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1 Introduction

The aim of this paper is to analyze the risks in random sets and their implication for pricing

baskets of individual risks. The analysis of risk is usually done by using the notion of stochastic

dominance at order 1 or 2. For distributions on the real line, the stochastic dominance at order

1 (resp. order 2) involves all increasing (resp. increasing convex) functions. This has led to

the introduction of special families of derivatives such as the European calls (resp. the digital

tranches), which are insurance coverages against large risk at order 2 (resp. at order 1).

This basic risk theory is developed for one dimensional continuous risk variables [Hanoch

and Levy (1969), Rothschild and Stiglitz (1970)1, Vickson (1975), Fishburn and Vickson (1978)].

It has been extended to multidimensional continuous risk variables by Kihlstrom and Mirman

(1974), Scarsini (1988), Marshall (1991).

We review in Section 2 different results on random sets in the finite space {1, ..., n}. We first

recall the link between the observation of a set of n binary variables and a subset S of {1, ..., n}.

Then we introduce notions of increasing, decreasing, decreasing convex functions of a set, by

extending the standard notions of cumulative distribution and survival functions, and derive

an “integration by parts” formula for such functions. We also discuss the case of a particular

parametric family of set distributions: the Law of Determinantal Point Process (LDPP) family.

Since the literature on random sets, LDPP and machine learning has not well diffused among

researchers in economics, finance and insurance, we provide detailed references for all the known

results used in the paper. All other results are new and are systematically proven.

Stochastic dominances on random sets are introduced in Section 3. We especially discuss

right stochastic dominance at orders 1 and 2. In the LDPP framework, the right stochastic

set dominance is equivalent to a new ordering on appropriate symmetric positive semi-definite

matrices. We also define set (i.e. basket) derivatives, such as tranches and European calls, and

explain how stochastic set dominance can be written in terms of the expected payoffs of basket

derivatives. Section 4 discusses the case of exchangeable models where the set distributions are

invariant by permutation of the individual indexes. We highlight the simplifications that arise

in this case.

Illustrations are provided in Section 5. Section 6 concludes. The proofs of propositions, the

derivation of Laplace transforms, different properties of the LDPP family, and of the log-linear

model with pairwise interactions are provided in the Appendix and online Appendices. We also

provide a basic introduction to the statistical inference of random set models in online appendix

3.

1With the correction in Leshno et al. (1997).
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2 Random sets

The theory of random sets was introduced by Debreu (1967) and has recently also received much

attention in econometrics [see e.g. Beresteanu et al. (2011), Molchanov and Molinari (2018)]. In

this section, we briefly review some basic properties of random sets in finite spaces2 and of their

distributions that will be used later on for risk analysis.

2.1 Multivariate binary variables

Let us consider a sequence of doubly indexed binary variables Xl,i, l = 1, ..., L, i = 1, ..., n,, that

take values 0 or 1. Here n denotes the number of individuals, and depending on the application,

the interpretation of the other index might differ. In some cases, L denotes the number of

binary variables for each individual, and the simplest baseline model in this case assumes that

the individuals are independent, whereas the L binary variables could be dependent for the same

individual. In other words, we have multivariate Bernoulli data and the focus is on within-

dependence. In some other cases, each individual has only one type of binary risk, but these

binary variables are time-varying and are observed during L periods. The simplest baseline model

in this case assumes that the variables at different periods are independent, whereas at the same

period, the different individuals are dependent. In other words, we have panel Bernoulli data

and the primary focus is on between-dependence.

Because our interest is in risk analysis, in the applications below, by convention, Xl,i = 1, if

the individual has a high l risk, Xl,i = 0, otherwise.

Example 1 (Multivariate binary data). The individual i can be a corporate, and for different l,

the variables Xl,i can correspond to the solvency risk, the liquidity risk, or the cyber risk in a

given year.

Example 2. The machine learning approaches are using large databases that contain a lot of

missing data usually treated by ad-hoc imputation methods. These imputations can impact

significantly the machine learning and lead to unreasonable results [see e.g. Bryzgalova et al.

(2022)]. Typically the firms, or the hedge funds have to satisfy transparency requirements by

disclosing a list of characteristics on their balance sheets, or on their efforts for diminishing

carbon impact. The proportion of missing data is between 20 % and 50 %, depending on the

firm, on the variable (and on the period). In this example, we observe Xljt = 1, if the value of

variable l is missing in the reporting by firm (hedge fund) j at date t. In this example we have

i = (j, t).
2See e.g. Matheron (1975), Molchanov (2017), Molchanov and Molinari (2018) for random sets in more general

spaces.
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The observation of X = (Xl,i, l = 1, ..., L, i = 1, ...n) is equivalent to the observation of a

subset S = [S(1), ..., S(L)] of the product space
[
P({1, 2, ..., n})

]L
, where for each l, the set S(l)

denotes the subset of individuals i with Xl,i = 1 and P({1, 2, ..., n}) is the set of all subsets of

{1, 2, ..., n}. Therefore it is equivalent to analyze X (resp. a function of X), or to analyze the set

S (resp. a function of S). We follow this interpretation in terms of sets in the rest of the paper.

When the binary variables are doubly indexed by individual i and time t, they can be trans-

formed into observations of sets in three different ways, that are:

a) subsets of {1, ..., n} × {1, ..., L} indexed by time;

b) subsets of {1, ..., T} × {1, ..., L} indexed by individual;

c) subsets of {1, ..., L} indexed by individual and time.

The choice between a), b) and c) will depend on the type of application.

As an illustration, let us consider n = 6, L = 3 and the following individual observations of

variables X1,i, X2,i, and X3,i, i = 1, 2, ..., 6, the associated Si and its size n(Si), i = 1, 2, ..., 6, as

well as S(l) along with its size n[S(l)], l = 1, 2, 3,. As in Example 1, each column is an individual

(corporate), whereas each row corresponds to one type of risk (solvency, liquidity and cyber). In

particular, in the event that the simultaneous occurrence of X1,i = 1, X2,i = 1 and X3,i = 1 is

rare, the representation through set could require less computer memory.

HHH
HHl
i

1 2 3 4 5 6 S(l) n[S(l)]

l = 1 0 0 0 1 1 1 {4, 5, 6} 3
l = 2 1 0 0 0 0 1 {1, 6} 2
l = 3 0 1 0 0 0 0 {2} 1

Si {2} {3} ∅ {1} {1} {1, 2}
n(Si) 1 1 0 1 1 2

Table 1: Two equivalent representations of the doubly indexed binary variables: through a
matrix of binary entries Xl,i, l = 1, 2, 3, i = 1, .., 6, or through a sequence of set-valued variables
Si, i = 1, ..., 6, or S(l), l = 1, ..., 3.

2.2 Functions of sets

The inclusion (in the wide sense including equality) defines a partial order3 on all these sets4 s =

[s(1), ..., s(L)] with extremal elements: the empty set ∅ as the minimal element and {1, 2, ..., n}L

as the maximal element. We will now consider the analogue of measure theory on the probability

space
[
P({1, 2, ..., n})

]L
.

3It satisfies the property of reflexivity, symmetry and transitivity.
4This explains the acronym “poset” for partially ordered sets used in the literature on random sets.
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It can be useful to visualize this partial order when L = 1 under the form of a diagram with

n+ 1 layers corresponding to the size, i.e. number of elements of s. Such a diagram is given in

Figure 1 for n = 3.

(1) (2) (3)

(1,2) (1,3) (2,3)

(1,2,3)

∅

Figure 1: The ordering diagram, L = 1, n = 3.

If L = 1 we have n + 1 layers, 2n subsets, and n! ordered paths to go from ∅ to {1, ..., n}.

When L is larger than 1, the inclusion order can be written equivalently as s∗ ⊃ s, or s∗(l) ⊃ s(l),

for all l = 1, ..., L.

Let us introduce a nonnegative function v of set s.

Definition 1. i) The right cumulated function of v is the function:

V +(s) =
∑
s∗⊃s

v(s∗), ∀s. (2.1)
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The p−th right cumulated function of v is defined recursively by:

V (p)+(s) =
∑
s∗⊃s

V (p−1)+(s∗), p ≥ 2,

with V (1)+(s) = V +(s).

ii) The left cumulated function of v is the function:

V −(s) =
∑
s∗⊂s

v(s∗), ∀s. (2.2)

The p−th left cumulated function of v is defined recursively by:

V (p)−(s) =
∑
s∗⊂s

V (p−1)−(s∗),

with V (1)−(s) = V −(s).

Example 3. For instance, if L = 1, n = 3, we have:

V +({1}) = v({1}) + v({1, 2}) + v({1, 3}) + v({1, 2, 3}),

V +({1, 2}) = v({1, 2}) + v({1, 2, 3}),

V −({1}) = v({1}) + v(∅),

V −({1, 2}) = v({1, 2}) + v({1}) + v({2}) + v(∅),

V (2)+({1}) = V +({1}) + V +({1, 2}) + V +({1, 3}) + V +({1, 2, 3})

= v({1}) + 2v({1, 2}) + 2v({1, 3}) + 4v({1, 2, 3}),

V (2)−({1, 2}) = V −({1, 2}) + V −({1}) + V −({2}) + V −(∅)

= v({1, 2}) + 2v({2}) + 2v({1}) + 4v(∅).

Example 4. Let us assume that v(s) = 1. If L = 1, we have:

V −(s) = 2n(s), V +(s) = 2n−n(s),

where n(s) is the number of elements of s. These formulas are also valid for more variables. If

s = [s(1), ..., s(L)], we have:

V −(s) = 2N(s), V +(s) = 2N−N(s),

where N(s) =
∑L
l=1 n[s(l)], N = nL.
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The following property is proved in Appendix A.1.

Proposition 1. It is equivalent to know the function v, or the function V + or V −, or any other

function V (p)+ or V (p)−.

Proof. See Appendix A.1.

There exist inversion formulas allowing to derive under closed form the function v from

either V + or V −, known as Moebius inversion formula [see Molchanov (2017), Theorem 1.1.61,

Molchanov and Molinari (2018), p23]. For instance, if L = 1, we have:

v(s) =
∑
s∗⊂s

[
(−1)n(s)−n(s∗)V −(s∗)

]
. (2.3)

However the recursive approach used in Appendix A.1 is more algorithmic and appropriate in

practice to find the values of v(s).

In particular, if L = 1 and v is a probability mass function on P[{1, ..., n}], then the function

V + (resp. V −) is the analogue of a survival function (resp. cumulative distribution function)

and function v its “derivative”. It is a decreasing (resp. increasing) function of s, in the sense

that, if two subsets s1, s2 are ordered, s1 ⊂ s2, then:

V +(s1) ≥ V +(s2), V −(s1) ≤ V −(s2).

From now on we call S−decreasing function such a V + function and S−increasing function

such a V − function (S for set).

These interpretations can be extended to any order p. For instance V (2)+ is a S−decreasing

convex function and V (2)− is a S−increasing convex function, since, as mentioned after Propo-

sition 3, v can be interpreted as an extension of the notion of derivative.5 This S−notion of

convexity does not assume any convexity of the probability space
[
P({1, 2, ..., n})

]L
, or any

mixture of set distributions [as in Fishburn (1974)].

Let us consider the total mass V̄ =
∑
s v(s). We have:

Proposition 2. For any subset s:

V +(s) + V −(s)− v(s) ≤ V̄ .

