addition, the calibrated values (ρi)i=1,...,Pimp

can be further used to obtain an initial
guess for the spot-vol correlations in the smile calibration procedure.

The results of the multi-contract SSVI calibration to the market data are shown in Figure 6. We show a 5%
bis-ask spread as well to give an idea of the parametrization quality. The value of 5% spread is consistent
with actual market volatility and will be further used as a benchmark for smile calibration.
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Figure 6: Example of the multi-factor SSVI calibration to the market data as of July 1st, 2024. We
mention in the title of each plot the underlying futures contract and the Time To Maturity (TTM) of the

smile in years.

3 Calibration methodology for historical covariances and Variance
Swaps (VS)

For such calibration step, we set

Vt ≡ 1, h(t) ≡ 1, g(T ) ≡ 1, 0 ≤ t ≤ T ≤ T̄ ,

in (1.1). Our aim is to calibrate the N risk factors’ volatility functions σ as well as their correlation matrix
R in order to match

• the realized daily log returns’ covariances estimated from (B.2) for Phist different rolling futures con-
tracts stripped from market quoting absolute futures contracts by non-arbitrage arguments using (2.2),

• the VS volatility term structure estimated from market data using the Carr-Madan formula (2.5) for
the respective deliveries and maturities associated to Psmiles implied volatility smiles corresponding to
Pimp different underlying futures contracts.

First, we derive explicit formulas of the normalized integrated covariance of rolling futures contracts’ log
returns and of the VS volatility when the infinitesimal forward rate’s dynamics is given by the L-S-C
specification of the form (1.20).
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3.1 Explicit model covariance and VS volatility term structure

Let H ∈ N∗ denote the number of days considered for the historical past horizon and τd > 0 a period in days.
In this section, we derive explicit formulas for the covariances of the rolling futures contracts’ log-returns as
well as their VS volatilities under the KV approximation (1.10).

Stationarity of rolling futures’ volatility. To start with, by leveraging the stationary property of the
L-S-C volatility functions (1.17)–(1.18)–(1.19), that is

σ(t, T ) = σ(T − t), 0 ≤ t ≤ T,

see for example Andersen (2010) for additional insights on this property, we readily obtain, by a change of
variable, the following stationary property of the volatility (1.11) of the rolling forward contract

Σt+u(u+ Ts, u+ Te) = Σt(Ts, Te), t ≥ 0, u ∈ R. (3.1)

Following the definition of the rolling forward contract (1.9) delivering on [Ts, Te], we define its log returns
over a period of τd-days under the KV approximation by

rth(τd) := log
F̃th(th + Ts, th + Te)

F̃th−τd(th + Ts, th + Te)
=− 1

2

∫ th

th−τd

Σt(th + Ts, th + Te)
⊤RΣt(th + Ts, th + Te)dt

+

∫ th

th−τd

Σt(th + Ts, th + Te)
⊤dWt, h ∈ {0, · · · , H − τd} .

Lemma 3.1. Fix two rolling futures contracts with respective time to deliveries T i
s , T

j
s and delivery durations

T i
e − T i

s , T
j
e − T j

s . Define their normalized integrated covariance of their respective log returns over a period
of τd-days r

i(τd), r
j(τd) at observation date th, h ∈ {0, · · · , N} by

Cov
(
rith(τd), r

j
th
(τd)

)
:=

1

τd

∫ th

th−τd

d⟨rith(τd), r
j
th
(τd)⟩.

Then, the covariance is explicitly given by

Cov
(
ri(τd), r

j(τd)
)
=

1

τd

∫ τd

0

Σt(τd + T i
s , τd + T i

e)
⊤RΣt(τd + T j

s , τd + T j
e )dt, (3.2)

and is independent of the observation date th.

Proof. Straightforward calculus yields

Cov
(
rith(τd), r

j
th
(τd)

)
=

1

τd

∫ th

th−τd

Σt(th + T i
s , th + T i

e)
⊤RΣt(th + T j

s , th + T j
e )dt

=
1

τd

∫ τd

0

Σt+th−τd(th + T i
s , th + T i

e)
⊤RΣt+th−τd(th + T j

s , th + T j
e )dt

=
1

τd

∫ τd

0

Σt(τd + T i
s , τd + T i

e)
⊤RΣt(τd + T j

s , τd + T j
e )dt,

where we used respectively the change of variable t 7→ t+ th− τd and the stationary property of the volatility
function Σ (3.1) to get the second and third equalities.

Separability of rolling futures’ volatility. Furthermore, notice that the respective L, S and C volatility
functions (1.17), (1.18) and (1.19) enjoy the following separable property such that for any n ∈ {1, · · · , N}

σX
n (t, T ) = σX,n

K∑
k=1

σXk
n (t, T ) = σX,n

K∑
k=1

aτXk,n
(t)bτXk,n

(T ), 0 ≤ t ≤ T, X ∈ {L, S,C} , (3.3)
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with σX,n > 0,
(
aτXk,n

)
k∈{1,···,K} and

(
bτXk,n

)
k∈{1,···,K} some explicit functions depending only on parameters

τ , and where K ∈ N∗ denotes the number of separable state variables (Xk)k∈{1,···,K}. Notice that K = 1 for

both L and S-factors so that they identify to their unique state variable respectively, while, for j ∈ {1, · · · , Nc}
we can decompose the jth C-factor as the sum of two separable state variables C1 and C2 by

σC
j (t, T ) := σC,j

T − t
τC,j

e
− T−t

τC,j = σC,j

(
σC1
j (t, T ) + σC2

j (t, T )
)
, 0 ≤ t ≤ T,

where we define the volatility functions associated respectively to C1 and C2 by

σC1
j (t, T ) := e

t
τC,j × T

τC,j
e
− T

τC,j , 0 ≤ t ≤ T,

σC2
j (t, T ) := − t

τC,j
e

t
τC,j × e−

T
τC,j , 0 ≤ t ≤ T.

We detail in Table 1 the explicit functions aτX and bτX for the four distinct state variables X ∈ {L, S,C1, C2}.

Table 1: Explicit functions aτX , bτX from (3.3) and βτ
X from (3.4) defined in(3.6) for the four state variables

X ∈ {L, S,C1, C2} from the L-S-C specification.

L S C1 C2

t 7→ aτX(t) 1 e
t

τS e
t

τC − t
τC
e

t
τC

T 7→ bτX(T ) 1 e
− T

τS
T
τC
e
− T

τC e
− T

τC

βτ
X(Te, Ts) 1 τS

Te−Ts

(
e

−Ts
τS − e

−Te
τS

)
Ts+τC
Te−Ts

e
−Ts
τC − Te+τC

Te−Ts
e

−Te
τC

τC
Te−Ts

(
e

−Ts
τC − e

−Te
τC

)

We are now ready to derive the explicit formulas of the rolling futures contracts log returns and VS volatilities
which will play a key role in the formulation of the first step calibration problem.

Proposition 3.2. Using the same notations as in Lemma 3.1, the normalized stationary covariance (3.2)
is explicitly given by

Cov
(
ri(τd), r

j(τd)
)
=

N+Nc∑
p,k=1

xσ,Rp,k β
τ
Xp

(T i
e , T

i
s)β

τ
Xk

(T j
e , T

j
s )

1

τd

∫ τd

0

aτXp
(u)aτXk

(u)du, (3.4)

where, for Xn ∈ {L, S,C1, C2}, we set the variables

xp,k(σ,R) := σXp
σXk

Rp,k, p, k ∈ {1, · · · , N +Nc} , (3.5)

and

βτ
Xn

(T i
e , T

i
s) :=

1

T i
e − T i

s

∫ T i
e

T i
s

bτXn
(T )dT, n ∈ {1, · · · , N +Nc} , (3.6)

with (τ, σ,R) ∈
(
R∗
+

)N × (R∗
+

)N × SN
++.

Similarly, the variance swap variance level (1.15) is explicitly given by

(
σmodel
VS,i (T )

)2
=

N+Nc∑
p,k=1

xσ,Rp,k β
τ
Xp

(T i
e , T

i
s)β

τ
Xk

(T i
e , T

i
s)

1

T

∫ T

0

aτXp
(u)aτXk

(u)du. (3.7)

In particular, all the terms
(
βτ
Xn

(T i
e , T

i
s)
)
n∈{1,···,N} and

(∫ τd
0
aτXp

(u)aτXk
(u)du

)
p,k∈{1,···,N}

are explicit in the

L-S-C parametrization, as specified respectively in Tables 1 and 2.
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Proof. The explicit formulas (3.4) and (3.7) are readily derived respectively from (3.2) and (1.15), while
using the definition (1.11) and the separability property of the L-S-C factors (3.3).

Table 2: Explicit computations for the cross-terms
∫ t2
t1
aτXp

(u)aτXk
(u)du used in (3.4) for the types of state

variables X ∈ {L, S,C1, C2}. Notice in particular that S and C1 state variables share the same function aτX
as detailed in Table 1.

Lp t2 − t1

Sp or Cp
1 τpS/C

(
e

t2
τ
p
S/C − e

t1
τ
p
S/C

) τ̃p,k
(
e

t2
τ̃p,k − e

t1
τ̃p,k

)
,

τ̃p,k :=
τp
S/C

τk
S/C

τp
S/C

+τk
S/C

Cp
2

−
(
(t2 − τpC) e

t2
τ
p
C −

(t1 − τpC) e
t1
τ
p
C

)
− τ̃p,k

τp
C

( (
t2 − τ̃p,k

)
e

t2
τ̃p,k−(

t1 − τ̃p,k
)
e

t1
τ̃p,k

)
,

τ̃p,k :=
τk
S/Cτp

C

τk
S/C

+τp
C

τ̃p,k

τCaτ
Cb

((
2
(
τ̃p,k

)2 − 2τ̃p,kt2 + t22

)
e

t2
τ̃p,k−(

2
(
τ̃p,k

)2 − 2τ̃p,kt1 + t21

)
e

t1
τ̃p,k

)
,

τ̃p,k :=
τk
Cτp

C

τk
C+τp

C

Lk Sk or Ck
1 Ck

2

3.2 Loss function for the historical covariances - VS calibration problem

Fix the date of calibration t0. Recall we consider Psmiles ∈ N∗ Variance Swap (VS) contracts with respective

maturities
(
T j
)
j∈{1,···,Psmiles}

and variances
(
σmkt,j
VS

)
j∈{1,···,Psmiles}

computed at t0 using (2.5). Such VS

contracts are indeed associated to the implied volatility smiles we aim to calibrate the initial model (1.1) on,
whose underlying are respectively the futures contracts with delivery periods

([
T i
s , T

i
e

])
i∈{1,···,Pimp}

. Denote

by H the number of past observation days until t0 considered for the calibration. Then we introduce a family

of Phist ∈ N∗ rolling contracts
((
F
(
th, th + T k

s , th + T k
e

))
h∈{1,···,H}

)
k∈{1,···,Phist}

constructed by solving (2.4)

and we use their respective daily log returns time-series((
rmkt,k
th

(τd)
)
h∈{0,···,H}

)
k∈{1,···,Phist}

computed from (2.3), for the estimation of the historical daily log returns’ covariances via the estimator
(B.2). In our case, we typically chose Phist ≥ Pimp, with the set of the rolling forwards’ delivery periods
including those of the absolute underlying futures contracts, i.e.([

T i
s , T

i
e

])
i∈{1,···,Pimp}

⊂
([
T k
s , T

k
e

])
k∈{1,···,Phist}

to ensure that the historical covariance term structure captures a priori, somehow, the correlation term
structure of those absolute futures.