This inequality is a consequence of v(s) being included in both definitions of V + and V −,

and of the partial order, since the summation in the definition of V̄ includes also the v(s∗) when

5For multivariate quantitative variables, these functions are said to be p−th order concave (resp. convex)
[Denuit et al. (2013)].
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the sets s∗ and s cannot be compared (that is, when none of them is a subset of the other one).

Proposition 3. Let us consider two nonnegative functions v, w and their cumulated counterparts

V +, V − and W+,W−. We have:

∑
s

v(s)W+(s) =
∑
s

V −(s)w(s), (2.4)

Similarly, by exchanging the roles of v and w, we also have:
∑
s w(s)V +(s) =

∑
sW

−(s)v(s).

Proof. See Appendix A.2.

Equality (2.4) is an extension of the Abel Lemma [see Bromwich (2005), Chapter 20] and

the analogue of the integration by part formula. For such an interpretation, let us consider two

distributions on R+ with densities f(x), f∗(x), c.d.f.’s F (x), F ∗(x), survival functions S(x), S∗(x).

We have:

∞∫
0

F (x)f∗(x)dx = −
∞∫

0

F (x)dS∗(x) = −F (x)S∗(x)
]∞

0
+
∞∫

0

f(x)S∗(x)dx.

Since −F (x)S∗(x)
]∞

0
= 0, we get:

∫∞
0 F (x)f∗(x)dx =

∫∞
0 f(x)S∗(x)dx. Equation (2.4) is the

analogue of this equality. Thus, as mentioned earlier, the underlying function v is a kind of

derivative (resp. opposite derivative) of function V − (resp. V +). With this interpretation, a

function W (s) that can be written as W (s) = V (p)−(s) is a function whose “derivatives” are

nonnegative up to order p.

2.3 Distribution of a random set

When the variables X = (Xli) are stochastic, the associated set S is stochastic too. Then it is

equivalent to define the distribution of X, or the distribution of S. We deduce from Proposition

1 that this distribution can be defined equivalently,

• by the elementary probabilities: p(s), that are nonnegative and sum up to one across the

different subsets s.

• by the associated S−decreasing (survival) function:

G+(s) = P[s ⊂ S] =
∑
s∗⊃s

p(s∗), ∀s, (2.5)
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• or by the associated S−increasing function (cdf):

G−(s) = P[S ⊂ s] =
∑
s∗⊂s

p(s∗), ∀s. (2.6)

Then, for any nonnegative function v, with its associated S−increasing function V − and S−decreasing

function V +, we deduce from Proposition 3 that:

E[V −(S)] =
∑
s

p(s)V −(s) =
∑
s

v(s)G+(s), (2.7)

E[V +(S)] =
∑
s

p(s)V +(s) =
∑
s

v(s)G−(s). (2.8)

When L = 1, the summation in eq. (2.5) is done on 2n−n(s) terms, while it is done on 2n(s) terms

in eq. (2.6).

For instance, if we take v(s) = p(s), we get:

E[G+(S)] = E[G−(S)] =
∑
s

p(s)G−(s) =
∑
s

p(s)G+(s) = G(2)+(∅) = G(2)−({1, ..., n}).

Then we can also interpret E[G+(S)] by:

E[G+(S)] =
∑
s

p(s)G+(s) =
∑
s

p(s)
∑
s∗⊃s

p(s∗) = P[S∗ ⊃ S],

where S, S∗ are i.i.d., with identical distribution (p(s)). In particular, since G+(s) +G−(s) ≤ 1

for any s, we get: G(2)+(∅) = P[S∗ ⊃ S] = G(2)−({1, ..., n}) ≤ 1/2. This is to be compared with

continuous variables. Indeed, if Y, Y ∗ are i.i.d. with absolutely continuous distributions, then

P[Y < Y ∗] = 1/2 by symmetry.

2.4 Law of Determinantal Point Process (LDPP)

Let us assume L = 1. An example of parametric family of distributions for random set S is the

LDPP family. Its construction is based on the following Lemma:

Lemma 1 (Kulesza and Taskar (2012), Th. 2.1, Rising (2013), Theorem 2.3.1). Let us consider a

(n, n) matrix A and denote As the submatrix of A of dimension
(
n(s), n(s)

)
including the rows

and columns with indices in s. Then:

det(Id+A) =
∑
s

detAs. (2.9)
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More generally:

det(Is̄ +A) =
∑
s∗⊃s

detAs∗ ,

where Is̄ is the diagonal matrix with its i−th diagonal element equal to 1, if i ∈ s̄, equal to 0,

otherwise, where s̄ = {1, ..., n} − s is the complement of s.

Let us now consider a (n, n) symmetric positive semi-definite matrix Σ. Any submatrix Σs
of Σ is also positive semi-definite. Therefore all determinants det Σs, i.e. principal minors of Σ,

are nonnegative.

Definition 2. The LDPP family has the elementary probabilities:

p(s,Σ) = det Σs
det(Id+ Σ) , (2.10)

with the convention det Σ∅ = 1.

This family of 2n − 1 independent elementary probabilities is parametrized by Σ, that is by

n(n+1)
2 independent parameters.

The associated S−decreasing (survival) function of the LDPP has a similar expression.

Proposition 4 (Borodin and Rains (2005), Brunel (2018)). In the LDPP, we have:

G+(s) = P[S ⊃ s] = detK+
s , (2.11)

where the matrix K+, often called kernel, is defined by:

K+ = Σ(Id+ Σ)−1 = Id− (Id+ Σ)−1. (2.12)

If Σ is positive definite, the matrix K+ is also symmetric positive definite and has all its

eigenvalues strictly smaller than 1. It is in a one-to-one relationship6 with Σ. Indeed, it is easily

seen how to find Σ from K+. We have:

Σ = −Id+ (Id−K+)−1 = K+(Id−K+)−1. (2.13)

Proposition 5. In the LDPP family, the p−th right cumulated function is:

G(p)+(s) = det
(

(p− 1)Is̄ +K+
)
, ∀s, p ≥ 2, (2.14)

6The link between Σ and K is a bit more complicated if K has some eigenvalues equal to 1, see Online Appendix
2.4.
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where Is̄ is the diagonal matrix with diagonal elements equal to 1, if i ∈ s̄, and equal to 0,

otherwise, and G(1)+(s) = G+(s).

Proof. This is easily shown by induction using Lemma 1. For instance, for p = 2, we have:

G(2)+(s) =
∑
s∗⊃s

G+(s∗)

=
∑
s∗⊃s

detK+
s∗

= det[Is̄ +K+],

by the extension of Lemma 1.

Similar results can be obtained for the left cumulated functions G(p)− with another matrix

K− = Id − K+ (see Appendix B.1). These functions measure recursively the integrated “left

and right tails” of the set distribution.

Example 5 (Diagonal LDPP). The matrix Σ is diagonal if and only if the matrix K+ is diagonal.

In this case, we have:

p(s) =
∏
i∈s

σii/

n∏
i=1

(1 + σii) =
∏
i∈s

σii
1 + σii

∏
i∈s̄

[
1− σii

1 + σii

]
,

G+(s) =
∏
i∈s

σii/
∏
i∈s

(1 + σii) =
∏
i∈s

σii
1 + σii

.

One important property of LDPP as a model for set-valued variables is that it implies non-

positive correlation between the component binary variables. Indeed, we have:

Cov[X1, X2] = E[X1X2]− E[X1]E[X2]

= G+({1, 2})−G+({1})G+({2}) = −(K+
12)2 ≤ 0. (2.15)

This is the so-called repulsive or diversity feature of the LDPP. For instance, if the indices 1 and

2 denote two firms and the binary variable measures whether or not they are in financial distress,

then (2.15) can arise if the two firms are the main ones in a given industrial sector. Indeed, firm

1 can benefit from the bad results of firm 2, and in particular reinforce its monopolistic power.
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3 Stochastic dominance and basket derivatives

3.1 Stochastic dominance

The standard notions of stochastic dominance can be extended to random sets and then indirectly

to individual multivariate binary variables. In the standard framework of univariate, continuously

valued risks, the stochastic dominance at order 1 is equivalently defined by comparing either the

cumulative distribution function, or the survival function. In the set-valued framework, they

no longer provide the same preference ordering. For expository purpose, we focus below on the

notions based on the right cumulated functions G(p)+ (see Appendix B.2 for the notion of left

dominances based on left cumulated functions G(p)−).

Definition 3. Let us consider two random sets S and S∗.

i) S∗ is riskier than (i.e. right dominates) S at order 1, denoted S∗&1S, if and only if G∗+(s) ≥

G+(s),∀s.

ii) S∗ is riskier than (i.e. right dominates) S at order 2, denoted S∗&2S, if and only if

G∗(2)+(s) ≥ G(2)+(s),∀s.

These definitions can be equivalently defined by taking the complementary sets, since if S∗

right dominates S at order 1 (resp. 2), then S̄ right dominates S̄∗. Thus, in the following, we

are only interested in the case where for each index i = 1, ..., n, i ∈ S means that individual i is

a high risk.

Let us now consider a S−increasing function V −(s) =
∑
s∗⊂s v(s∗). By the summation by

part (2.4) and eq. (2.7), we have:

E[V −(S)] =
∑
s

v(s)G+(s).

Therefore, if S∗&1S, we have: E[V −(S∗)] ≥ E[V −(S)].

We deduce easily the following Proposition.

Proposition 6. S∗ is riskier than (i.e. right dominates) S at order 1, if and only if E[V −(S∗)] ≥

E[V −(S)] for any S−increasing function V −.

A similar result can be derived for the stochastic dominance at order 2.

Proposition 7. S∗ is riskier than S at order 2, if and only if E[V (2)−(S∗)] ≥ E[V (2)−(S)] for any

S−increasing convex function V (2)−.

12



Proof. The result is obtained by applying twice the summation by part. Indeed we have:

∑
s

v(s)G(2)+(s) =
∑
s

V −(s)G+(s)

=
∑
s

V (2)−(s)p(s)

= E[V (2)−(S)].

The result follows.

Since the set of S−increasing functions includes the set of S−increasing convex functions, we

deduce the following corollary:

Corollary 1. The right stochastic dominance at order 1 implies the right stochastic dominance at

order 2.

As already mentioned, it is possible to define left stochastic dominance. The right and left

stochastic dominances define different partial orders (see Appendix B.2.2).

It is also possible to characterize a stochastic dominance by conditions on “virtual” joint

distributions of the pair (S, S∗). Let us consider a pair of random sets S, S∗ on P
(
{1, ..., n}

)
.

Then the joint distribution of (S, S∗) can be decomposed into the product of its marginal and

conditional distributions as:

p(s, s∗) = p(s)p(s∗|s), ∀s, s∗.

Then we get a sufficient condition in terms of the conditional distribution of S∗ given S to get

S∗ stochastically dominating S:

Corollary 2. Let us assume:

E[V −(S∗)|S] ≥ V −(S), for any S-increasing function V −, (3.1)

then S∗ dominates S at order 1.

Proof. This is a direct consequence of the iterated expectation theorem. We have:

E[V −(S∗)] = E
[
E[V −(S∗)|S]

]
≥ E

[
V −(S)

]
,

and by Assumption (3.1), the result follows.
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Similar results can be derived for the stochastic dominance at order 2, replacing the assump-

tion (3.1) in Corollary 2 by the assumption at order 2:

E[V (2)−(S∗)|S] ≥ V (2)−(S), for any S-increasing convex function V (2)−, (3.2)

which replaces the standard convexity (Jensen-type) inequality. The proof is the same as the

proof of Corollary 2.

The condition (3.1) in Corollary 2 means that the stochastic set S∗ with conditional distribu-

tion p(s∗|s) stochastically dominates at order 1 the constant subset S = s, for any s. Corollary

2 explains how to increase the risk by introducing a noisy observation S∗ of set S.

Equivalent conditions can be written in terms of joint distribution of (S, S∗). More precisely,

Proposition 8 (see Strassen (1965), Th. 11, Kamae et al. (1977), Th. 1, Molchanov (2017), Th.

1.5.28(2)). Let us denote by pS∗ and pS the probability mass functions (pmf’s) of S∗ and S,

respectively, then S∗ dominates S at order 1, if and only if there exists a pair of random sets

(S∗, S), such that the support of their joint distribution is in {(s, s∗) : s∗ ⊃ s} only, with the two

marginal pmf’s equal to pS∗ and pS, respectively.

Proposition 8 means that there exists a virtual probability space, on which S∗ contains S

almost surely, or equivalently S∗ = S∪U , where U is drawn in S̄, and is interpreted as a “positive

set noise”.

Then the condition of stochastic dominance at order 2 can also be characterized in terms of

virtual joint distribution.

Proposition 9. S∗ dominates S at order 2, if and only if there exists a virtual probability space

for (S∗, S) such that the condition (3.2) is satisfied.

This means that the additional noise U can be chosen such that:

E[V (2)−(S ∪ U)|S = s] ≥ V (2)−(s), for any s, V (2)−.

This corresponds to the mean-preserving spread in Rothschild and Stiglitz (1970) in a case

where the expectation of S∗ has no meaning7, or to the Markov kernel property in Mosler and

Scarsini (1991).

Let us recall that for real-valued absolutely continuous distributions, the stochastic dominance

can be defined equivalently through either the cdf or the survival function. This is due to the

7The literature on random sets has introduced a notion of expectation of S, called Aumann or selection
expectation [see Aumann (1965), Molchanov and Molinari (2018), Section 3]. This definition is not useful for
our applications. Note also that for any subset s1 of all individuals except one, say the first one, we have:
V (2)−({1}∪ s1)−V (2)−(s1) =

∑
s∗⊂s1

V −({1}∪ s∗), which is increasing in s1. This is a condition of increasing

slope, called supermodularity in Perez (2018).
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fact that the cdf and survival functions sum up to 1. Similarly, for set-valued variables, the

stochastic dominance at orders 1 and 2 can also be defined from the left cumulated functions.

However, in the set framework, the left and right notions of stochastic dominances are no longer

equivalent, since the ordering of sets, or equivalently the ordering of multivariate binary variables,

is a partial order. As a consequence, functions G+(·), G−(·) [or equivalently the multivariate cdf

and survival functions] no longer sum up to 1. We refer to Appendix B.2 for a detailed definition

of left stochastic dominances and counterexamples of pairs such that one random set left (resp.

right) dominates the other one, but not the other way round.

We also have the following proposition, linking the stochastic dominances between the set-

valued variables and the stochastic dominances of their sizes.

Proposition 10. If the set-valued variable S∗ right dominates S at order 1, then the real-valued

variable n(S∗) stochastically dominates n(S) at order 1 in the usual sense.

This is an example of preservation of stochastic dominance under transformation [see Mosler

and Scarsini (1991), Section 5].

Proof. Let us consider a function v which depends on set s through the size n(s) only:

v(s) = g[n(s)],∀s ⊂ {1, 2, .., n}. (3.3)

Then:

V −(s∗) =
∑
s⊂s∗

v(s) =
n(s∗)∑
k=0

(
n

k

)
g(k) :=

n(s∗)∑
k=0

w(k) := W−(n(s∗)), (3.4)

where w(k) =
(
n
k

)
g(k) ≥ 0,∀k.

If S∗ right dominates S at order 1, then for any function v satisfying condition (3.3), we have

E[V −(S∗)] ≥ E[V −(S)]. By equation (3.4), this implies that E[W−(n(S∗))] ≥ E[W−(n(S))], for

any function W− that is increasing on {1, ..., n}. In other words, n(S∗) stochastically dominates

n(S) at order 1 in the usual sense.

This result can be extended to the stochastic dominance at order 2.

3.2 Stochastic dominance in the LDPP framework

Let us consider two random sets S, S∗ in the LDPP framework corresponding to kernels K+ and

K∗+, respectively. We deduce from Section 2.4 the characterization of stochastic dominance in

the LDPP framework.

Proposition 11. In the LDPP framework:
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i) S∗ (right) dominates S at order 1, if and only if, det(K∗+s ) ≥ det(K+
s ), ∀s.

ii) S∗ (right) dominates S at order 2, if and only if, det[Is̄ +K∗+] ≥ det[Is̄ +K+], ∀s.

The inequalities in Proposition 11 are defining associated ordering on symmetric positive

semi-definite matrices.

Definition 4. Let us consider two (n, n) symmetric positive semi-definite matrices Σ and Σ∗.

i) Σ∗ determinantal dominates Σ at order 1, denoted Σ∗ �D1 Σ, if and only if,

det(Σ∗s) ≥ det(Σs), ∀s.

ii) Σ∗ determinantal dominates Σ at order 2, denoted Σ∗ �D2 Σ, if and only if,

det[Is̄ + Σ∗] ≥ det[Is̄ + Σ], ∀s.

Let us denote � the usual (partial) ordering on symmetric matrices, i.e. the Loewner order-

ing.

Proposition 12. i) For symmetric positive semi-definite matrices, the ordering� implies�D1

and �D2.

ii) For symmetric positive semi-definite matrices whose eigenvalues are all of absolute values

smaller than 1, the order �D1 implies the order �D2.

Proof. i) Σ∗ � Σ, if and only if u′Σ∗u ≥ u′Σu, ∀u ∈ Rn. By considering us, the vector with

components of u for the indices in s, and zero components, otherwise, we get also u′sΣ∗us ≥

u′sΣus, ∀us, or equivalently Σ∗s � Σs. By the min-max theorem for symmetric matrices, this

implies λ∗k ≥ λk, k = 1, ..., n(s), where the λk (resp. λ∗k) are the ranked eigenvalues of Σs
(resp.Σ∗s). In particular this implies: det Σ∗s ≥ det Σs.

Since Σ∗ � Σ is equivalent to Is̄ + Σ∗ � Is̄ + Σ, the second implication is also obtained.

ii) This is a direct consequence of Corollary 1.

We can also relate the set-valued stochastic dominance at order 1 of the LDPP with the usual

stochastic dominance of the size of the LDPP (see Proposition 10). We first recall the following

proposition concerning the size.

Proposition 13 (The law of the size of a LDPP, see Hough et al. (2006) and online Appendix 4).

If S follows a LDPP model with kernel K+, and λ+
1 ≥ · · · ≥ λ+

n are the eigenvalues of K+, then

the size n(S) has the same distribution as the sum of n independent Bernoulli distributions with

parameters λ+
i , i = 1, ..., n.
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For two Bernoulli distributions with parameters p1 and p2, B(1, p1) stochastically dominates

at order 1 (in the usual stochastic dominance sense) B(1, p2), if and only if p1 ≥ p2. Moreover, the

convolution of (real-)valued distributions preserves the stochastic dominance, in the sense that

if X1 (resp. Y1) stochastically dominate X2 (resp. Y2), with X1 (resp. X2) being independent

of Y1 (resp. Y2), then X1 + Y1 stochastically dominates X2 + Y2 at order 1. As a consequence,

we have the following corollary, which is a direct consequence of Propositions 10 and 13:

Corollary 3. If S∗ and S both follow LDPP, with n(S∗) and n(S) following the convolution of

Bernoulli variables with parameters λ∗+1 ≥ · · ·λ∗+n and λ+
1 ≥ · · ·λ+

n , respectively, then if

λ∗+j ≥ λ
+
j , ∀j = 1, ..., n, (3.5)

that is if the kernels of the two LDPP are such that K∗+ is spectrally larger than K+, or equiv-

alently if Σ∗ is spectrally larger than Σ, then n(S∗) stochastically dominates n(S) at order 1 in

the usual sense.

Thus, in the LDPP framework both the right stochastic dominance and the spectral order

between two LDPP’s imply the usual stochastic dominance between the sizes of the LDPP (by

Proposition 10 and Corollary 3, respectively). The first compares the principal minors of the

two symmetric positive definite matrices, whereas the latter compares the eigenvalues of the two

matrices.

The converse of Corollary 3 is not true. Indeed, the stochastic dominance of the convolution of

B(1, λ+
j ), j = 1, ..., n over the convolution of B(1, λ∗+j ), j = 1, ..., n does not imply the inequalities

(3.5).

The LDPP model and the associated stochastic dominances have interesting interpretations

when the binary variables are close to independence. Let us write:

Σ = (diagσ)1/2(Id+ C)(diagσ)1/2,

where σ = (σ11, ..., σnn) is the vector of diagonal elements of Σ, and matrix C has only zeros on

the diagonal. Then we can perform a Taylor’s expansion to approximate the set distribution.

Proposition 14. Close to independence, we have:

p(s,Σ) ≈ exp
[
c+

∑
i∈s

αi +
∑
i∈s

∑
j∈s,j<i

βi,j

]
,

with αi = log σii, βi,j = −c2i,j and c is a constant defined by the unit mass restriction.
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Proof. We have:

log p(s) = constant +
[∑
i∈s

log σii
]

+ log det(Ids + Cs)

= constant +
[∑
i∈s

log σii
]
− 1

2Tr(C
2
s ) + o(C2)

= constant +
[∑
i∈s

log σii
]
−
∑
i∈s

∑
j∈s,j<i

c2i,j + o(C2).

The result follows.

Close to independence, the LDPP model is equivalent to a log-linear probability model with

marginal effect αi and (negative) pairwise interaction effects. Then the stochastic dominance

can be written in terms of these effects.

3.3 Set derivatives

The (Xli, l = 1, ..., L, i = 1, ..., n) can be interpreted as a portfolio of individual risks, usually

called a basket. This basket, i.e. the associated random set, can be analyzed under the physical

(historical) probability characterized by p(s), G+(s), G−(s), G(2)+(s), G(2)−(s), used in insurance

for fixing the premium, or under a risk-neutral probability characterized by q(s), Q+(s), Q−(s),

Q(2)+(s), Q(2)−(s), say, used in finance for pricing8. As usual, we can define different set (i.e.

basket) derivatives. They differ by the basket design, since the basket can include either a small

number of individuals (corporates), or a large number in an homogeneous segment (industrial

sector, rating), and by the selected risks, such as solvency and/or liquidity risks). They also

differ by the form of the payoff written on the associated random set.

3.3.1 Equivalent conditions for stochastic dominances

Let us first recall the “canonical derivatives” introduced on the derivative markets for real-valued

risk variables. For two such variables Y1 and Y2 , the usual first-order stochastic dominance of

Y1 over Y2 is equivalent to E[φ(Y1)] ≥ E[φ(Y2)] for any nondecreasing function φ [see Shaked and

Shanthikumar (2007)]. But the set of all nondecreasing functions is the convex cone generated

by the nondecreasing step functions of the form φ(y) = 1y>a, a varying. Thus we get a simpler,

and equivalent characterization of the stochastic dominance at order 1:

E[1Y1≥a] = P[Y1 ≥ a] ≥ P[Y2 ≥ a] = E[1Y2≥a], ∀a ∈ R. (3.6)

8We assume later on a zero risk-free rate. The results are easily extended to a nonzero risk-free rate.
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This property motivates the introduction of tranches, that are digital derivatives with payoffs

1Y1≥a. Similarly, the usual stochastic dominance at order 2 of Y1 over Y2 is equivalent to

E[(Y1 − a)+] ≥ E[(Y2 − a)+], ∀a ∈ R, (3.7)

which motivates the introduction of European calls (or stop-loss insurance policies).