We introduce a convex combination of losses between the fit of historical log returns’ variance-covariance
term structure of rolling forward contracts and the fit of the implicit variance swap volatility levels such that

Jλ(τ, σ,R) := λJ1(τ, σ,R) + (1− λ) J2(τ, σ,R), λ ∈ [0, 1], (3.8)

with

J1(τ, σ,R) := ∥Cmkt − Cmodel(τ, σ,R)∥2Γ, (3.9)

J2(τ, σ,R) := ∥
(
σmkt
VS

)2 − (σmodel
VS

)2
(τ, σ,R)∥2w, (3.10)

where the (i, j)th entry of Cmodel and lth entry of
(
σmodel
VS

)2
are respectively given by (3.4) and (3.7), while

Cmkt and σmkt
VS are respectively estimated by (B.2) and (2.5). Furthermore, Γ := (Γi,j)i,j∈{1,···,Phist}2 ∈ RP 2

hist
+
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denotes a family of weights associated to the matrix Frobenius norm, while w := (wi)i∈{1,···,Psmiles} ∈ RPsmiles
+

are weights for the vector Frobenius norm, specified respectively as in (B.3) and uniformly in our case.
Finally, notice that the hyper-parameter λ conveniently controls the trade-off between the fit of the historical
covariances and that of the VS volatility term structure.

Then, for a fixed λ ∈ [0, 1], the joint historical - VS variance term structure calibration is formulated as the
following minimization problem under constraints

min
(τ,σ,R)∈U

Jλ(τ, σ,R), (3.11)

where the admissible set of parameters is given by

U :=
(
R∗
+

)N × (R∗
+

)N × SN
++. (3.12)

The functional Jλ (3.8) is clearly non-convex in (τ, σ,R), depending in particular on exponential terms in
the parameters τ , so we cannot guarantee a priori the existence of a global minimizer of such optimization
problem (3.11).

3.3 Solver specification

The admissible set of parameters (3.12) can be very large, with dimension in O
(
N4
)
, where recall N is the

total number of factors in the Nelson-Siegel parametrization (1.20), and include positive constraints as well
as a non-trivial positive definite cone constraint for the correlation matrix R. In order to simplify and fasten
the numerical implementation of the optimization problem (3.11), we start by noticing the three following
facts.

(i) As soon as the parameters τ are fixed, the functional Jλ (3.8) becomes quadratic in the variables
(xp,k(σ,R))p,k∈{1,···,N+Nc} from (3.5) such that

Jλ(τ, σ,R) =λ

Phist∑
i,j=1

Wi,j

Cmkt
i,j −

N+Nc∑
p,k=1

wτ
p,k(i, j)x

σ,R
p,k

2

(3.13)

+ (1− λ)
Psmiles∑
l=1

wl

(σmkt
V S

)2 − N+Nc∑
p,k=1

wτ
p,k(l)x

σ,R
p,k

2

, (3.14)

where, for p, k ∈ {1, · · · , N +Nc}, the weights in the squares are respectively identified from (3.4) and
(3.7) such that

wτ
p,k(i, j) := βτ

Xp
(T i

e , T
i
s)β

τ
Xk

(T j
e , T

j
s )

1

τd

∫ τd

0

aτXp
(u)aτXk

(u)du, i, j ∈ {1, · · · , Phist}, (3.15)

wτ
p,k(l) := βτ

Xp
(T l

e, T
l
s)β

τ
Xk

(T l
e, T

l
s)

1

T

∫ T

0

aτXp
(u)aτXk

(u)du, l ∈ {1, · · · , Psmiles}. (3.16)

(ii) Note that the loss functional (3.14) is expressed in terms of the state variables, and for each j ∈
{0, · · · , Nc}, the jth C-factor has two state variables sharing the same parameter σC,j and the same
Brownian motion so that we need to impose the following 2Nc equality constraints on the x variables

(3.5) ordered as
({
L, (Si)i∈{0,···,Ns} , ((C1,j , C2,j))i∈{0,···,Nc}

})
{
xl,l(σ,R) = xl+1,l+1(σ,R)

xl,l(σ,R) = xl,l+1(σ,R)
, l ∈ {Ns + 1, · · · , Ns + 1 +Nc}. (3.17)

(iii) S (resp. C-factors) are inter-changeable, which may cause numerical instability.
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Successive non-linear – linear cone program formulation. Consequently, instead of solving (3.11)
globally, we will solve the following iterative minimization problems

min
a∈RNs+Nc

min
x(σ,R): (σ,R)∈(R∗

+)
N×SN

++

Jλ(τ(a), x(σ,R)). (3.18)

On the one hand, the outward minimization is performed by an unconstrained non-linear solver (e.g. Powell
minimizer from SciPy), where we optimize on the parameters

a :=
(
a1s, · · · , aNs

s , a1c , · · · , aNc
c

)
∈ RNs+Nc

such that the following change of variables

τ(a) :=

(
ea

1
s , ea

1
s + ea

2
s , · · · ,

Ns∑
i=1

ea
i
s , ea

1
c , ea

1
c + ea

2
c , · · · ,

Nc∑
i=1

ea
i
c

)
(3.19)

ensures that the τ(a) parameters are indeed positive and strictly increasing for the Ns S-factors and the Nc

C-factors respectively.

On the other hand, for a fixed a ∈ RNs+Nc , τ(a) is fixed and the inward minimization problem in (3.18)
can be formulated and solved in terms of the variables (xp,k(σ,R))p,k∈{1,···,N+Nc} from (3.5) as a linear cone

program ensuring R is indeed semi-definite positive, as detailed in Appendix B.2.

Solver initialization and optimal parameters extraction. All that remains to do is to initialize
properly the outward non-linear solver in the iterative formulation (3.18) and then extract the optimal
parameters (σ,R) upon convergence. Indeed, a good initialization a0 ∈ RNs+Nc is of paramount importance
to be able to reach a good local minimum in practice.

Fortunately the solver algorithm runs relatively fast, from a few seconds to a few minutes depending on
the number of factors, so we can afford to iterate over various randomized initial guesses. As a rule
of thumb, we construct the initial values a0 ∈ RNs+Nc starting from the mid-points of delivery periods([
T k
s , T

k
e

])
k∈{1,···,Phist}

such that the resulting factors with time-scales τ(a0) cover reasonably well the fu-

tures curve across all deliveries. In our case, since we have Ns ≤ Phist and Nc ≤ Phist, we first reduce the
number of such mid-points by taking convex combinations of them to the number of S and C factors, and
then add up some randomness to obtain the initial positive τ(a0).

Once an optimizer (â, x̂(â)) of the iterative optimization problem (3.18) has been reached, then we extract
the optimal parameters τ̂ injecting â into (3.19), and by positive-definiteness of the calibrated L-S-C factors’
covariance (x̂i,j)i,j∈I (extracted from an optimal solution x̂(â) of (B.4), with I denoting the set of indices

relative to {L, S,C1} state variables, of cardinal N), we get

σ̂i :=
√
x̂i,i > 0, i ∈ I, (3.20)

and

R̂i,j :=
x̂i,j
σ̂iσ̂j

, i, j ∈ {1, · · · , N} . (3.21)

Remark 3.3. Note that the linear cone program (B.4) only guarantees the matrix (x̂i,j)i,j∈I to be semi-

definite positive while the inversion formulas (3.20)–(3.21) are well-defined if (x̂i,j)i,j∈I is positive definite.

If 0 happens to belong to the spectrum of (x̂i,j)i,j∈I , then it means the number of factors could be reduced,

either by withdrawing any ith factor associated to x̂i,i = 0, or, if R̂ is indeed well-defined by (3.21), by
summing (resp. subtracting) the volatility shape functions of the perfectly correlated (resp. anti-correlated)
factors with respect to all the other factors. See for example (Féron and Gruet, 2024, Table 13-16-19) where
such latter phenomenon is repeatedly observed when calibrating historical futures’ returns on the Italian,
Swiss and UK markets respectively. In practice however, it is always possible to regularize or to tune the
hyper-parameters of the non-linear solver such that (x̂i,j)i,j∈I ∈ SN

++ (e.g. the tolerance threshold, the number

of iterations, etc).
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4 Calibration methodology for implied smiles

Implied calibration focuses on calibrating the model to observed market option prices. We show how the
prices of vanilla options can be computed in our model and propose a way to decouple the implied calibration
into the correction of the implied volatility term structure given by the VS volatilities to achieve a perfect
fit, and the calibration of smile shapes.

4.1 Fourier option pricing for implied calibration

In this section, we describe the vanilla options pricing techniques used in the implied calibration for a futures
contract F̃. = F̃.(Ts, Te) with arbitrary delivery period [Ts, Te] in our model, where F̃ is given by (1.12) after
the KV approximation.

The characteristic function of log F̃ . The European call option prices C(T,K) can be calculated using
the Lewis (2001) formula:

C(T,K) = E(F̃T −K)+ = F0 −
K

π

∫ ∞

0

ℜ
(
ei(u−

i
2 ) log

F0
K ϕ

(
u− i

2

))
du

u2 + 1
4

, (4.1)

where ϕ(u) := E

[
eiu log

F̃T
F0

]
denotes the characteristic function of the normalized log-price. Due to the affine

structure of the variance diffusion of the lifted Heston model of Abi Jaber (2019), we show in the following

theorem that the characteristic function ϕ of log F̃ in the model (1.12) is known up to the solution of a
Riccati equation.

Theorem 4.1. Fix v ∈ C such that ℜ(v) ∈ [0, 1]. For T ≤ Ts, the characteristic function of log F̃T

F0
is given

by

E

[
exp

(
v log

F̃T

F0

)]
= exp

(∫ T

0

G (T − s, v, ψ(s)) ds

)
,

where ψ :=
M∑
j=1

cjψ
j, and ψj satisfies the Riccati equation

{
ψ̇j(t) = −xjψj(t) +G (T − t, v, ψ(t)) a.e.

ψj(0) = 0
, (4.2)

for j = 1, . . . ,M, and the function G is defined by

G(t, v, ψ) :=
h(t)2

2
Σ⊤

t RΣt(v
2 − v) + h(t)(Σ⊤

t ρ̃)vψ +
ψ2

2
.

The Riccati equation (4.2) admits a unique global solution ψ ∈ L2
loc(R+,C), which is differentiable a.e. and

satisfies ℜ(ψ) ≤ 0.

Proof. The futures price dynamics (1.12) can be rewritten as a one-dimensional diffusion, i.e. there exists a
Brownian motion W̃ such that

dF̃t

F̃t

= h(t)
√
Vt

√
Σ⊤

t RΣtdW̃t, d⟨B, W̃ ⟩t = Σ⊤
t ρ̃dt, t ∈ [0, Ts].

Note that our model is a particular specification of the Volterra Heston model (Abi Jaber et al., 2019, Section
7) setting the kernel to

K(t) :=

M∑
j=1

cje
−xjt, t ≥ 0,
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and V0 = 1, θ = 1, λ = 0, ν = 1. Repeating the proof of (Abi Jaber et al., 2019, Theorem 7.1 (ii)) adapted

to take into account the bounded deterministic volatility component t 7→ θ(t) := h(t)
√
Σ⊤

t RΣt, we can prove
the existence of ψ ∈ L2

loc(R+,C) satisfying ℜ(ψ) ≤ 0, which is the solution to the Volterra–Riccati equation

ψ(t) =

M∑
j=1

cj

∫ t

0

e−xj(t−s)G(T − s, v, ψ(s)) ds.

The solution can be written in the form ψ =
M∑
j=1

cjψ
j , where (ψj)j∈{1,...,M} satisfies

ψj(t) =

∫ t

0

e−xj(t−s)G(T − s, v, ψ(s)) ds, j ∈ {1, . . . ,M}, (4.3)

which is equivalent to the equation (4.2) by the variation of constants formula. Moreover, (4.3) implies that
ψj is absolutely continuous, hence ψ is differentiable a.e., which concludes the proof.

Numerical scheme for the Riccati equation. The Riccati equation (4.2) can be rewritten in the
integral form

ψj(t) =

∫ t

0

e−xj(t−s)G(T − s, iu, ψ(s)) ds, j ∈ {1, . . . ,M},

so that ψj(t) satisfies

ψj(t+ h) = e−xjhψj(t) +

∫ t+h

t

e−xj(t+h−s)G(T − s, iu, ψ(s)) ds

≈ e−xjhψj(t) +G(T − t, iu, ψ(t))
∫ t+h

t

e−xj(t+h−s) ds

= e−xjhψj(t) +
1− e−xjh

xj
G(T − t, iu, ψ(t)),

which is used as a numerical scheme to solve the Riccati equation (4.2). Such numerical scheme is more
stable and precise than the explicit Euler discretization scheme, especially if one of the mean-reversion speeds
xj , j ∈ {1, · · · ,M} reaches extreme values.

4.2 Exact calibration correction of the VS volatility term structure

The second step of the joint calibration consists of the correction of the VS volatility term-structure using
the functions g and h. Although the VS volatilities are calibrated by the L-S-C risk factors during the
first step, as described in Section 3, their fit is not exact since the primary goal of this step is to calibrate
the historical correlation term structure with a few factors, and the VS volatilities are rather considered as
an implied regularization. At the same time, this regularization is necessary to capture the VS volatility
term-structure at least approximately in order to avoid over-fitting of the functions g and h: even if the VS
term structure were calibrated for arbitrary volatilities σ, the functions g and h would vary significantly,
which would lead to non-stationarity of the volatility and, consequently, degrade the model’s extrapolation
ability. Thus, it is important to keep these functions close to 1 in the presumed volatility extrapolation
domain. Furthermore, precise calibration of the VS volatilities is crucial for achieving a good overall implied
fit: since E[Vt] ≡ 1, t ≥ 0, the stochastic volatility parameters responsible for the smile shape do not impact
the VS volatilities, and hence cannot correct the VS volatility term structure.

Here and further in this section, we assume that the functions T 7→ g(T ) and t 7→ h(t) are piece-wise
constant. The discontinuity points of the function g are the delivery start and end dates of the underlying
futures contracts, while the discontinuities of h are the maturities of the associated vanilla options.

Though the most direct way to formalize the “smile level” is the ATM volatility, we prefer to fit the variance
swap prices i.e. the expected integrated variance, for several reasons. First, in our model, the variance swap
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prices (1.14) depend only on the functions h and g (which impacts the deterministic volatilities Σ.(Ts, Te),
but not on the parameters of V . This allows to calibrate the variance swap prices and hence, the volatility
term structure, independently of the smile shape calibration. Thus, the implied calibration problem splits
into two independent problems which leads to a significant acceleration of the calibration procedure. Second,
the evaluation of the variance swap prices (1.14) is much less time-consuming than the evaluation of the ATM
volatility, which also reduces the calibration time, as the variance swap prices are given by a closed formula
(1.14), while the ATM volatilities are computed via the Lewis formula (4.1) and require the computation of
the log-price characteristic function.

Motivating example. Here, we provide some intuition on the calibration of the functions h and g and
clarify why only one of these functions is not enough by considering a simple calibration set containing only
five futures contracts: Oct 24, Nov 24, Dec 24, Q4 24, and Cal 25, with observation date the 1st September
2024, see Figure 7. The maturities of options on monthly contracts are five days before the start of the
next months (at T1, T2, and T3 for Oct 24, Nov 24, and Dec24 respectively). The quarterly contract Q4 24
expires in September at T1, and the calendar futures Cal 25 has two maturities T1 and T4 corresponding to
September and December expiries.

Since the term structure calibration consists of matching model and market log-contract prices respectively
given by (1.14) and (2.6), i.e. for any IV smile on a futures contract with delivery period [Ts, Te] and maturity
T , one should ensure that ∫ T

0

h(t)2Σ⊤
t (Ts, Te)RΣt(Ts, Te) dt = VST , (4.4)

where Σt(Ts, Te) =
1

Te − Ts
∫ Te

Ts
σ(., τ)g(τ) dτ . This can be achieved in two ways:

• either adjusting the function g on the interval [Ts, Te];

• or modifying the function h on [0, T ].

In our example, each monthly futures can be calibrated with the function g which is constant on each of
three months with the values chosen to verify (4.4) for these futures contracts. However, if all the three
monthly futures are calibrated with the function g, there is no more degree of freedom to adjust the variance
swap price for the quarterly contract Q4 24, though one can calibrate three smiles on Oct 24, Nov 24 and
Q4 24 using the value of g on Dec 24 to fit the calibration condition (4.4) for the smile on Q4 24. Moreover,
the function g cannot calibrate the early expiries of the calendar contract Cal 25 (for instance, calibrate
simultaneously the log-contract prices for the maturities T1 and T4) since g impacts on the overall volatility
level of the futures contract and therefore can fit the smile level for only one maturity.

In this cases, the function h should be employed: choosing the value of h on [0, T1], one can verify (4.4) for
the smile on Cal 25 with maturity T1, then adjusting h on [T1, T4], one can ensure the calibration condition
(4.4) for the smile with maturity T4. Similarly, one can calibrate the value of h on [0, T1] to fit (4.4) for
the smile on Q4 24 while the smiles on monthly futures are calibrated with the function g. However, two
problems arise.

First, is is impossible to calibrate simultaneously the smile on Q4 24 and the one on Cal 25 expiring at T1
since they have the same maturity. Hence, one of them should be necessarily calibrated with the function g.
In this example, the following solution is possible:

1. smiles on Oct 24, Nov 24, Dec 24, and Cal 25 with maturity T1 are calibrated with the function g,

2. smiles on Q4 24 and on Cal 25 with maturity T4 are calibrated with the function h.

Second, once the monthly contracts are calibrated with the function g, any modification of the function h
(up to the smile maturity) made during the calibration of smile on Q4 24, will impact the log-contract price
corresponding to the monthly futures, and vice-versa. This is simply due to the fact that the log-contract
price in (4.4) depends both on g on [Ts, Te] and on h on [0, T ]. That is why an iterative calibration algorithm
needed. One step of such algorithm should include the calibration of the function g to fit (4.4) for one part
of smiles and then the calibration of h taking into account the modifications of g to verify (4.4) for the
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remaining smiles (possibly breaking this condition for the smiles from the first group). If such iterative
algorithm converges to a fixed-point, at the limit, the smiles from both groups will be calibrated. This
fixed-point algorithm is the key idea of the proposed calibration method and will be discussed in more detail
below.

Sep24 T1 Oct24 T2 Nov24 T3 Dec24 T4
Time (t, T)

0.80

0.85

0.90

0.95

1.00

1.05

g(
T)

,h
(t)

Q424

g(T)
h(t)

Figure 7: An example of the functions g (in dark orange) and h (in blue) covering the period from
September 1, 2024 to January 1, 2025. The function g is constant in October, in November and in
December (months are separated by solid gray lines). The function h is constant between the option

maturities T1, T2, T3, T4 corresponding to five days before the start of the next months.

Two groups of smiles. From the discussion above it is clear that the implied volatility smiles should
be divided into two groups: for the smiles in the first group the calibration condition is guaranteed by the
function g, while the smiles from the second one are calibrated with the function h. It also follows from the
example, that these groups should satisfy the following conditions.

Conditions on the smiles calibrated with the function g:

1. one maturity per futures: Only one smile for a given futures contract can be calibrated with g,

2. linear independence: The underlying futures corresponding to these smiles should be linearly inde-
pendent, i.e. no delivery period should be representable as a union of delivery periods of other futures
contracts.

Condition on the smiles calibrated with the function h:

3 no coinciding maturities: for a given maturity, only one smile may be chosen.

Note that such division may be not unique. To fix the division, we always calibrate the smiles on monthly
and quarterly contracts with the function g and all the smiles on calendar contracts with the function h.
Although such arbitrary division is not always available, it is almost always possible to find another division
satisfying the conditions 1–3.

Calibration of the function t 7→ h(t). We strip the function h to match the variance swap prices implied
from the volatility smiles by (2.5) and the variance swap prices given by the model (1.14) for contracts F i

corresponding to the smiles being calibrated with h. In order to do it, we sort the maturities of these smiles
and choose the values of h between them to match (4.4). Namely, to calibrate h to the variance swap price
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implied from the j-th smile (j = 1, . . . , Ni), one should take h on [T i
j,prev, T

i
j ) equal to

h(t) =

√√√√√√√
VSiT i

j
−VSiTj,prev∫ T i

j

Tj,prev

Σ⊤
s (T

i
s , T

i
e)RΣs(T

i
s , T

i
e)ds

, t ∈ [Tj,prev, T
i
j ), (4.5)

where Tj,prev is the previous smile maturity in the sorted list and

VSiTj,prev
:=

∫ Tj,prev

0

h2(s)Σ⊤
s (T

i
s , T

i
e)RΣs(T

i
s , T

i
e) ds

Note that t 7→ h(t) in (4.5) depends on the function T 7→ g(T ) through the deterministic variance Σt(T
i
s , T

i
e).