Let us now discuss tranches and European calls in the set-valued framework. We first de-

rive the following proposition, which provides the analogues of the equivalences (3.6) and (3.7),

respectively.

Proposition 15. i) The set of S−increasing functions V − is the convex cone generated by the

digit functions of the form 1s0⊂s, with s0 varying.

ii) The set of S−increasing convex functions V (2)− is the convex cone generated by functions

of the form

N(s0, s) := Card({s∗ : s0 ⊂ s∗ ⊂ s}) = 2n(s)−n(s0)
1s0⊂s, (3.8)

with s0 varying.

Proof. By Definition 1, we get:

V −(s) =
∑
s0⊂s

v(s0) =
∑
s0

v(s0)1s0⊂s,

V (2)−(s) =
∑
s∗⊂s

V −(s∗) =
∑
s∗⊂s

∑
s0⊂s∗

v(s0) =
∑
s0

v(s0)
[∑
s∗

1s0⊂s∗⊂s

]
=
∑
s0

[
v(s0)2n(s)−n(s0)

1s0⊂s

]
.

Thus the functions 1s0⊂s, s0 varying, generate the set of S−increasing functions, and the func-

tions 2n(s)−n(s0)
1s0⊂s, s0 varying, generate the set of S−increasing convex functions.

Thus, S∗ right dominates S at order 1, if and only if:

E[1s0⊂S∗ ] ≥ E[1s0⊂S ], ∀s0. (3.9)

This is the analogue of (3.6). Similarly, S∗ right dominates S at order 2, if and only if

E[2n(S∗)−n(s0)
1s0⊂S∗ ] ≥ E[2n(S)−n(s0)

1s0⊂S ] ∀s0,

which is the analogue of (3.7).
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These equivalent conditions suggest the following definitions of tranches and European call

options for set-valued risks.

3.3.2 Tranches

Definition 5. Let us fix two ordered sets s1 ⊂ s2. The payoff of the tranche (s1, s2) is 1 $, if s is

between (inclusively) s1 and s2, and 0 $, otherwise.

The historical expected payoff of this tranche is: G+(s1)−G+(s2)+p(s2). Its price assuming

a zero riskfree rate is: Q+(s1)−Q+(s2) + q(s2).

Let us consider L = 1 and the semi-upper tranche, that is a tranche with s2 = {1, ..., n}. For

instance, if s1 = {1}, the tranche is paying 1$, if X1 = 1, and 0, otherwise. When the high risk

is the speculative grade and the low risk the investment grade, this tranche is a type of Credit

Default Swap (CDS) written on firm 1. If s1 = {1, 2}, we get a CDS written on two firms and

receive 1$ if both 1 and 2 have speculative grades. Moreover, by (3.9), we deduce immediately

the following corollary:

Corollary 4. S∗ dominates S at order 1 if and only if the expected payoffs of the tranche (s1, s2 =

{1, ..., n}) is higher for S∗ than for S, for any set s1.

When s2 = {1, ..., n}, we have Q+(s2) = q(s2), and the price of such a semi-upper tranche is

simply Q+(s1). In particular, if S follows a LDPP under the risk-neutral measure, then we have

the risk-neutral analogue of inequality (2.15):

Q+(1, 2)−Q+({1})Q+({2}) = −(KQ+
12 )2 ≤ 0,

where KQ+
12 is the (1, 2) element of the risk-neutral kernel KQ+. In other words, in the LDPP

family, the price of the pairwise CDS with s1 = {1, 2} is not larger than the product of the two

CDS prices with s1 = {1} and s1 = {2}, respectively.

Remark 1. In the case where we have time series observations of sets (St), and, if tranche

derivatives are issued at time t, maturing at time t+ 1, say, then a tranche with s1 = St can be

regarded as an “at-the-money” tranche. It pays 1 $ if and only if St+1 ⊃ St.

Remark 2. If L = 2, it is also possible to define tranches defined on two types of risks, as

solvency risk and liquidity risk, say. Then a given corporate i can be in four different states

Si = (Si(1), Si(2)). For instance, Si = ({1}, {1}), if it has both high solvency and liquidity risks.

In such a framework, a tranche can concern both risks, i.e. the binary variable Xi = X1,iX2,i

and be written with one firm or two firms, for instance.9

9Since Xi,1Xi,2 = min(Xi,1, Xi,2), we can consider that this is a derivative written on the minimum of two
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3.3.3 The European call option of the first kind

The following definition is motivated by Proposition 15.

Definition 6. The European call option of the first kind is the derivative with payoff 2n(S)−n(s0)
1s0⊂S .

In particular, the payoff is zero, if s0 is not a subset of S.

This payoff function is the direct analogue of the stop-loss function for real-valued risks.

Indeed, for a one-dimensional continuous risk U , the payoff of a European option with strike k

is (U − k)+ = max(U − k, 0). In the standard case the payoff is directional, measures a distance

between U and k for U > k and its price is obtained by considering the (risk-neutral) survival

function at order 2:

Q(2)+(k) =
∞∫
k

Q+(u)du = EQ(U − k)+. (3.10)

In the set framework, the notions of difference and of positive part (·)+ do not exist. However,

they have analogues. If s ⊃ s0, the complement of s0 in s is usually denoted s − s0. However,

even if S−s0 is now well defined (when s0 ⊂ S), the expectation of a random set has no meaning.

In order to allow for expectation, we have to consider scalar transformation of S−s0. The payoff

2n(S)−n(s0)
1s0⊂S can be equivalently written as 2n(S−s0)

1s0⊂S , which is indeed a function of

S − s0.

This option has the following price formula, which is the analogue of (3.10):

Proposition 16. The expected payoff (resp. price) of the European call with S−strike s0 is

G(2)+(s0) [resp. Q(2)+(s0)].

Proof. By using the same argument as in the proof of Proposition 15, we have:

G(2)+(s0) =
∑
s

[
p(s)

∑
s∗

1s⊃s∗⊃s0

]
=
∑
s

[
p(s)N(s0, s)

]
= E[N(s0, S)],

where N(s0, S) = 2n(s)−n(s0)
1s0⊂s is the payoff of the European call. The result follows for the

expected payoff. The proof is similar for the price under the risk-neutral probability.

We deduce immediately the following corollary:

risks [see Molchanov and Schmutz (2010) for such derivatives written on two quantitative risks]. In our framework
of 0− 1 variables, by considering all min-max options written on the Xi’s, we generate all basket derivatives [see
Molchanov and Schmutz (2014) for a similar result for quantitative risks].
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Corollary 5. S∗ dominates S at order 2 if and only if the expected payoffs of the European call

are larger for S∗ than for S, for any S−strike s0.

3.3.4 Alternative definitions of European option

The previous definition of European calls is an analogue of the standard European calls for real-

valued risks, from the point of view of stochastic dominance. However, it has some downsides.

The first downside of the European call of the first kind is that the power function of base

2 could be difficult to understand for market participants. Indeed, this implies that the payoff

function can take large values, if n(S) is large and s0 ⊂ S. This issue can be easily addressed

by considering other scale transformations of S − s0, when s0 ⊂ S. A first possible candidate

is the size, which leads to the payoff n(S − s0)1s0⊂S . A second one is to replace 2n(S−s0) by

another exponential transform exp[un(S−s0)], where u is chosen to get a more reasonable value

of the payoff. In particular, if u = ln 2, we recover the initial definition. The motivation of using

exponential function is that, in the real-valued framework, it is known that such exponential

European options are equivalent to, and easier to compute than the standard call options [see

the transform inversion formula of Duffie et al. (2000), Proposition 2].

A second issue is that the payoff is non zero only when s0 ⊂ S. Thus the probability that

the payment is triggered is very small, especially when n(s0) is large. An alternative condition

of triggering a payment is S ∩ s̄0 6= ∅. This new condition has two motivations. First, because

s0 ⊂ S implies S ∩ s̄0 6= ∅, the new trigger condition is weaker, and corresponds to a more

appealing insurance or financial interpretation. Suppose that the n binary risks can be ranked in

increasing importance and assume s0 corresponds to the set of risks of lower importance, while

s̄0 corresponds to those of higher importance. Then the condition s0 ⊂ S means that payment

is triggered when all the low importance events, as well as one of the high importance events

is realized, whereas S ∩ s̄0 6= ∅ means that payment is triggered so long as at least one high

importance events is realized.

Moreover, when S does not necessarily include s0, the analogue of S − s0 is S ∩ s̄0, which

motivates the trigger condition S∩ s̄0 6= ∅. In the following, we will denote the “hitting set”S∩ s̄0

by (S − s0)+, since it is equal to zero if and only if the new trigger condition is not satisfied.

According to the above discussions, several candidate payoff functions can be considered:

• n(S ∩ s̄0) = n
[
(S − s0)+];

• exp[un(S ∩ s̄0)]− 1;

• exp[un(S ∩ s̄0)]1S∩s̄0 6=∅.
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Among these three payoff designs, the second and third payoffs are quite similar, while the first

function can be obtained as a limiting case of the second one. Indeed, when u is small, we get:

exp[un(S ∩ s̄0)]− 1 ≈ un
[
(S − s0)+],

and recover the first payoff design. As a consequence, we follow below the second approach.

Definition 7. The European call option of the second kind with strike s0 and weight u is the

basket derivative with payoff exp[un(S ∩ s̄0)]− 1 =
∏
i∈S∩s̄0

exp(uXi)− 1.

These payoffs depend on the hitting set: (S−s0)+ = S∩s̄0, represented by the binary variables

Xi, i ∈ S ∩ s̄0. These payoffs only depend on the n(s̄0)-dimensional marginal distribution of the

random set on s̄0. This marginalization is especially simple in the LDPP framework, since the

hitting set follows also a LDPP with the kernel K+
s̄0

.

By limiting the payoffs to another family indexed by s0, or equivalently to the closed positive

cone generated by these functions, we implicitly exclude “pathological” functions not likely repre-

senting the preferences of the investors and that can lead to too restrictive stochastic dominances

[see e.g. the notions of integral stochastic ordering in Marshall (1991), Müller (1997), Denuit

and Mesfioui (2010) and of almost stochastic dominance in Tsetlin and Winkler (2018)].

3.3.5 Expected shortfall

We have also the decomposition of the expected payoff (resp. the price) of the option in terms

of the expected occurrence (resp. the price of the semi-upper tranche on digital option) and the

expected shortfall (resp. the cost of high risk). Indeed,

• for the European option of the first kind, we have:

G(2)+(s0) = G+(s0)ES1(s0),

where ES1(s0) = E[N(s0, S)|s0 ⊂ S] is an expected shortfall.

• for the European option of the second kind, we have:

E
{

exp[un(S ∩ s̄0)]− 1
}

= P[S * s0]ES2(s0),

where

ES2(s0) :=
E
{

exp[un(S ∩ s̄0)]− 1
}

P[S * s0] = E
{

exp[un(S ∩ s̄0)]− 1 | S * s0
}
.
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is the expected shortfall.