Calibration of the function T 7→ g(T ). The discontinuity points of g coincide with contracts’ delivery
start dates (T i

s)i∈1,...,Pimp
and delivery end dates (T i

e)i∈1,...,Pimp
. We adopt the following notation for the

values of g: if the function g is constant on a delivery period [T i
s , T

i
e ], we will denote its value by ḡi. Otherwise,

if other delivery periods of futures contracts are included in [T i
s , T

i
e ], we will denote by ḡi− the value of g

on [T i
s , T

i
e ] \ ∪k∈Ji [T

k
s , T

k
e ], where Ji stands for the indices of futures contracts which smiles are calibrated

with the function g and which delivery periods are included in the delivery period of [T i
s , T

i
e ]. We also denote

by Σ̂. the volatility of a futures contract delivering over a set I with g ≡ 1:

Σ̂.(I) :=
1

Leb(I)

∫
I

σ(., T )dT,

where Leb(I) stands for the Lebesgue measure of I. With a slight abuse of notation, we will use interchange-
ably Σ.([T

i
s , T

i
e ]) and Σ.(T

i
s , T

i
e).

Hence, the deterministic volatility component of the contract F i = F i(T i
s , T

i
e) is given by

Σ.(T
i
s , T

i
e) =

∑
k∈Ji

ωk
i ḡkΣ̂.(T

k
s , T

k
e ) +

(
1−

∑
k∈Ji

ωk
i

)
ḡi−Σ̂.([T

i
s , T

i
e ] \ ∪k∈Ji

[T k
s , T

k
e ]), (4.6)

where

ωk
i =

T k
e − T k

s

T i
e − T i

s

(4.7)

denotes the relative weight of the contract F k volatility in the volatility of F i which is proportional to the
length of its delivery period.

For the volatility smiles with underlying futures contract F i and maturity T i
j (for some j ∈ 1, . . . , Ni,

determined uniquely thanks to the condition 1 of smile division), such that Ji = ∅, matching the log-
contract prices (4.4) leads to

g(T ) = ḡi =

√√√√√√ VSiT i
j∫ T i

j

0

h(s)2Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T

i
s , T

i
e)ds

, T ∈ [T i
s , T

i
e ], (4.8)

since Σ.(T
i
s , T

i
e) = ḡiΣ̂.(T

i
s , T

i
e) by (4.6).

For the contracts F i not calibrated yet, i.e. such that Ji ̸= ∅, the function g should be chosen

g(T ) = ḡi−, T ∈ [T i
s , T

i
e ] \

⋃
k∈Ji

[T k
s , T

k
e ], (4.9)
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where ḡi− is a solution of the quadratic equation

VSiT i
j
=

∫ T i
j

0

h(s)2Σ⊤
s (T

i
s , T

i
e)RΣs(T

i
s , T

i
e)ds,

with the deterministic volatility component given by (4.6) with {ḡk}k∈Ji already calibrated by (4.8). Note
that the set [T i

s , T
i
e ] \

⋃
k∈Ji

[T k
s , T

k
e ] is non-empty thanks to the linear independence condition imposed on

the smiles division.

Fixed-point calibration algorithm. Note that the model is calibrated when the equation (4.4) is verified
for all smiles simultaneously. Since the functions g and h are interdependent, we propose the following
algorithm which is supposed to converge to the desired solution.

Algorithm 1 Fixed-point calibration algorithm

set h0(t) ≡ 1 and g0(T ) ≡ 1
n← 0
while ||gn − gn−1||∞> ϵ do

recalculate the deterministic volatilities (Σ.(T
i
s , T

i
e))i=1,...,Pimp

calibrate the function hn+1 using (4.5) with g = gn.
calibrate the function gn+1 using (4.8) and (4.9) with h = hn+1.
n← n+ 1

end while

Denoting one iteration of this algorithm by ψ : gn 7→ gn+1, we note that model is calibrated if and only if g
is a fixed-point of this mapping, i.e. ψ(g) = g.

Under additional conditions on the implied volatility data consistency, the following result holds:

Theorem 4.2. Suppose that all the smiles calibrated with h have the same underlying F 0 and that Ji = ∅
for the remaining contracts (F i)i=1,...,d. Suppose also that all the instantaneous correlations between the
futures contracts are positive. Then,

(i) ψ admits a fixed-point if

d∑
i=1

VSiT i

N0∑
k=1

(
VS0T 0

k
−VS0T 0

k−1

) 1

∥Qk∥
∫

[0, T i]∩[Tk−1, Tk]

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T i

s , T
i
e) ds

< 1, (4.10)

where (Qk)ij = ωi
0ω

j
0

∫ T 0
k

T 0
k−1

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T

j
s , T

j
e ) ds, i, j = 1, . . . , d and ωi

0 are defined by (4.7).

(ii) All the fixed points are stable.

(iii) If the contract F 0 has only one maturity, the fixed point is unique.

Proof. The proof is given in Appendix C.

This result is clearly partial as it does not cover the case of multiple underlyings corresponding to smiles
calibrated with h and does not admit the nested contracts for smiles calibrated with g. However, it provides
a condition (4.10) which seems to be a universal condition ensuring that the model can be calibrated.
Moreover, it can be interpreted as a no-arbitrage condition for the variance swaps. Namely, let us consider
an example where the smile on Cal 25 with maturity TDec calibrated with h and Q2 25 with maturity TMar

is calibrated by g. In this case, (4.10) reads

VSQ2 25
TMar

VSCal 25
TDec

( 14 )
2
∫ TDec

0
Σ̂⊤

s (Q2 25)RΣ̂s(Q2 25) ds
TMar∫
0

Σ̂⊤
s (Q2 25)RΣ̂s(Q2 25) ds

< 1.
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Since in the calibrated model

VSQ2 25
TMar

=

TMar∫
0

h(s)2Σ⊤
s (Q2 25)RΣs(Q2 25) ds = h21g

2
Q2 25

TMar∫
0

Σ̂⊤
s (Q2 25)RΣ̂s(Q2 25) ds,

the condition is equivalent to(
1

4

)2 ∫ TDec

0

h(s)2Σ⊤
s (Q2 25)RΣs(Q2 25) ds < VSCal 25

TDec
.

The integrand in the left-hand side expression is the part of variance of Cal 25 contract corresponding to
Q2 25. Since the covariances are supposed to be positive, this part of variance is smaller than the whole
variance of Cal 25, and thus, the price of the variance swap on Cal 25 should be greater than the integral on
the left. Thereby, (4.10) is a condition describing the consistency of the variance swap data with historically
calibrated deterministic volatility functions Σt(Ts, Te). More precisely, it requires that the market variance
swap prices (2.5) could be attained by the model for a good choice of g and h, which is exactly the existence
of the fixed-point.

Furthermore, the numerical experiments demonstrated the existence of a unique stable fixed point for all
the test cases, even the ones not covered by Theorem 4.2. Thus, we believe that the provided result can be
proved in a much more general case, though the direct approach used in the proof of Theorem 4.2 is not
applicable there.

4.3 Smile shape calibration

Parametrization of the correlations. For the (approximated) futures contract F i, the smile skew is
determined by the “spot-vol” correlation

ρi(t) =

〈
dV, d log F̃ i

〉
t√

⟨dV ⟩t
√
⟨d log F̃ i⟩t

=
Σ⊤

t (T
i
s , T

i
e)ρ̃√

Σ⊤
t (T

i
s , T

i
e)RΣt(T i

s , T
i
e)

=

〈
ρ̂,

L⊤Σt(T
i
s , T

i
e)

∥L⊤Σt(T i
s , T

i
e)∥

〉
, (4.11)

where L is a lower triangular matrix from the Cholesky decomposition (1.4). As ρ̂ lies in {ρ: ∥ρ∥≤ 1}, ρ̃
should be in {ρ: ∥L−1ρ∥≤ 1} for the extended covariance matrix of (W,B) ∈ RN+1 to be well-defined.

Since the skew of the the implied volatility smile is determined by the correlations (4.11), it is more natural
to use them and not ρ̃ in the calibration routine for several reasons. First, if the number of contracts is
smaller than the number of historical factors, this will reduce the number of parameters. Second, one spot-vol
correlation impacts only one smile related to the corresponding futures contract, whereas the coefficients ρ̃
impact all the smiles in a way difficult to interpret. Thus, we expect to see a better solver behavior when the
variables being optimized are the “spot-vol” correlations. Finally, even if one decides to calibrate ρ̃ directly,
the “spot-vol” correlations may provide a reasonable initial guess given by the calibrated correlations in the
multi-contract SSVI parametrization described in Section 2.2.2.

In order to reconstruct ρ̃ from a set of “spot-vol” correlations (ρ∗1, . . . , ρ
∗
P ), we find numerically a solution ρ̂∗

of an optimization problem

min
ρ̂: ∥ρ̂∥≤1

P∑
i=1

∥∥∥∥∥
∫ TCM

0

〈
ρ̂, L⊤Σt(T

i
s , T

i
e)
〉
dt− ρ∗i

∫ TCM

0

∥L⊤Σt(T
i
s , T

i
e)∥dt

∥∥∥∥∥
2

(4.12)

and set ρ̃ = Lρ̂∗.

Optimization problem. We denote the parameters being calibrated by P = (ρ, c, x), where the spot-vol
correlations ρ are transformed to ρ̃ by (4.12). The optimization problem then reads

min
P

Pimp∑
i=1

Ni∑
j=1

∑
K∈K i

j

(
Callmkt,i(T i

j ,K)− CallModel,i(T i
j ,K)

V (K,T, σmkt,i
IV (T i

j ,K))

)2

, (4.13)
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where V (K,T, σmkt,i
IV (T i

j ,K)) denotes the Black-Scholes vega corresponding to the market implied volatility

σmkt,i
IV (T i

j ,K). Note that the IV smile shape calibration problem is completely separated from the calibration
of the volatility term structure.

5 Numerical results

5.1 Calibration results

In this section, we illustrate and detail all three calibration steps of the HJM model (1.1), cf. Figure 3, onto
the German power market, and we postpone to Appendix A.2 the calibration results obtained on the TTF
gas market.

To assess the quality of the calibration we consider the differences between model quantities and those used
to calibrate the model: historical correlations and volatilities of rolling futures contracts, variance swap
variance term structure and the implied volatility smiles. We also validate the quality of the Kemna-Vorst
approximation. The calibrated model can be used to represent the market, and especially to deduce market
quantities that are not quoted: the smile for all monthly contracts especially those which are not quoted,
the at-the-money volatility of daily contracts and finally the instantaneous correlations. Finally, we check
the coherence between calibrated and interpolated quantities.

5.1.1 Step 1: Joint historical covariances – implied VS variances calibration results

The first calibration step aims at calibrating theN := 1+Ns+Nc L-S-C factors’ parameters σL, (σS,i, τS,i)i∈{1,...,Ns},
(σC,i, τC,i)i∈{1,...,Nc} as well as their correlation matrix R, following the methodology described in Section 3.

We consider the German power i.e. DE PW futures market with historical covariances estimated from daily
log returns’ time series running from January 1st 2023 to July 1st 2024, and the estimated realized correlation
term structure is displayed on the bottom left corner of Figure 5.

In order to avoid to have more calibratable parameters than market quantities to calibrate on, one needs to
ensure that

N(N + 3)

2
− 1 ≤ Psmiles +

Phist (Phist + 1)

2
. (5.1)

Furthermore, although season-averaging effects tend distort Principal Components Analysis (PCA) results,
the number of Principal Components (PCs) required to reach a given threshold of explained variance gives
some insights on the number of factors to model the futures curve, see for example Koekebakker and Ollmar
(2005), Andersen (2010), Gardini and Santilli (2024). Figure 8 displays the PCA’s results for the rolling
futures contracts’ daily log returns. Note that 5 PCs are sufficient to explain at least 95% of variance, while
7 PCs are required to reach 99%, which is consistent with

1. our quality of fit results for the historical calibration described in Figures 9;

2. the observations made by Féron and Gruet (2024)[Figure 3] when applying BIC and AIC statistical
measurements to the German market, where they found that 5 factors appears to be a good trade-off
between quality of fit and model complexity.
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Figure 8: Principal component analysis performed on the raw data of rolling futures contracts
reconstituted from the German market from January 1st 2023 to July 1st 2024.

The results of the joint historical covariance and VS variances calibration is then summarized in the left
matrix of Figure 9 where, given there is one L-factor, we display in a single matrix the losses J1 and
J2 from (3.9)–(3.10) respectively for all possible pairs (Ns, Nc) of S- and C-factors such that the under-
parametrization inequality (5.1) is satisfied for the strict lower part of the matrix, and is strictly violated by
one additional factor on the main diagonal, corresponding to over-parametrization. For each cell, we used
100 random initializations of a0 and kept the best calibration fit. Notice that the overall joint loss Jλ from
(3.8), for λ = 0.5, indeed decreases as the number of factor increases when moving from the lower left angle
to the main diagonal of the fit matrix. For a fixed number of factors N , we also highlighted by a bold square
the model with the best fit along each diagonal.

Furthermore, we show in Figure 10 the respective quality of fits obtained on the selected rolling contracts’
historical volatility and correlation term structures, as well as the fit of the VS volatility term structure.
Notice that the fit is not perfect, yet it’s possible to additionally fine-tune the parameter λ in the joint
calibration loss function Jλ in order to better fit either the historical target covariance values (with λ > 0.5)
or the implied VS volatility term structure (with λ < 0.5). In the next step, we calibrate the functions g
and h in order to actually fit perfectly the latter in the case the joint calibration has not succeeded in fitting
it well enough to fit the smile shapes in the latter calibration step.

We did the same numerical experiments for the historical covariance fit only by taking λ = 1 in the loss Jλ,
and display the values of the losses in the right hand-side matrix of Figure 9, and the quality of fits in Figure
11. Notice that the quality of fit of both the historical volatility and correlation term structures is much
better, but the associated VS volatility term structure is systematically under-estimated by such historical
calibration.
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Figure 9: Left (resp. Right): Best fits for the joint historical covariance and VS variances calibration (resp.
the historical covariance calibration) when taking λ = 0.5 (resp. λ = 1) in the loss function Jλ (3.8), for

100 random initializations of τ(a0), varying the number of S and C-factors until violation of the
under-parametrization inequality (5.1). In each cell, the above number is the value of J1 from (3.9) and

below is the value of J2 from (3.10) (which we do not calibrate on in the right-hand side results). For each
matrix, we put bold squares on the best fits along each diagonal where the number of risk factors is

constant.
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Figure 10: Joint calibration fits i.e. λ = 0.5 in the loss Jλ (3.8), of the best up-to-six-factors models whose
covariance loss functions J1 are highlighted in the left-hand side matrix of Figure 9 to (top) the historical
realized volatility term structure, (middle) the historical correlation term structure and (bottom) the VS

variance term structure.
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Historical calibration: Calibrated annualized volatility term structure
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Historical calibration: Calibrated correlation term structure
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Figure 11: Historical covariance calibration fits i.e. J2 (3.10) is ignored by taking λ = 1 in the loss Jλ (3.8),
of the best up-to-six-factors models whose loss functions are highlighted in the right-hand side matrix of
Figure 9 to (top) the historical realized volatility term structure, (middle) the historical correlation term

structure and (bottom) the VS variance term structure.

For the implied calibration, we choose the model 1L3S1C as it gives a good trade-off between parsimony and
the joint calibration quality, and display its calibrated parameters in Figure 12. Notice the L-factor indeed
captures the long-term volatility level, with σL lying in-between the annualized volatilities of long-term
contracts rCal 25 and rCal 26, respectively equal to 0.3784 and 0.3277 while the C factor is placed at the
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beginning of the curve to capture the short-term volatility behavior in the case of 1L3S1C. For conciseness,
the calibrated parameters of the other models mentioned in Figure 9 are not displayed.
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Figure 12: Plots of (σi)i against (τi)i parameters (left) and of the factors’ correlation matrix (right) for the
1L3S1C model, when taking λ = 0.5 in the loss function Jλ (3.8). Model parameters are, in L-S-C order:

(σi)i := [0.3499, 29.9849, 1.7992, 1.5325, 16.4317], (τi)i := [0.0019, 0.2454, 0.5428, 0.0041].

It is worth mentioning that the choice of the historical volatility factors does not impact significantly the
results of the following calibration steps as long as the fit of the VS term structure is satisfying. Otherwise, the
calibrated functions g and hmay deviate significantly from 1 degrading the model’s interpolation capabilities.

5.1.2 Step 2: Term structure exact calibration correction

This part addresses the correction of the VS volatility term structure with the functions g and h following
the methodology proposed in Section 4.2.

In order to avoid jumps of the day-ahead contracts volatility, both functions g and h were smoothed during
calibration. At each step of the fixed point algorithm, we update g and h as piece-wise constant functions
and then interpolate it using the monotonicity preserving algorithm PCHIP of Fritsch and Butland (1984).
Despite the smoother results, the algorithm is more time-consuming due to the numerical optimization
involved in the calibration. On the left-hand side of Figure 13 below, we plot the results of the term
structure calibration of piece-wise constant functions g and h, and on the right-hand side, same results with
smoothing interpolation. In both cases, the fixed-point algorithm converges in approximately 5–10 iterations,
providing an almost perfect fit for the VS volatilities shown in Figure 14.

We also note that thanks to the calibration of the VS volatilities at the first step of the calibration, the
functions g and h are needed only to slightly correct the volatility level, so that they remain close to 1 for
the months following the observation date. For longer maturities, the function h deviates significantly from
1 since the VS volatilities of smiles Cal 26 Dec and Cal 27 Dec were not calibrated at the first calibration
step due to the poor quality of covariance estimations for contracts with long time to delivery.
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Figure 13: Calibrated functions h and g with and without smoothing ((a) and (b) correspondingly).
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Figure 14: VS term structure fit before the correction (orange) and after the correction (blue).

5.1.3 Step 3: Implied smile shapes calibration

Finally, we calibrate the parameters (ci, xi)i∈{1,...,M} of the stochastic variance process V , as well as the
correlations (ρ̃i)i∈{1,...,N}, using the procedure described in Section 4.3.

For the stochastic variance component calibration, we choose a model with M = 3 pseudo-factors in (1.2)
which allow us to cover different volatility timescales and consistently achieve an acceptable fit on various
calibration sets. The advantage of using multiple pseudo-factors is demonstrated in Appendix A.1, where
we compare the quality of fit between the Heston model and the Lifted Heston model.

The calibrated parameters of the stochastic volatility are provided in Table 3. For the calibrated values,
the loss function defined by (4.13) equals 0.001754. It is interesting to notice that the first mean-reversion
coefficient is very close to zero and corresponds to very long mean-reversion periods, while the two others
correspond approximately to the timescales of one month and 2.5 weeks respectively.
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Parameter Calibrated value

c (0.492, 0.68, 2.79)
x (4.6 · 10−6, 9.712, 20.249)
ρ̃ (0.648, −0.516, 0.16, −0.148, 0.541)

Table 3: Calibrated lifted Heston model parameters

The implied volatility smiles in the calibrated model with smoothed g and h functions, are shown in Figure
15. We also plot the bid-ask spread equal to 5% as a realistic and even conservative proxy to the market
spread observed in the power market. Thus, the plot demonstrates sufficiently high quality of fit for the
model to be used for practical needs.
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Figure 15: IV smiles in the calibrated model (blue) and market IV smiles (orange).

5.2 A posteriori validation of model approximations

As discussed in Section 1.1, the use of the Kenma-Vorst approximated model futures F̃ from (1.12) leads
to potential arbitrage opportunities for futures contracts with overlapping deliveries, e.g. between monthly
futures and the resulting quarter composed by such delivery months. However, we show in the next subsec-
tions that the futures prices’ trajectories, as well as the correlation term structures and implied volatility
smiles are extremely close in the approximated model F̃ and in the exact model future F from (1.8).

From the forward rate definition (1.1), the exact model is given explicitly by

Ft(Ts, Te) =
1

Te − Ts

∫ Te

Ts

f(0, T ) exp

(
− g2(T )

2

∫ t

0

h2(s)Vsσ
⊤(s, T )Rσ(s, T ) ds

+ g(T )

∫ t

0

h(s)
√
Vsσ

⊤(s, T ) dWs

)
dT.

Numerically, we consider a one-day discretization step, which corresponds in practice to the futures contracts
with the shortest delivery period quoted in the futures market

Ft(Ts, Te) ≈
δ

Te − Ts

N−1∑
i=1

f(t, Ti)

Ts = T1 < ... < TN = Te and Ti+1 − Ti = δ =
1

365
, i = 1, . . . , N − 1.