Remark 3. In order to differentiate the n binary variables, it is also possible to extend the above

payoff function by considering
∏
i∈s∩s̄0

exp(uiXi) − 1, where (u1, u2, ..., un) is a vector of fixed

parameters. Its expected payoff is, up to the constant −1, the marginal Laplace transform of

Xi, i ∈ s̄0 (see online Appendix 2 for the expression of the Laplace transform).

3.3.6 The order implied by the European call option of the second kind

Proposition 17. S∗ dominates S at order 1 if and only if for a sufficiently large weight u, the

expected payoffs of the European call of the second kind for S∗ are non smaller than for S, for

any S−strike s0.

Proof. The expected payoff is the Laplace transform of the marginalized distribution of (S −

s0)+. Thus by (eq. a.22) in Online Appendix 2 on Laplace transform, for large, positive u, the

expected payoff of the European option for for S∗ (resp. S) has the dominant term exp
{
u[n−

n(s0)]
}
P[X∗i = 1,∀i ∈ s̄0] (resp. exp

{
u[n− n(s0)]

}
P[X = 1,∀i ∈ s̄0]). Thus:

P[X∗i = 1,∀i ∈ s̄0] ≥ P[X = 1,∀i ∈ s̄0],

or equivalently G∗+(s̄0) ≥ G+(s̄0). Thus by varying s0, we deduce that S∗ dominates S at order

1.

Conversely, if S∗ dominates S at order 1, then, when we compare the expansion of the

expected payoff for options written on S∗ and S using (eq. a.22), the coefficient in front of

each term for S∗ dominates the corresponding coefficient for S. Thus the expected payoff of

the European option for S∗ is non smaller than the expected payoff of the European option for

S∗.

This result is to be compared with its analogue for the European options of the first kind,

which induces an order equivalent to the left stochastic dominance at order 2 (see Corollary 5).

3.3.7 Put-call parity

For real-valued risks, because of the put-call parity, it is equivalent to know the prices of all the

call options or the prices of all the put options. In our framework, instead of using the hitting

set (S − s0)+ = S ∩ s̄0, put options can be defined through the “missing set” (s0−S)+ = s0 ∩ S̄.

Let us for instance consider put and call options based on the cardinality of the sets (S−s0)+ =

S∩s̄0 and (s0−S)+ = s0∩S̄. Since the set (s0−S)+∪(S−s0)+ has no simple expression, we cannot

expect a put-call parity with put and call with a same S−strike s0. Nevertheless, analogues of
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put-call parity relation can be obtained by combining put and call with complementary S−strikes.

For instance, we have the identity:

(s0 − S)+ ∪ (S − s̄0)+ = s0,⇒ n[(s0 − S)+] + n[(S − s̄0)+] = n(s0),

hence:

E
{
n[(s0 − S)+]

}
+ E

{
n[(S − s̄0)+]

}
= n(s0). (3.11)

This equality can be understood as a put-call parity.

Similarly, we have another kind of put-call parity:

(S − s0)+ ∪ (S − s̄0)+ = S,⇒ n[(S − s0)+] + n[(S − s̄0)+] = n(S), (3.12)

which links the distribution of the size n(S) to the price of two call options with complementary

S−strikes through:

E
{
n[(S − s0)+]

}
+ E

{
n[(S − s̄0)+]

}
= E[n(S)]. (3.13)

3.4 European options in the LDPP framework

In this section we consider the price of the two kinds of European options introduced in Sec-

tions 3.3.3 and 3.3.4 under the LDPP assumption. Specifically, it is shown that both options

allow for closed form expressions, thanks to the closure of the LDPP under marginalization and

conditioning, respectively.

i). European options of the first kind Let us represent, for any random set S ⊂ {1, ..., n}

such that S ⊃ s0, the subset of binary variables Xi, i ∈ S ∩ s̄0 by another set-valued variable

T = S−s0. Then the expected shortfall component E[N(S, s0)|S ⊃ s0] = E[
∏
i∈S∩s̄0

2Xi |S ⊃ s0]

is the probability generating function of variable T , conditional on S ⊃ s0. This conditional

distribution is still LDPP in the LDPP framework:

Proposition 18. Conditional distribution of a LDPP [see Affandi et al. (2012), eq. (6)].

If S follows a LDPP model with kernel K+, then conditional on S ⊃ s0, the variable S − s0

follows another LDPP model on the set s̄0 = {1, ..., n} − s0, with kernel K+(s0) given by:

K+(s0) =
[
Id− (Σ + Is̄0)−1

]
s̄0
, (3.14)

where Is̄0 is the (n, n) diagonal matrix with ones on the entries indexed by s̄0 and zero otherwise.10

10The (n, n) diagonal matrix Is̄0 differs from the identity matrix Ids̄0 . The first one has dimension (n, n), the
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Thus it suffices to compute the pgf of a LDPP. This (closed form) expression is given in eq.

(eq. a.27) in online Appendix 2 and we get:

E[N(S, s0)|S ⊃ s0] = det
[
Ids̄0 +K+(s0)

]
.

Remark 4. The expression (3.14) of the conditioning kernel is greatly simplified if the individuals

are ordered such that the set s0 includes the first n(s0) individuals and s̄0 the last ones. If the

associated block decomposition of K+ is K+ =

K11 K12

K21 K22

, then K+(s0) = K22−K21K
−1
11 K12.

ii). European options of the second kind Because the expected payoff of these options is the

marginal Laplace transform of Xi, i ∈ s̄0, we rely on the property that, if (X1, ..., Xn) follows a

LDPP with K+, then Xi, i ∈ s̄0 also follows a LDPP with the kernel K+
s̄0

. Thus by (eq. a.29),

we get:

E[exp[un(S ∩ s̄0)]− 1] = det
[
Id+K+

s̄0
(eu − 1)]

]
− 1.

As a summary, the main closed form prediction (resp. pricing) formula in the LDPP frame-

work are gathered in Table 2 below. They are provided for prediction with kernel K. Their

analogues for pricing are obtained by replacing K by KQ. We also provide the formulas when

the risks 1, ..., n are weighted by u := (u1, u2, ..., un)′. These weights have a natural interpretation

in the case of default risk, where these weights are the individual expected loss-given-default, or

in the case of cyber risk, where the weight ui is an expected loss given a cyber attack on the firm

(or computer system) i.

Name Payoff Prediction

Tranche 1s1⊂S⊂s2 detKs1 − detKs2 + det Σs2
det(Id+Σ)

Eur. option 1st kind 2n(S)−n(s0)
1s0⊂S detKs0 det

[
Ids̄0 +K+(s0)

]
Size of hitting set n(S ∩ s̄0) Tr(Ks̄0)

Eur. option 2nd kind exp
[
un(S ∩ s̄0)

]
− 1 det

[
Id+K+

s̄0
(eu − 1)]

]
− 1

(Weighted) exponential exp(−u(S)) det
[
Id+K+(eu − 1)]

]
Table 2: Prediction formulas for the main derivatives in the LDPP framework

4 Exchangeability

Let us first consider the case L = 1 for expository purpose. It is usual to consider homogeneous

groups of individuals (contracts). In mathematical terms, a group of individuals is homogeneous,

second one dimension (n(s̄0), n(s̄0)). They are related by: Ids̄0 =
[

Is̄0

]
s̄0

.
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if and only if the distribution of (Xi, i = 1, ..., n), or equivalently of S, is exchangeable, that is

invariant by permutation of the individual indices. Then the analysis can be extended to clusters

(or blocks) of homogeneous groups.

4.1 The i.i.d. cross-sectional model

The simplest example of exchangeability is the i.i.d. cross-sectional model, where the binary

variables Xi are independent with the same Bernoulli distribution B(1, π). Then we have:

p(s) = πn(s)(1− π)n−n(s),

where n(s) is the number of elements in s, i.e. the size of s. This distribution depends on set s

through the size n(s), which is a function of s invariant by permutation.

The stochastic size n(S) follows the binomial distribution distribution B(n, π). In this i.i.d.

cross-sectional model, it is possible to replace the analysis of s by the analysis of its size, or

equivalently the partial order on s by the total order on n(s).

4.2 De Finetti’s representation theorem

The exchangeable models are closely related to the i.i.d. cross-sectional models.

Proposition 19. de Finetti’s Representation Theorem [see Heath and Sudderth (1976)]

For an infinite space {1, 2, ...}, the distribution of S is exchangeable if and only if S follows

an i.i.d. cross-sectional model conditional on a stochastic intensity π.

When the state space {1, ..., n} is finite, and the Xi’s are cross-sectionally i.i.d. with stochastic

intensity, the elementary probabilities can be written as:

pn(s) =
1∫

0

πn(s)(1− π)n−n(s)g(π)dπ, (4.1)

where g(·) denotes the density of the stochastic intensity.

As noted above the size is invariant by permutation and it is easily seen from the formula of the

elementary probabilities that the distribution of S given n(S) = n0 is uniform with elementary

probabilities 1/
(
n
n0

)
. We deduce the following corollary:

Corollary 6. Under stochastic intensity, the distribution of S is characterized by the distribution

of the size:

P (∼n) = P[n(S) = ∼n], ∼
n = 0, ..., n.
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Then p(s) = P (n(s))/
(
n
n(s)
)
,∀s.

In the stochastic intensity model (4.1), we have:

Cov(Xi, Xj) = G+({i, j})−G+({i})G+({j}) = E[π2]− (E[π])2 = Var(π) ≥ 0.

Thus we get a “positive” dependence between the binary variables Xi and Xj for any pair i, j.

For exchangeable model, this is the only possible scenario, when n =∞, by de Finetti’s theorem.

However, negative dependence can exist in finite space with exchangeable model, as seen below

with the LDPP model.

4.3 Exchangeability in the LDPP framework (L = 1)

In the LDPP framework and finite state space {1, ..., n}, the exchangeability condition can be

written in terms of the kernel matrix.

Proposition 20. The LDPP model is exchangeable if and only if K+ = α+Id + β+J , where J

is the (n, n) matrix whose elements are all equal to 1, and the parameters α and β satisfy the

constraint α+ + nβ+ ≤ 1.

The exchangeable matrix has n − 1 eigenvalues equal to α+ and one eigenvalue equal to

α+ + nβ+ ≤ 1. It is positive semi-definite if α+ ≥ 0 and α+ + nβ+ ≥ 0.

Corollary 7. In the exchangeable LDPP framework, the distribution of the size is the distribution

of the sum of two independent variables following a binomial distribution B(n − 1, α+) and a

Bernoulli distribution B(1, α+ + nβ+), respectively.

Proof. This is a direct consequence of Propositions 13 and 20.

4.4 Block models

Whereas the LDPP framework implies repulsive features, the stochastic intensity model implies

positive dependence. These two features can be managed together for more flexibility in block

models.

Let us consider the case of two blocks k = 1, 2, and construct a law of random set such that

we get homogeneous blocks and the possibility of repulsion between blocks. This can be done by

considering latent binary variables. For L = 1, we get:

Xi = ZiY1i + (1− Zi)Y2i, i = 1, ..., n, (4.2)

where
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• Zi = 1, if i belongs to block 1, and Zi = 0, otherwise,

• Yk,i = 1, if i is high risk conditional on belonging to block k, and Yk,i = 0, otherwise, for

k = 1, 2.

Definition 8. The LDPP with two homogeneous blocks is the model (4.2), in which:

i) Z = (Z1, ..., Zn)′, Yk = (Yk,1, ..., Yk,n)′, k = 1, 2 are independent.

ii) Z follows a LDPP with kernel K+, (Yk,1, ..., Yk,n) follows a stochastic intensity model with

stochastic intensity parameter, with distribution gk, k = 1, 2 [see(4.1)].