Since the exact daily contracts are computed using a Monte Carlo scheme, the exact model becomes signifi-
cantly slower in terms of pricing and simulation time than the approximated one.
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Besides the KV approximation, it is important to notice that the introduction of the function g ̸= 1 prevents
the futures volatility from being stationary. However, if g ≈ 1, which is the case in our model as the variance
swap volatilities are mostly calibrated at the first calibration step, then the futures contracts dynamics
remains almost stationary. Furthermore, the function g impacts the instantaneous correlations between
absolute contracts. These correlations are affected by the KV approximation as well. In the following
numerical experiments, we demonstrate that neither KV approximation nor the function g have a significant
impact on the correlation term structure.

5.2.1 Sample path trajectories errors

As an illustration of the quality of this approximation, we provide in Figure 16 the trajectories of the exact
futures contracts F and their approximations F̃ , simulated with the same random numbers, for three different
futures contracts: Sep 24, Q1 25 and Cal 25. Recall that F is defined in (1.8) with f(t, T ) explicitly given by
(1.5). The mean L2 distance on [0, θ] is defined as a sample Root Mean Squared Error (RMSE) over m ∈ N∗

sample trajectories by√√√√ 1

m

m∑
i=1

∥F (ωi)− F̃ (ωi)∥2L2(θ) :=

√√√√ 1

m

m∑
i=1

∫ θ

0

(
Ft(ωi)− F̃t(ωi)

)2
dt ≈

√√√√ 1

M

m∑
i=1

θ

Nθ

Nθ∑
j=1

(
Ftj (ωi)− F̃tj (ωi)

)2
,

where Nθ is the number of steps in the daily subdivision of [0, θ]. The estimated distance with θ = Ts
between the approximated and exact trajectories estimated over 104 simulations equals 0.0602, 0.0897 and
0.1898 for three futures contracts correspondingly. We observed that this error depends both on the interval
length θ as well as on the length of the delivery period. Both dependencies are non-linear, the first one is
strictly increasing in θ. As for second one, the error is greater for small (up to one-two months) and for large
intervals (two years or more) delivery periods. The worst-case RMSE numerically reaches 0.5% of the initial
futures value F0.
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Figure 16: Sample paths of F̃ (Ts, Te) and F (Ts, Te) for the same random numbers for three futures
contracts: monthly contract Sep 24 delivering during September 2024, quarterly contract Q1 25 delivering
during the first quarter of 2025, and yearly (or calendar) contract Cal 25 delivering during the whole year

2025. In the figures, time to delivery is given in years.

5.2.2 Instantaneous correlations

In this section, we assess numerically the impact of the function g on the futures contracts’ instantaneous
correlations. Indeed, unlike the function h and the stochastic variance component V which only modify the
futures’ volatility term structure but not their correlations, the function g also impacts the correlations as
it changes the approximated futures contract volatilities Σ. defined by (1.11). Indeed, for i, j ∈ {1, · · · , P},
the instantaneous correlation between the approximated futures contracts F̃ i

. := F̃ i
. (T

i
s , T

i
e) and F̃ j

. :=

F̃ j
. (T

j
s , T

j
e ) obtained just after the first calibration step, and implied by the historical correlation term
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structure of rolling futures, is defined by

ρ̃histij (t) =

〈
d log F̃ i, d log F̃ j

〉
t√

⟨d log F̃ i⟩t
√
⟨d log F̃ j⟩t

=
Σ̂⊤

t (T
i
s , T

i
e)RΣ̂t(T

j
s , T

j
e )√

Σ̂⊤
t (T

i
s , T

i
e)RΣ̂t(T i

s , T
i
e)

√
Σ̂⊤

t (T
j
s , T

j
e )RΣ̂t(T

j
s , T

j
e )
, 0 ≤ t ≤ min(T i

s , T
j
s ),

where Σ̂.(T
j
s , T

j
e ) was defined by (4.2). However, after the second calibration step, the futures contract

volatility is given by Σ., and the instantaneous correlation equals

ρ̃ij(t) =
Σ⊤

t (T
i
s , T

i
e)RΣt(T

j
s , T

j
e )√

Σ⊤
t (T

i
s , T

i
e)RΣt(T i

s , T
i
e)

√
Σ⊤

t (T
j
s , T

j
e )RΣt(T

j
s , T

j
e )
, 0 ≤ t ≤ min(T i

s , T
j
s ). (5.2)

Note that these two values coincide if and only if g(T ) is constant on [T i
s , T

i
e ] and on [T j

s , T
j
e ], as in this case,

Σ.(T
i
s , T

i
e) = giΣ̂.(T

i
s , T

i
e) and Σ.(T

j
s , T

j
e ) = gjΣ̂.(T

j
s , T

j
e ), where gi and gj denote the values of the function

g on the intervals [T i
s , T

i
e ] and [T j

s , T
j
e ] correspondingly.

However, we can show numerically that the difference between ρ̃ij and ρ̃
hist
ij is not significant from a practical

point of view even if g is not constant constant. Namely, we examine this difference for the model calibrated
in Section 5.1 with the function g given by Figure 13(b). The figure 17 shows the distances ∥ρ̃ij − ρ̃histij ∥∞
for each pair of contracts for the calibration set. In the worst case, the difference is less than 0.1%. Thus,
despite the introduction of the function g, the correlations in the calibrated models are still very close to the
ones given by the historical calibration.
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Figure 17: Differences ∥ρ̃ij − ρ̃histij ∥∞ between historically calibrated and model instantaneous correlations.

5.2.3 Quality of the Kemna–Vorst approximation on the instantaneous correlations

As we have just seen, the Kemna–Vorst approximation allows for an explicit computation of instantaneous
correlations between futures contracts in (5.2). However, these quantities do not coincide with the correla-
tions between exact futures contracts

ρij(t) :=

〈
d logF i, d logF j

〉
t√

⟨d logF i⟩t
√
⟨d logF j⟩t

, 0 ≤ t ≤ min(T i
s , T

j
s ),
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where F i and F j follow (1.8) for i, j ∈ {1, · · · , P}. More precisely

ρij(t) =
Σexact

t
⊤
(T i

s , T
i
e)RΣ

exact
t (T j

s , T
j
e )√

Σexact
t

⊤
(T i

s , T
i
e)RΣ

exact
t (T i

s , T
i
e)

√
Σexact

t
⊤
(T j

s , T
j
e )RΣexact

t (T j
s , T

j
e )

, 0 ≤ t ≤ min(T i
s , T

j
s ),

with Σexact
. (Ts, Te) =

∫ Te

Ts
g(T )σ(., T )f(., T )dT∫ Te

Ts
f(., T )dT

, such that the exact correlation is a stochastic process, since

f is stochastic. However, as shown numerically in Figure 18, that the L∞-difference between E[ρij ] and
ρ̃ij lies within two standard deviations of ρij , which makes the approximated correlation (5.2) a valid and
tractable deterministic approximation of the exact instantaneous correlation.

In conclusion, one can control the difference error between the instantaneous correlations ρ̃histij obtained by
the first calibration step from historical futures’ correlation term structure and the fully calibrated exact
model instantaneous correlations ρij using the triangle inequality

∥ρ̃histij − E[ρij ]∥∞= ∥(ρ̃histij − ρ̃ij)− (E[ρij ]− ρ̃ij)∥∞≤ ∥ρ̃histij − ρ̃ij∥∞+∥ρ̃ij − E[ρij ]∥∞,

where the right-hand error quantities are respectively given in Figures 17 and 18 across all liquid contracts.
Such numerical measurements illustrates the overall consistency of the instantaneous correlations in the
approximated model with respect to the exact one.
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Figure 18: Distance ∥ρ̃ij − E[ρij ]∥∞ (on the left) and its standard deviation (on the right) in the calibrated
model.

5.2.4 Quality of the Kemna–Vorst approximation on the smiles

Our next goal is to show that the Kemna–Vorst approximation (1.12) provides precise enough pricing results.
Since neither closed formula, nor an SDE for the futures price dynamics are available, the option prices can
be computed only with the Monte Carlo scheme presented in Appendix D to generate the trajectories of F
and F̃ .

In order to visualize the approximation error, we benchmark the implied volatility smiles for the contracts
Sep 24, Q4 24, and Cal 25 Dec with the calibrated model parameters given in Section 4. The same random
numbers were used for both Monte Carlo, 105 trajectories were simulated and we consider a daily grid for
the instantaneous futures used to compute F . In the worst case, the difference in implied volatility between
the Monte Carlo estimators is less than 0.2%.

Moreover, we compare the values of the smile calibration loss function introduced further in (4.13) for the
calibrated model. The loss function value in the approximated model is given by 0.001754, while the loss
function in the exact model is 0.001617.
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It allows us finally to conclude that the Kemna-Vorst approximation is a valid tractable approximation for
calibration of the exact model which then can be used for pricing and hedging purposes.

0.2 0.1 0.0 0.1 0.2
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70
Aug 24, time to maturity = 0.068

Exact model
95% CI
KV approximation
95% CI

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Q4 24, time to maturity = 0.236
Exact model
95% CI
KV approximation
95% CI

0.2 0.0 0.2 0.4

0.40

0.42

0.44

0.46

0.48

0.50

0.52
Cal 25, time to maturity = 0.449

Exact model
95% CI
KV approximation
95% CI

Figure 19: IV smiles generated with the same random numbers (105 simulations)

5.3 Volatility hypercube extrapolation in the calibrated model

In this section, we address the question of the implied volatility hypercube extrapolation once the model is
fully calibrated and provide the volatility term structure induced by the model.

To illustrate the volatility term structure, we compute the ATM volatilities of options on daily contracts
expiring in the day preceding the day of the delivery, as well as the ATM volatilities of (generated) monthly,
quarterly and calendar contracts expiring three days before the delivery period start. The range of considered
days cover the days from July 3, 2024 to July 3, 2025. The resulting ATM volatilities of are shown in Figure
20 (a), (b).

We also generate the implied volatility smiles for monthly futures contracts corresponding to the months
between August 2024 and December 2026. The options maturity dates are taken equal to the 25-th day of
the month preceding the delivery period. The generated smiles are shown in Figure 20 (c).
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Figure 20: ATM implied volatilities of daily contracts (a) and of monthly, quarterly and calendar contracts
(b), and implied volatility smiles for monthly contracts (c) generated by the calibrated model.

We highlight that the initial calibration of the variance swap volatilities at the first calibration step prevents
the model from over-fitting the VS volatility term structure when calibrating the functions g and h in
step 2). This makes possible a reasonable interpolation and extrapolation of the implied volatilities for the
contracts and maturities not included in the calibration set. In Figure 21, we plot the integrated variance for
monthly (green) and quarterly (blue) contracts being calibrated (circles) as well as the ones not present in the
calibration set and generated within the calibrated model (crosses). We observe that the calibrated model
produces consistent interpolation and extrapolation values, and thus capable of completing the volatility
hypercube.
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Figure 21: Integrated variance for monthly (green) and quarterly (blue) contracts as function of time to
maturity T within one year. Circles correspond to the calibrated contracts Aug 24, Sep 24, Q4 24, Q2 25,

Q3 25, while crosses correspond to the contracts represented by the calibrated HJM model (monthly
contracts from Oct 24 to Jul 25 and Q1 25).

A More calibration results

A.1 Attainable smiles

Since the Lifted Heston model reduces to the standard Heston model when M = 1, c1 = 1, and x1 = 0, the
Lifted Heston model can reproduce all the smiles that the standard Heston model can generate. The inverse,
however, is not true, as the standard Heston model often struggles to capture steep enough smiles for short
maturities. We provide a comparison of the calibrations of both models using the previously introduced
calibration set. To highlight the differences, only the smiles with the poorest calibration results are shown
in Figure 22.
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Figure 22: A comparison of the calibration results for the Heston model and the Lifted Heston model with
M = 3 pseudo-factors on the same calibration set.

A.2 Calibration results for TTF market

In this section, we provide the results of calibration performed on the TTF gas market on the 3rd July 2024.

Note that options on quarterly and calendar gas futures contracts are quoted as strip options (e.g. a price
of an option on a quarter futures contract is a mean of option prices on monthly contracts forming this
quarter). Thus, it is sufficient to calibrate only the smiles corresponding to the monthly futures contracts.
It can be achieved by using only the function h at the term structure calibration step, which is shown in
Figure 26. Thus, the historical correlations between futures remain unchanged and coincide perfectly with
the correlations calibrated historically, since the function g remains constant. The calibrated VS volatility
term structure is presented in Figure 27.

We display in Figure 23 the results of the PC analysis applied to the rolling TTF futures contracts’ daily log
returns observed from the 3rd of July 2024 to the 3rd of January 2023, and observe only 2 PCs allow to reach
95% of explained variance in this case, and 4 factors to reach 99%, consistent again with the quality of fits
we obtain in Figure 24, and the observations by Andersen (2010, Section 6.2.2). In fact, the high correlation
term structure observed in the upper left of Figure 23 stands in sharp contrast to the de-correlation between
short-term and long-term observed in the lower left part of Figure 5 for the German power market, and is
mainly due to the large storage capacities of gas in chambers, while electricity still cannot be stored at a
large scale.

For the implied calibration at steps 2) and 3), we consider the four-factor model 1L2S1C. The implied
calibration results for six smiles on monthly contracts are presented below in Figure 28, and the calibrated
parameters of the stochastic volatility are provided in Table 4.

The monthly contracts surface and the ATM volatilities are shown in Figure 29. Note that the term structure
of the ATM volatility is not decreasing for short maturities. This is a consequence of the fact that the implied
volatility corresponding to the first contract is 5% lower that the volatilities of the other monthly contracts,
possibly due to the seasonality. It is also interesting to notice the the difference between daily and monthly
volatility is much smaller than in the power market thanks to the very high correlation between all the
futures contracts.
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rDay1 rWeek1 rWeek2 rAug 24 rSep 24 rOct 24 rNov 24 rDec 24 rJan 25

rDay1

rWeek1

rWeek2

rAug 24

rSep 24

rOct 24

rNov 24

rDec 24

rJan 25

1 0.92 0.92 0.92 0.9 0.88 0.87 0.86 0.86

0.92 1 0.98 0.97 0.95 0.94 0.92 0.92 0.91

0.92 0.98 1 0.98 0.96 0.95 0.94 0.93 0.93

0.92 0.97 0.98 1 0.99 0.98 0.96 0.96 0.95

0.9 0.95 0.96 0.99 1 0.99 0.98 0.98 0.97

0.88 0.94 0.95 0.98 0.99 1 1 0.99 0.98

0.87 0.92 0.94 0.96 0.98 1 1 1 0.99

0.86 0.92 0.93 0.96 0.98 0.99 1 1 1

0.86 0.91 0.93 0.95 0.97 0.98 0.99 1 1
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Figure 23: Rolling futures in TTF gas market: (upper left) correlation term structure, (upper right)
volatility term structure, (bottom) principal component analysis
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Figure 24: Historical calibration fits for TTF, with λ = 0.99, to (top) the historical realized volatility term
structure and (bottom) the historical correlation term structure.
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Figure 25: Plots of calibrated (σi)i against (τi)i parameters (left) and of the factors’ correlation matrix
(right) for the 1L2S1C model on TTF market data, when taking λ = 0.99 in the loss function Jλ (3.8).

Model parameters are, in L-S-C order: (σi)i := [0.4331, 8.8686, 0.3727, 0.5886],
(τi)i := [0.0005, 0.1731, 0.2456].
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Figure 26: Calibrated function h.

Au
g 

24

Se
p 

24

Oc
t 2

4

No
v 

24

De
c 

24

Ja
n 

25

0.52

0.54

0.56

0.58

0.60

An
nu

al
ize

d 
VS

 v
ol

at
ilit

ie
s

before correction
after correction
market

Figure 27: VS term structure fit before the correction (orange) and after the correction (blue).

Parameter Calibrated value

c (1.863, 1.155, 3.747)
x (2.586, 4.919, 27.745)
ρ̃ (0.76 , -0.267, -0.222, -0.272)

Table 4: Calibrated lifted Heston model parameters
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Figure 28: Calibrated IV smiles.
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Figure 29: Implied volatility smiles for monthly contracts and implied ATM volatilities of daily and
monthly contracts generated by the calibrated model. ((a) and (b) correspondingly).

A.3 A word on the additive model

An additive HJM model with stochastic volatility can be considered as well. In this case, the dynamics is
given by

df(t, T ) = g(T )h(t)
√
Vt

N∑
i=1

σi(t, T )dW
i
t , t ∈ [0, T ].
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However, we found several disadvantages preventing from its efficient usage. As the market uses the Black-
Scholes volatility quotation, instead of the well-known smile flattening effect, the additive model produces
negatively skewed smiles for T ≫ 1, which is hardly acceptable in the commodity market where the skew is
typically positive, i.e. the “inverse leverage” as described in Andersen (2010).

We illustrate it with a simple experiment, calibrating the smile shapes of the contracts Aug 24 and Cal 25
Sep and plotting the smile corresponding to Cal 27 Dec, see Figures 30–32. The functions g and h were
calibrated to all the three smiles. Since the link between the forward variance and the log-contract is absent
in the additive model, g and h were calibrated to match the ATM volatility level in this case, while for the
multiplicative model we provide both calibration of the ATM volatilities and of the variance swap volatilities
(Figures 31 and 32 correspondingly). We observe that the additive model produces a completely inconsistent
shape for the third, extrapolated smile. The fixed-point ATM volatility calibration algorithm stays the same,
but volatility term structure and shape calibration cannot be separated and the calibration routine becomes
much more time-consuming.
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Figure 30: Additive model calibrated to smiles Aug 24 and Cal 25 Sep.
Term structure for all the three contracts is calibrated via the ATM volatility.
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Figure 31: Multiplicative model calibrated to smiles Aug 24 and Cal 25 Sep.
Term structure for all the three contracts is calibrated via the ATM volatility.
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Figure 32: Multiplicative model calibrated to smiles Aug 24 and Cal 25 Sep.
Term structure for all the three contracts is calibrated via the variance swap volatility.

B Additional details for the step 1) calibration

B.1 Estimation of historical covariances

Given two rolling futures contracts’ indices (i, j) ∈ {1, · · · , Phist}2, we introduce the following normalized
covariance estimator with exponentially decaying weights such that

Ĉovλ
(
rmkt,i(τd), r

mkt,j(τd)
)
:=

1

τd

1

1−
∑H

h=0 w
2
h(λ)

H∑
h=0

wh(λ)
(
rmkt,i
th

(τd)− r̄mkt,i
w(λ) (τd)

)(
rmkt,j
th

(τd)− r̄mkt,j
w(λ) (τd)

)
,

with the exponentially decaying weighted average of log returns given by

r̄mkt,n
w(λ) (τd) :=

H∑
h=0

wh(λ)r
mkt,n
th

(τd), n ∈ {1, · · · , Phist},

and where the weights are computed as follows

wh(λ) :=
(1− αλ)

H−h∑H
k=0 (1− αλ)

H−k
, h ∈ {1, · · · , H} , αλ :=

2

λ+ 1
, (B.1)

for some time span parameter λ ≥ 1 (in number of days) controlling the decay rate of the exponential
smoothing. In practice, we consider the covariance estimator of past log returns averaged across a family of
Z ∈ N time-scale decays (λz)z∈{1,···,Z} such that

Cmkt
i,j :=

1

Z

Z∑
z=1

Ĉovλz

(
rmkt,i(τd), r

mkt,j(τd)
)

(B.2)

as well as the element-wise confidence matrix U whose (i, j)th entry is the standard deviation of the (i, j)th

entries of the respective covariance matrices
(
Ĉovλz

)
z∈{1,···,Z}

. We then scale Γ ∈ RP 2
hist

+ weighting the

Frobenius norm used in the calibration loss (3.8) as

Γ ∝ 1

Ū + U
, (B.3)

where the division is understood element-wise and Ū is the matrix with all entries constant equal to the
average entries of U . This choice ensures more weights are given to the entries of the covariance matrix of
returns which are less volatile across the different decay rates.
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Figure 33: Left: exponentially decaying weights (B.1) for various span parameters; right: resulting weight
matrix from (B.3) used in the loss J1 (3.9).

B.2 Linear cone programming

The inward minimization problem in (3.18) is formulated as a linear cone program in terms of the variables

x̄ :=
(
x̄0, (x̄p)p∈{1,···, (N+Nc+1)(N+Nc)

2 }
)
,

where (x̄p)p∈{1,···, (N+Nc+1)(N+Nc)
2 } is identified as a column-major ordered vector corresponding to the lower

triangular part of the symmetric matrix variables (xp,k(σ,R))p,k∈{1,···,N+Nc} from (3.5) such that

min
x̄∈Ū

cT x̄ (B.4)

Ū :=
{
x̄ ∈ R1+

(N+Nc+1)(N+Nc)
2 : Gλ (τ(a)) x̄+ s = h, Ax̄ = b, s ∈ C

}
, (B.5)

with C := C0 × C1 × C2 such that

C0 :=
{
u ∈ RN : ui ≥ 0, i ∈ {1, · · · , N}

}
, (B.6)

C1 :=
{
(u0, u1) ∈ R× R

(N+Nc+1)(N+Nc)
2 : u0 ≥ ∥u1∥2

}
, (B.7)

C2 :=
{
vec(u) | u ∈ SN

+

}
,

and where ∥.∥2 the standard Euclidean norm, and vec(u) denotes a symmetric matrix u stored as a vector
in column major order.