In this block model, the binary variables Zi, Y1i, Y2i are latent. The LDPP Z = (Z1, ..., Zn)′

partitions {1, ..., n} into two latent blocks P1 and P2, where i ∈ P1, if Zi = 1, and i ∈ P2,

otherwise. The observed set S can be decomposed into two latent subsets S = S(1) ∪ S(2),

where S(k) = S ∩ Pk, k = 1, 2, is the set of indices i belonging to Pk such that Yk,i = 1. Note

that Pk, S(k), as well as their sizes are random.

Let us now characterize the distribution of n(S) through this latent representation.

Distribution of N1 := n(P1) and N2 := n(P2) = n − N1. Because Z follows a LDPP, N1

is simply the size of this LDPP and by Proposition 13, its distribution is the convolution of n

Bernoulli distributions. Let us denote by π1(n1) its p.m.f.

Distribution of n(S(1)), n(S(2)) given N1 = n1. Because Y1 and Y2 are independent, the joint

distribution of n(S(1)), n(S(2)) given N1 = n1 is:

P[n(S(1)) = m̃1, n(S(2)) = m̃2|N1 = n1]

= P[n(S(1)) = m̃1|N1 = n1]P[n(S(2)) = m̃2|N2 = n− n1]

=
(
n1

m̃1

)[ 1∫
0

πm̃1(1− π)n1−m̃1g1(π)dπ
]

︸ ︷︷ ︸
:=π1|1(m̃1|n1)

(
n− n1

m̃2

)[ 1∫
0

πm̃2(1− π)n−n1−m̃2g2(π)dπ
]

︸ ︷︷ ︸
:=π2|1(m̃2|n−n1)

.

Distribution of n(S) given N1 = n1. Because n(S) = n(S(1)) + n(S(2)), the conditional distri-

bution of n(S) is simply the convolution of the conditional distributions of n(S(1)) and n(S(2)):

P[n(S) = ñ|N1 = n1] =
ñ∑

m̃1=0
π1|1(m̃1|n1)π2|1(ñ− m̃1|n− n1).
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Distribution of n(S). Finally, the distribution of n(S) is obtained by integrating out the above

conditional distribution. We get:

P[n(S) = ñ] =
n∑

n1=0
π1(n1)P[n(S) = ñ|N1 = n1]

=
n∑

n1=0
π1(n1)

ñ∑
m̃1=0

π1|1(m̃1|n1)π2|1(ñ− m̃1|n− n1).

5 Summary statistics and interpretations

In the applications, the dimensions n, T , and/or L can be very large and the data as well as the

distribution of the random set difficult to visualize. The aim of this section is to discuss such

visualizations, whose use and interpretation generally depend on the topic of interest. They can

be adjacency plots of the data, distributions of size variables, set variance-covariance matrices,

or derivative prices. In order to learn about their use, we provide them for different schemes of

set distributions. These are:

1) The independence scheme, that can depend on n and on the parameter p of the Bernoulli

distribution (Section 4.1).

2) The stochastic intensity scheme, that can depend on n and on the distribution of π (Section

4.2).

3) The block models to mix the positive dependence within blocks and the repulsive effect

between blocks (Section 4.4).

4) A LDPP scheme in which the matrix Σ has a factor representation (see Appendix D).

These summaries are a first step before developing a coherent exploratory data analysis that

would help in specifying the distribution of the set [Gouriéroux and Lu (2023b)].

5.1 Adjacency plots

The adjacency plots have been initially introduced to visualize networks. They can also be used

to visualize panel data. We consider below this latter application.

5.1.1 Panel data

If L = 1, the adjacency plots can be used for representing the values of X for time t (in the

x−axis) and individual i (in the y−axis), that is to visualize the data. This allows to see the

evolution St, t = 1, ..., T of the random set. They are the analogues of the series of returns usually
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reported for quantitative risks, but require a specific analysis to account for the binary feature.

To illustrate these point patterns, we consider the i.i.d. framework of Section 5 for the St’s and

provide simulated plots corresponding to the following schemes.

• Scheme 1: The Xi,t’s are i.i.d. B(1, π) distributed.

• Scheme 2: The St are independent with a LDPP distribution with factor representation, i.e.

Σ = σ2Id+ λββ′, where β = (1, ..., n), λ = 5, σ = 0.1. In other words, λββ′’s contribution

to Σ is significantly larger than that of σ2Id. Because λββ′ is of rank 1 and for an LDPP

whose matrix is of rank 1, the size is equal to 1 almost surely. Thus, we expect that for

this specification of Σ, the size of the LDPP takes value 1 most of the time.

Figure 2 displays a plot for Scheme 1, and two plots for Scheme 2, where the individuals are not

ranked ex-ante, and ranked ex-ante by means of the factor values, respectively. We also choose

π = 0.002 such that the expected number of points is the same through the two schemes.

Figure 2: Left panel: the adjacency plot for an independent Bernoulli model. Middle panel:
LDPP with one factor representation, where the individuals are ranked by means of the factor
values. Right panel: the same LDPP, where the individuals are unranked. In other words, the
middle and right panels correspond to the same LDPP up to a reordering of individuals.

We also display, for each of the three plots above, the two marginal distributions, that are the

size of St (in the time series dimension), as well as the size of Si, i = 1, ..., n (in the cross-sectional

dimension).
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Figure 3: Size of St, t = 1, ..., T and the size of S(i), i = 1, ...., n for the three plots in Figure 3.
Left panel: the independent Bernoulli model. Middle and right panel: the LDPP model with
ranked and unranked individuals, respectively.

The middle and right panel have the same time series for n(St), which is expected, since at

each time t, the reordering of the individuals does not impact the size of n(St). Moreover, this

size takes value 1 most of the time, except on several occasions where we have n(St) = 2. In the

left panel, the path of n(St) is more erratic, with a larger range {0, ..., 4}.

In the time series dimension, these plots are not very informative on the underlying structure

of cross-sectional dependence, since the observations are made very noisy due to the assumption

of serial independence. They will be much more informative if there are both structures of

cross-sectional and serial dependence.

The middle and right panel differ, however, in terms of the plot of S(i). In the middle panel,

we see an increasing tendency, since the elements of β are increasing. This is no longer the case

in right panel, where the individuals are not ranked.

5.1.2 Joint adjacency plots

Such adjacency plots can also be used to analyze jointly two types of variables, i.e. with L = 2

and n individuals. In such a framework, the data are entirely visualized with four adjacency

plots corresponding to the binary variables Z1 = X1X2, Z2 = X1(1−X2), Z3 = (1−X1)X2 and

Z4 = (1−X1)(1−X2). Note, that these four binary variables are linked through:

Z4 = (1− Z1 − Z2)(1− Z1 − Z3).
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Figure 4: Adjacency plot of Z1 = X1X2, Z2 = X1(1−X2), Z3 = (1−X1)X2 when X1,i,t, Xi,t are
independent, Bernoulli conditional on qi,t, with qi,t i.i.d. across i and t following beta distribution.

5.2 Distribution of n(S)

As seen in Sections 3 and 4, the size n(S) is a one-dimensional statistics that provides information

on the underlying set distribution. The size is even a sufficient statistics in the exchangeable

case. The pattern of the size distribution, in particular the number and location of its modes,

can reveal the structure of positive/negative cross-sectional dependence between the underlying

binary variables.

5.2.1 Case n = 2, L = 1: a toy example

To illustrate this effect, let us consider the case n = 2, L = 1. Then the distribution of (X1, X2)

is characterized by the (2, 2) contingency table:

p00 p01

p10 p11

 . The set distribution is given by:

p(∅) = p00, p({1}) = p10 p({2}) = p01 p({1, 2}) = p11,

and the distribution of the size is:

P[n(S) = 0] = p00, P[n(S) = 1] = p10 + p01, P[n(S) = 2] = p11.

We see that the distribution of the size identifies the probabilities of extreme events p00 and p11,

but partially identifies the probabilities p10 and p01 through their sum.

The exchangeable case arises when P[X1 = 0] = P[X2 = 0], and P[X1 = 1, X2 = 0] = P[X1 =

0, X2 = 1]. These two conditions are equivalent to the single condition p10 = p01. Then the

contingency table becomes: P =

p00 p01

p01 p11

, and the distribution of the size, given by:

P[n(S) = 0] = p00, P[n(S) = 1] = 2p01, P[n(S) = 2] = p11,
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identifies the underlying contingency table. The variables X1, X2 are positively (resp. negatively)

dependent if and only if detP = p00p11 − p2
01 > 0 (resp. < 0):

Proposition 21. For n = 2 and exchangeable model:

i) The positive dependence implies larger weights in extreme sizes, that is p00 + p11 ≥ 2p01, or

equivalently p01 ≤ 1/4.

ii) Large weight in middle size, i.e. 2p01 ≥ p00 +p11, or equivalently p01 ≥ 1/4, reveals negative

dependence.

Proof. If the variables are positively dependent, we have:

2p01 − p00 − p11 ≤ 2√p00p11 − p00 − p11 = −
(√

p00 −
√
p11

)2
≤ 0. (4.3)

The result follows.

Thus, for n = 2, a large mode at 1 reveals negative dependence, whereas positive dependence

can create modes at extreme sizes.

The figures below provide the size distribution for 3 different sets of values of the (2, 2)

contingency table:

• In the first case, we take

p00 p01

p10 p11

 =

0.2 0.3

0.3 0.2

. We can check that this model has a

LDPP representation, with Σ =

 1.5
√

1.25
√

1.25 1.5

, and the distribution of the size n(S) is

the convolution of two Bernoulli distributions with parameter 0.72 and 0.28, respectively.

• In the second case, we have11

p00 p01

p10 p11

 =

0.25 0.25

0.25 0.25

. It is easily checked that this

model has a LDPP representation, with Σ =

1 0.0

0 1

, so that all the principal minors

det(σs) are equal to 1. By Proposition 13, the size n(S) follows simply the binomial

distribution B(2, 0.5).

• In the third case, we assume an exchangeable model where the stochastic intensity π follows

the beta distribution with parameters α1 = 0.36, α2 = 0.09.

11This is a limiting case, where p01 = 1/4.
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Figure 5: Three histograms of the size n(S) for n = 2. Left panel is a LDPP model with negative
dependence. Middle panel using a limiting LDPP model, with no dependence. The right panel
is using an exchangeable model, leading to positive dependence. All histograms are computed
based on a sampling size of T = 50000.

Let us provide a similar plot, but with a population of large size n = 500. In the four

simulations below, we assume that n(S) is the sum of:

i) a Bernoulli variable with stochastic intensity π, and a Binomial variable B(n− 1, 0.025),

ii) a Binomial variable B(n/8, π) with stochastic intensity π, and a Binomial variable B(7n/8, 0.025),

iii) a Binomial variable B(n/4, π) with stochastic intensity π, and a Binomial variable B(3n/4, 0.025).

iv) a Binomial variable B(n/2, π) with stochastic intensity π, and a Binomial variable B(n/2, 0.025).

where the stochastic intensity π is equal to q with probability 0.1, and such that π = 2q/3 with

probability 0.9, where q follows the beta distribution with parameters α1 = 0.1, α2 = 0.01.

The next figure provides the histogram of the size n(S) under these four data generating

processes.
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Figure 6: Histograms of the four distributions of n(S) with a sample size of T =20000. Northwest
panel: distribution i). Northeast panel: distribution ii). Southwest panel: distribution iii).
Southeast panel: distribution iv).