Indeed, the linear cone program (B.4)–(B.5) handles the various constraints on (σ,R) stated in the inner
optimization problem from (3.18) such that:

• the non-negative orthant C0 (B.6) captures constraints of the form σupper
i ≥ σi ≥ 0, i ∈ {1, · · · , N},

where typically σupper
1 is chosen to be a small multiple of the rolling futures contract’s annualized

volatility associated to the latest delivery to constraint σL,

• we specify c :=
(
1, 0

R
(N+Nc+1)(N+Nc)

2

)
so that “x̄0 plays the role of u0” in the second-order cone C1

from (B.7), and we define accordingly the τ(a)-dependent quantity Gλ (τ(a)) using the weights (3.15)–
(3.16), and h with the respective target market values from the loss definition (3.13) so as to ensure
both the quadratic loss function Jλ is minimized and (xi,j)i,j∈I ∈ SN

+ , where I denotes the set of

indices relative to {L, S,C1} state variables, i.e. (xi,j)i,j∈I is obtained by withdrawing the columns and

rows involving the state variable C2 from the matrix (xp,k)p,k∈{1,···,N+Nc},
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• finally, we specify (A, b) accordingly to ensure the equality constraints (3.17) with respect to the state
variables of the C-factors.

In practice, (B.4) can be solved numerically by any linear cone program solver such as conelp from CVXOPT,
see https://cvxopt.org/userguide/coneprog.html for additional details, and from which we borrowed the
notations.

C Proof of Theorem 4.2

Proof. Without loss of generality, suppose that [T j
s , T

j
e ] ⊂ [T 0

s , T
0
e ] for j = 1, . . . d, since the delivery periods

non included in [T 0
s , T

0
e ] will not impact the function h. Hence, they can be eliminated from the fixed-point

iteration algorithm to be calibrated once at the end.

Given the vector g = (ḡ1, . . . , ḡd) ∈ Rd, we construct the vector h = (h1, . . . , hN0
) ∈ RN0 by (4.5):

h2k(g) =
VS0T 0

k
−VS0T 0

k−1∫ T 0
k

T 0
k−1

Σ⊤
s (T

0
s , T

0
e )RΣs(T 0

s , T
0
e ) ds

, k = 1, . . . , N0. (C.1)

Since Σs(T
0
s , T

0
e ) is affine in g

Σs(T
0
s , T

0
e ) =

d∑
i=1

ωi
0ḡiΣ̂s(T

i
s , T

i
e) +

(
1−

d∑
i=1

ωi
0

)
Σ̂s

(
[T 0

s , T
0
e ] \ ∪di=1[T

i
s , T

i
e ]
)
,

the equation (C.1) can be rewritten as

h2k(g) =
VS0T 0

k
−VS0T 0

k−1

g⊤Qkg + 2g⊤pk + rk
, k = 1, . . . , N0,

where Qk ∈ Rd×d, pk ∈ Rd, and rk ∈ R are defined by

(Qk)ij = ωi
0ω

j
0

∫ T 0
k

T 0
k−1

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T

j
s , T

j
e ) ds, i, j = 1, . . . , d,

(pk)i = ωi
0

(
1−

d∑
l=1

ωl
0

)∫ T 0
k

T 0
k−1

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s([T

0
s , T

0
e ] \ ∪dl=1[T

l
s, T

l
e]) ds, i = 1, . . . , d,

rk =
(
1−

d∑
l=1

ωl
0

)
2

∫ T 0
k

T 0
k−1

Σ̂⊤
s ([T

0
s , T

0
e ] \ ∪dl=1[T

l
s, T

l
e])RΣ̂s([T

0
s , T

0
e ] \ ∪dl=1[T

l
s, T

l
e]) ds

Since we have assumed that the contracts have positive instantaneous correlations, we obtain (Qk)ij > 0
and (pk)i > 0 for all i, j = 1, . . . , d. Moreover, by the linear independence hypothesis on the division,
[T 0

s , T
0
e ] \ ∪di=1[T

i
s , T

i
e ] ̸= ∅, so that rk > 0.

The new iteration of g calculated by (4.8) is then given by

ψi(g) =

√√√√√√ VSiT i

N0∑
k=1

h2k(g)
∫

[0, T i]∩[Tk−1, Tk]

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T i

s , T
i
e) ds

=

√
VSiT i

S⊤
i h

2(g)
, i = 1, . . . , d. (C.2)

where we have denoted Si =

( ∫
[0, T i]∩[Tk−1, Tk]

Σ̂⊤
s (T

i
s , T

i
e)RΣ̂s(T

i
s , T

i
e) ds

)
k=1,...,N0

. Note all that the elements

of Si are positive.
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(i) Existence. We will apply the Brouwer’s theorem to establish the existence of the fixed-point. Since all
the coefficients are positive, the mapping ψ : Rd

+ → Rd
+ is continuous. Thus, it is sufficient to find a convex

compact K ⊂ Rd
+, such that ψ(K) ⊂ K. We will look for a compact of the form KR = {x ∈ Rd

+: ∥x∥≤ R}
and we will show that there exists an R > 0 big enough, such that ψ(KR) ⊂ KR.

Indeed, if g ∈ KR, then

h2k(g) ≥
VS0T 0

k
−VS0T 0

k−1

∥Qk∥∥g∥2+2∥g∥∥pk∥+rk
≥

VS0T 0
k
−VS0T 0

k−1

∥Qk∥R2 + 2∥pk∥R+ rk
.

The norm of ψ can be bounded:

∥ψ(g)∥2≤
d∑

i=1

VSiT i

N0∑
k=1

Sk
i

VS0T 0
k
−VS0T 0

k−1

∥Qk∥R2 + 2∥pk∥R+ rk

Hence,

lim
R→∞

∥ψ(g)∥2

R2
≤

d∑
i=1

VSiT i

N0∑
k=1

Sk
i

VS0T 0
k
−VS0T 0

k−1

∥Qk∥

< 1,

where we have used (4.10). Thus, there exists R, such that for g ∈ KR, we have ∥ψ(g)∥< R, and ψ(KR) ⊂
KR.

(ii) Stability. To prove stability of the fixed-point, we linearize ψ and study its Jacobian matrix
∂ψ

∂g
.

Taking the derivative of (C.2), we obtain

∂ψi(g)

∂gj
= −1

2

√
VSiT i

S⊤
i h

2(g)

1

S⊤
i h

2(g)

N0∑
k=1

Sk
i

∂

∂gj
h2k(g) =

ψi(g)

S⊤
i h

2(g)

N0∑
k=1

Sk
i h

2
k(g)

2g⊤Qj
k + 2(pk)j

2g⊤Qkg + 4g⊤pk + 2rk
,

where Qj
k denotes the j-th row of Qk. If g

∗ is a fixed-point of ψ, then ψi(g
∗) = g∗i , and we have

d∑
j=1

1

g∗i

∂ψi(g
∗)

∂gj
g∗j =

1

S⊤
i h

2(g∗)

N0∑
k=1

Sk
i h

2
k(g

∗)
2g∗⊤Qkg

∗ + 2g⊤pk
2g∗⊤Qkg∗ + 4g∗⊤pk + 2rk︸ ︷︷ ︸

<1

< 1, i = 1, . . . , d, (C.3)

as all the coefficients in this expression are positive. (C.3) implies that the matrixA := diag(g∗)−1 ∂ψ

∂g
(g∗)diag(g∗)

is a contraction in (Rd, ∥·∥∞). Thus, there exists a neighborhood U of g∗ such that the iterations gn converge
for any g0 ∈ U . Indeed, defining en = gn − g∗, we obtain in U

en+1 = diag(g∗)Adiag(g∗)−1en,

so that ∥diag(g∗)−1en∥∞ tends to 0 as n→∞, and ∥en∥∞→ 0.

(iii) Uniqueness. We establish uniqueness only for the case N0 = 1. By (C.2), the fixed-point equation
ψ(g) = g reads

ψi(g) =

√
1

S1
i

VSiT i

S1
i h

2
1(g)

=

√√√√ 1

S1
i

VSiT i

VS0T 0
1
−VS0T 0

0

√
g⊤Q1g + 2g⊤p1 + r1 = α(g)ei,

where

e :=

√√√√ 1

S1
i

VSiT i

VS0T 0
1
−VS0T 0

0


i=1,...,d

, α(g) :=
√
g⊤Q1g + 2g⊤p1 + r1.
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Is is clear that the fixed point g, if exists, should be of the form

g = βe, β > 0,

so that the fixed-point problem in Rd is reduced to the one-dimensional fixed-point problem for the mapping

ψβ : R+ → R+, β 7→ α(βe) =
√
e⊤Q1eβ2 + 2e⊤p1β + r1,

which is equivalent to the quadratic equation

(1− e⊤Q1e)β
2 − 2e⊤p1β − r1 = 0. (C.4)

The condition (4.10) guarantees that e⊤Q1e < 1, so that the equation (C.4) admits a unique positive root
β∗ and the unique fixed-point of ψ is given by g∗ = β∗e.

D Monte Carlo simulation scheme

The European call option prices C(T,K) can also be computed using the Monte Carlo method. At each step
t of our discrete-time grid, given (U i

t )i∈{1,...,M}, Vt, and Ft and a time-step ∆t, we simulate (U i
t+∆t)i∈{1,...,M},

then Vt+∆t, and finally Ft+∆t. For the processes U i
t , we start with the following semi-implicit Euler dis-

cretization scheme of (1.3):

U i
t+∆t − U i

t = −xiU i
t+h ∆t− λVt ∆t+ ν

√
Vt(Bt+∆t −Bt),

which leads to

U i
t+∆t =

1

1 + xi∆t
(U i

t − λVt∆t+ ν
√
Vt(Bt+∆t −Bt))

We choose this semi-implicit Euler scheme following Abi Jaber (2019), since it gives more stable results than
standard Euler scheme which explodes for large mean-reversion coefficients xi.

We obtain the variance Vt+∆t directly by (1.2) ensuring that the variance process is floored at zero to prevent
negative values. For logFt+∆t, standard Euler scheme is used. We sum up the simulation scheme with the
following formulae:

U i
t+∆t =

1

1 + xi∆t
(U i

t − λVt∆t+ ν
√
Vt(Bt+∆t −Bt)), i = 1, . . . ,M,

Vt+∆t =

(
m0(t+∆t) +

M∑
i=1

ciU
i
t+∆t

)+

,

logFt+∆t = logFt −
1

2
h(t)2VtΣ

⊤
t RΣt∆t+ h(t)

√
VtΣ

⊤
t (Wt+∆t −Wt).
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