In case i), when the size of the binomial variable with stochastic intensity is only 1, the

distribution (northwest panel) is unimodal. This is the effect of repulsion. When the size of

the binomial variable with stochastic intensity increases, three modes appear, and around these

three modes, the masses become more and more concentrated.

5.3 Distribution of the size of hitting sets

The distribution of size n(S) depends on n independent parameters, that correspond to the

elementary probabilities, whereas the distribution of the set depends on 2n − 1 independent

parameters. Therefore the distribution of the size cannot be very informative in an unconstrained

framework, with a degree of under-identification equal to 2n − 1− n.

It can be interesting to complete the analysis by considering other multivariate definitions of

the size. Let us consider a partition s1, · · · , sL of {1, ..., n}:

{1, ..., n} = s1 ∪ · · · ∪ sL, with sj ∩ sk = ∅, ∀j 6= k.
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Then we have:

n(S) = n(S ∩ s1) + · · ·+ n(S ∩ sL).

Instead of the distribution of n(S), we can now consider the joint distribution of
[
n(S∩s1), · · · , n(S∩

sL)
]
, for different partitions.

As an illustration, We take n = 400, L = 2, and use the same kernel as in Figure 4: K+ =

0.02Id+ 0.0002J .

s1 = {1, 2, ..., 200}, s2 = {201, 102, ..., 400}

Because this LDPP model is exchangeable and s1, s2 have the same size, the sizes of the

two hitting sets n(S ∩ sk), k = 1, 2 are also exchangeable. Both follow the size distribution of a

LDPP, with kernel K+
s1

and K+
s2

, respectively. Since K+ is exchangeable, we have K+
s1

= K+
s2

.

We use the LDPP sampling algorithm proposed by Kulesza and Taskar (2012) and Launay et al.

(2020) to simulate M = 50000 realizations of the LDPP, and compute the resulting size of the

hitting sets n(S ∩ sk), k = 1, 2. Their empirical correlation coefficient is −0.0352, which echoes

the repulsive property of the LDPP. We plot below the empirical histograms and the joint density

of the sizes of the two hitting sets.

Figure 7: Left panel: heat map of the joint distribution of the sizes of the two hitting sets in an
exchangeable LDPP model. Right panel: marginal histogram of n(S ∩ s1) and n(S ∩ s2) Both
histograms are very close since they converge to the same distribution when M goes to infinity.

Next, we consider a non exchangeable LDPP. We simulate a matrix Σ from the Wishart

distribution with degree of freedom 3 and matrix parameter diag(1, ...., n). We rank the diagonal

terms of Σ in decreasing order, and denote by s1 (resp. s2) the set of locations i such that Σii is

among the first two quartiles among all the diagonal terms. Then we simulate M independent

copies of St from the LDPP model with matrix Σ. Figure 9 below is the analogue of Figure 8.

It shows that the distributions of n(St ∩ s1) and of n(St ∩ s2) are significantly different.
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Figure 8: Left panel: heat map of the joint distribution of the two hitting sets in a non exchange-
able LDPP model. Right panel: marginal distribution function of n(S ∩ s1) and n(S ∩ s2). The
two marginal distributions are significantly different.

5.4 Alternative variance-covariance matrix

The aim of this section is to discuss different notions of independence and their interpretation.

Let us consider a partition of {1, ..., n} = s1 + · · ·+ sL into L subsets and denote Zl =
∏
i∈sl

Xi,

l = 1, ..., L. Thus Zl is a binary variable with value 1, if and only if all the Xi’s in sl take value

1. We have the following property:

Proposition 22. Let us consider the (L× L) matrix Γ with elements:

γj,l = G+(sj ∪ sl)−G+(sj)G+(sl), j, l = 1, ..., L.

Then the matrix Γ is the variance-covariance matrix of the vector Z of binary variables.

Proof. This is a consequence of Zl = 1 iff Xi = 1,∀i ∈ sl.

For instance, if s1 = {1} and s2 = {2, 3}, we have:

γ1,2 = P[1, 2, 3 ∈ S]− P[1 ∈ S]P[2, 3 ∈ S]

= E[X1X2X3]− E[X1]E[X2X3]

= Cov[X1, X2X3] = Cov[Z1, Z2].

When L is large, this matrix can have a large dimension, but can be represented by a coloured

plot to disentangle its negative, zero, and positive values12.

As an illustration, we start with an LDPP model with factor representation, in which factor

β is such that βi is proportional to i, i = 1, ..., n. We choose n = 400, σ = 0.01, λ = 0.5(12 +22 +
12or by an adjacency plot with cross for positive values, points for negative values.
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· · ·+ n2). Most of the eigenvalues of its kernel K+ are close to zero, except the largest, which is

very close to 1. Thus, with a large probability, the size of this LDPP is equal to 1. This would

lead to a situation where variables Zl are nearly always equal to zero. Thus we alternatively

consider the complement of this LDPP, which, by Rising (2013) Th.2.3.5, is also an LDPP with

kernel Id−K+. Then we consider L = 10 subsets, with

s1 = {1, ..., n/10}, s2 = {1 + n/10, 2 + n/10, · · · , 2n/10}, · · · s10 = {9n/10 + 1, · · · , n}.

We simulate a total of M realizations from this complementary LDPP, compute Z1, Z2, ..., Z10.

We represent its correlation matrix in the left panel of Figure 10 below. As a comparison, we

also plot the (n × n) correlation matrix between the Xi’s, i = 1, .., n, and compare it to the

correlation matrix from an exchangeable Bernoulli model with stochastic intensity.

Figure 9: Left panel: correlation matrix of the LDPP model whose matrix Σ follows Wishart
distribution with degree of freedom n+ 1 and matrix parameter 0.01Id. Right panel: correlation
matrix of an exchangeable LDPP model where Xi follows B(1, π) and π follows the beta distri-
bution with parameters α1 = α2 = 1.

In the left panel, correlations are mostly negative, due to the repulsive property of the LDPP.

Moreover, the negative correlation is especially pronounced between Z8, Z9, Z10. This is due to

the fact that the factor β is chosen such that βi is dominant for large index i. On the right panel,

correlations are mostly positive, with comparable values, due to the exchangeability property.

To understand how to use such information, let us consider partitions into two sets s1 and

s2 = s̄1. Then we can compute the associated correlation: ρ(s1) = cor(Z1, Z2) := γ12/
√
γ11γ22.

This correlation is equal to 1, if and only if Z2 = Z1, equal to −1, if and only if Z2 = 1−Z1.

In the first case, Z1 = 1 means that we have high risk for all individuals in s (i.e. a type of

cluster of risks) and then at the same time high risk for all individuals in s̄1. This is the reverse

situation for correlation equal to −1.
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Then, by analogy with principal component analysis, we can look for

ms∗ = arg min
s
ρ(s), and Ms∗ = arg max

s
ρ(s).

5.5 Updating the tranche prices

The prices of basket derivatives have been computed without additional information on the

random set. This price has to be updated if additional information is available during the year

of observation. As an example, let us consider a tranche (s1, s2), with s1 ⊂ s2, and assume that

in the middle of the year we already observe a set s0 of the revealed risks, then the computation

has to be updated and performed conditional on S ⊃ s0.

Let us for instance consider the semi-up tranche with s1 = {2} and s2 = {1, ..., n}, that is,

this derivative pays 1 $, if and only if 2 ∈ S. By Section 3.3, its price is Q+({2}) = Q[2 ∈ S]. Let

us now assume that we have the additional knowledge that 1 ∈ S, then the updated new price

is Q[2 ∈ S|1 ∈ S]. This price will in general be different from the initial price. Let us illustrate

this updating using two examples.

Example 6. We assume that S follows a LDPP under the risk-neutral probability Q. Then

we have: Q[2 ∈ S] = (K+)2,2, where K+ = Σ(Id + Σ)−1. Moreover, by Proposition 18, the

distribution of S − {1}|1 ∈ S is still a (n − 1)-dimensional LDPP, thus Q[2 ∈ S|1 ∈ S] =[
K+({1})

]
2,2

, where K+({1}) is defined by eq. (3.14).

Numerically, if n = 3, and Σ = 0.5Id+ J , we get:

Q[2 ∈ S] = 0.48, Q[2 ∈ S|1 ∈ S] = 0.43.

In other words, the updated tranche price is lower than its initial price, due to the repulsive

property of the LDPP.

Example 7. We now assume that n = 3, and X1, X2, X3 are conditionally i.i.d. Bernoulli given

a stochastic probability parameter q, where q follows the beta distribution with parameters

α1 = α2 = 2. Then by the beta-Bernoulli conjugacy, we have:

Q[2 ∈ S] = α1

α1 + α2
= 0.5, Q[2 ∈ S|1 ∈ S] = α1 + 1

α1 + α2 + 1 = 0.6.

In other words, because of the positive dependence among Xi’s, the updated price is higher than

the initial price.

What is the effect of conditioning on the stochastic dominance? That is, if S right dominates

S∗ at order 1, and if s0 is a subset of, say, {1, ..., k}, where k < n, then would the conditional
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distribution of S ∩ {k + 1, ..., n} given S ∩ {1, ..., k} = s0 still right dominates the conditional

distribution of S∗ ∩ {k + 1, ..., n} given S∗ ∩ {1, ..., k} = s0? In other words, will the semi-up

tranche price still be higher for S than for S after conditioning?

We can check that these two conditional distributions have conditional pmf’s and conditional

left cumulated functions:

p(s0 ∪ s)
G−(s0) ,

p∗(s0 ∪ s)
G∗−(s0) , for pmf’s

G−(s0 ∪ s)
G+(s0) ,

G∗−(s0 ∪ s)
G∗−(s0) , for left cumulated functions.

respectively, for any subset s ⊂ ∩{k + 1, ..., n}. Because S right dominates S∗ at order 1, both

the denominator and the numerator of G−(s0∪s)
G+(s0) dominate their counterpart for S∗. Thus, the

stochastic dominance is not necessarily preserved after the conditioning.

6 Concluding remarks

The objective of this paper was to define the notions of stochastic dominances at order 1 and 2

for random sets in a finite space, that is when several binary variables are jointly observed. In

the random set framework, the left and right definitions of stochastic dominance differ, even in

special cases as for the LDPP family. This analysis leads to different measures of risk on random

sets and to the introduction of well-designed basket (i.e. set) derivatives to hedge against these

risks. We especially discuss tranches and European calls written on random sets and their closed

form prediction and pricing formulas.

The pricing formulas have been derived for panel data under the assumption of i.i.d. ob-

servations of random sets. Thus we allow for cross-sectional dependence, but not for serial

dependence. The main results of the paper can be extended to also include serial dependence

[see e.g. Gouriéroux and Lu (2023b) for Markov LDPP models and Gouriéroux and Lu (2023a)

for dynamic LDPP models with Wishart autoregressive stochastic kernel].
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Appendix A Proofs of Propositions

Appendix A.1 Proof of Proposition 1 (L = 1)

As noted in the text, Proposition 1 can be derived by the Moebius inversion formula (2.3). We

provide below an algorithmic proof of uniqueness, that can be more appropriate numerically to

derive function v from function V +.
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Let us consider a S−decreasing function V + and explain how to derive v in a unique way.

We start from the maximal element s = {1, ..., n}. We have:

V +({1, 2, ..., n}) = v({1, 2, ..., n}).

Thus v({1, 2, ..., n}) is known. Let us now consider the complement of {i} in {1, 2, ..., n}, i.e.

{1, 2, ..., n} − {i}. We have:

v({1, 2, ..., n} − {i}) = V +({1, 2, ..., n} − {i})− V +({1, 2, ..., n}).

Hence v({1, 2, ..., n}−{i}) is known for any i. Next we find the complement of {i, j} in {1, 2, ..., n},

and continue to go down on the ordering tree.

If L > 1, we can use the bijection between
[
P{1, ..., n}

]L
and P

(
{1, ..., n} × {1, ..., l}

)
to

transform the problem to the case where L = 1.

Appendix A.2 Proof of Proposition 3

We have:

∑
s

v(s)W+(s) =
∑
s

∑
s∗⊃s

v(s)w(s∗)

=
∑
s

∑
s∗⊂s

w(s)v(s∗)

=
∑
s

[
w(s)

∑
s⊃s∗

v(s∗)
]

=
∑
s

w(s)V −(s).

Appendix B The Left Cumulated Functions

Appendix B.1 The LDPP family

In Proposition 4, we have computed the expression of function G+ in the LDPP family. Let us

now compute G− in the same model. We have:

Proposition 23.

G−(s) = detK−s̄ , (eq. a.4)

where s̄ is the complement of s and matrix K− is defined by:

K− = Id−K+ = (Id+ Σ)−1. (eq. a.5)
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Proof. By Rising (2013), Theorem 2.3.5, when S follows a LDPP, its complement follows also a

LDPP with kernel K− = Id−K+. Then we have:

G−(s) =
∑
s∗⊂s

p(s∗) =
∑
s∗⊂s

P(S = s∗)

=
∑
s̄⊂s̄∗

P(S̄ = s̄∗)

= det(K−s̄ ).

More generally, we have:

G(p)−(s) = det
[
(p− 1)Is +K−

]
.

The matrices K− and Σ are also in a one-to-one relationship, since we have:

Σ = (K−)−1 − Id. (eq. a.6)

Appendix B.2 The left stochastic dominance

Appendix B.2.1 Definition

In the standard case of stochastic dominance based on a total order, it is equivalent to define

the dominance at order 1 from the survival function or from the c.d.f.. This is no longer the case

with partial order. By analogy with Definition 3, we could have defined the stochastic dominance

at order 1 as follows:

Definition 9 (Left dominance at order 1). S∗ left dominates S at order 1 if and only if G∗−(s) ≤

G−(s), ∀s.

Appendix B.2.2 Non equivalence between left and right dominances in the general case

It is easily checked that the left and right dominances at order 1 do not define the same partial

order. Let us consider the case n = 2 and write the conditions for stochastic dominance.

• right stochastic dominance:

p∗({1, 2}) ≥ p({1, 2}), (eq. a.7)

p∗({1}) + p∗({1, 2}) ≥ p({1}) + p({1, 2}), (eq. a.8)

p∗({2}) + p∗({1, 2}) ≥ p({2}) + p({1, 2}). (eq. a.9)
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• left stochastic dominance:

p∗(∅) ≤ p(∅),

p∗(∅) + p∗({1}) ≤ p(∅) + p({1}),

p∗(∅) + p∗({2}) ≤ p(∅) + p({2}).

These inequalities are equivalent to:

p∗({1}) + p∗({2}) + p∗({1, 2}) ≥ p({1}) + p({2}) + p({1, 2}), (eq. a.10)

p∗({1}) + p∗({1, 2}) ≥ p({1}) + p({1, 2}), (eq. a.11)

p∗({2}) + p∗({1, 2}) ≥ p({2}) + p({1, 2}), (eq. a.12)

since the elementary probabilities sum up to 1. We see that equations (eq. a.7)-(eq. a.9)

do not imply equations (eq. a.10)-(eq. a.12), and vice versa. In other words, none the right

and left stochastic dominance implies the other one when n = 2.

For instance, if S∗ and S are such that:

p∗({1}) = 0.5, p∗({2}) = 0.4, p∗({1, 2}) = 0.05, p∗(∅) = 0.05 (eq. a.13)

p({1}) = 0.4, p({2}) = 0.3, p({1, 2}) = 0.1, p(∅) = 0.2 (eq. a.14)

then S∗ left dominates S, but does not right dominate S, since (eq. a.7) is not satisfied.

Similarly, if S∗ and S are such that:

p∗({1}) = 0.2, p∗({2}) = 0.3, p∗({1, 2}) = 0.3, p∗(∅) = 0.2 (eq. a.15)

p({1}) = 0.4, p({2}) = 0.4, p({1, 2}) = 0.1, p(∅) = 0.1 (eq. a.16)

then S∗ right dominates S, but does not left dominate S, since (eq. a.10) is not satisfied.

Appendix B.2.3 Non equivalence between left and right dominances at order 1 in the LDPP

framework

Is it possible for the left and right dominances at order 1 to coincide, under the extra LDPP

assumption? Let us recall that by Proposition 11, the right dominance at order 1 of S∗ over S

is equivalent to:

det(K∗+s ) ≥ det(K+
s ), ∀s ⊂ {1, ..., n}. (eq. a.17)
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Similarly, by Proposition 26, the left dominance at order 1 of S∗ over S is equivalent to:

det(K∗−s ) ≥ det(K−s ), ∀s ⊂ {1, ..., n}. (eq. a.18)

where K∗− = Id−K∗+ and K− = Id−K+. Because generally det(Ids −K∗+s ) + det(K∗+s ) is

not equal to 1, neither of (eq. a.17) and (eq. a.18) implies the other.

As a counterexample, we can remark that the distributions of S∗ and S defined in (eq. a.13),

(eq. a.14) can be written as LDPP, with:

K∗+ =

0.5 + 0.05
√

(0.5 + 0.05)(0.4 + 0.05)− 0.052

∗ 0.4 + 0.05

 , K+ =

0.4 + 0.1
√

(0.4 + 0.1)(0.3 + 0.1)− 0.12

∗ 0.3 + 0.1

 .
Similarly, the distributions of S∗ and S defined in (eq. a.15), (eq. a.16) can also be written

as LDPP, with:

K∗+ =

0.2 + 0.3
√

(0.2 + 0.3)(0.2 + 0.3)− 0.32

∗ 0.3 + 0.3

 , K+ =

0.4 + 0.1
√

(0.4 + 0.1)(0.4 + 0.1)− 0.12

∗ 0.4 + 0.1

 .
Appendix C LDPP Family with Factor Representation

Appendix C.1 Definition

The model assumes that Σ = σ2Id + λββ′, where σ2 ≥ 0, λ ≥ 0 and β is a vector of unit norm

β′β = 1. Thus, the underlying dependence has rank 1 and is driven by β. We have:

(
Id+ Σ

)−1 = 1
1 + σ2 Id−

λ

(1 + σ2)(1 + λ+ σ2)ββ
′,

and K+ = σ2

1+σ2 Id+ λ
(1+σ2)(1+λ+σ2)ββ

′, by (eq. a.5). Thus the marginal kernel has also a factor

representation with the same factor β.

This factor representation includes the special case of equicorrelation in Σ (or equivalently

K+), corresponding to β = 1√
n
1, where 1 is the vector with components equal to 1.

Appendix C.2 Subkernels

Then the subkernels K+
s have also a factor representation with subfactor directions. We have:

K+
s = σ2

1 + σ2 Ids + λβ′sβs
(1 + σ2)(1 + λ+ σ2)β(s)β(s)′,

where β(s) = βs/
√
β′sβs. For subkernels, there is one factor if β(s) 6= 0, no factor, otherwise.
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Appendix C.3 Eigenvalues

We deduce the eigenvalues of the different matrices of interest:

• for Σ, σ2 with multiplicity order n− 1, σ2 + λ, with order 1.

• for K+, σ2

1+σ2 with multiplicity order n− 1, λ+σ2

1+λ+σ2 , with order 1.

• for K+
s , σ2

1+σ2 with multiplicity order n(s)− 1, σ2

1+σ2 + λβ′sβs

(1+σ2)(1+λ+σ2) , with order 1.

Note that σ2

1+σ2 + λ
(1+σ2)(1+λ+σ2) = λ+σ2

1+λ+σ2 .

Appendix C.4 Distribution

From the eigenvalues of K+
s , we deduce the survival function of random set S:

G+(s) = σ2[n(s)−1]

(1 + σ2)n(s) [σ2 + λβ′sβs
1 + λ+ σ2 ], if s 6= ∅, G+(∅) = 1.

For instance, if s = {i} is a singleton, we get: G+({i}) = P[Xi = 1] = σ2

1+σ2 + λβ2
i

(1+σ2)(1+λ+σ2) ,

which is increasing in |βi|. In particular, in the special case where σ = 0, Σ is of rank 1. Hence

S is of size 0 or 1 almost surely and P[Xi = 1] = λβ2
i

1+λ . Because the components of the vector

(β2
1 , ..., β

2
n) sum up to unity, it is the vector of probabilities of the multinomial distribution

of (X1, ..., Xn), given that X1 + · · · + Xn = 1, and λ
1+λ (resp. 0

1+λ ) is the probability that

X1 + · · ·+Xn = 1 (resp. X1 + · · ·+Xn = 0).

From the eigenvalues of K+, we deduce that the distribution of n(S) is the convolution of

the binomial distribution B(n − 1, σ2

1+σ2 ) and the Bernoulli distribution B(1, λ+σ2

1+λ+σ2 ). Thus we

have:

E[n(S)] = (n− 1) σ2

1 + σ2 + λ+ σ2

1 + λ+ σ2 ,

V[n(S)] = (n− 1) σ2

(1 + σ2)2 + λ+ σ2

(1 + λ+ σ2)2 .

In particular, the parameters λ, σ2 are chosen with a given expected mean m, if they satisfy:

(n− 1) σ2

1 + σ2 + σ2 + λ

1 + σ2 + λ
= m.

Online Appendix 1: Links between the distributions of X and S

Let us denote X̄i = 1 − Xi, i = 1, ..., n, and S̄ the complement of S in {1, ..., n}. We have the

following definitions and relationships.
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1. p(s) = P[S = s] = P[Xi = 1, if i ∈ s,Xi = 0, if i ∈ s̄].

2. G+(s) = P[S ⊃ s] = P[Xi = 1, if i ∈ s]. In particular G+({i}) = P[Xi = 1] defines

the marginal distribution of Xi, G
+({i, j}) = P[Xi = 1, Xj = 1] defines the pairwise

distribution of Xi, Xj , once their marginal distributions are known.

3. G+({i, j})−G+({i})G+({j}) = Cov(Xi, Xj).

4. p̄(s̄) := P[S̄ = s̄] = P[S = s] = P[X̄i = 1, if i ∈ s̄, Xi = 0, if i ∈ s].

5. Ḡ+(s̄) := P[S̄ ⊃ s̄] = P[S ⊂ s] = G−(s).

Online Appendix 2: Laplace transform

OA. 2.1. Definition

Let us assume L = 1. The Laplace transform of the set of binary variables (X1, ..., Xn) is defined

as:

ΨX(u) = E
[

exp
(
− u1X1 − u2X2 − · · · − unXn

)]
, (eq. a.19)

where ui ≥ 0, i = 1, ..., n. This Laplace transform can also be written in terms of the random set

S. Let us denote:

u(s) =
∑
i∈s

ui, (eq. a.20)

with the convention
∑
i∈∅ ui = 0. The function u(·) is a positive increasing function of the

set-valued argument s. Then equation (eq. a.19) becomes:

ΨS(u) = E[exp(−u(S))]
(

= ΨX(u)
)
. (eq. a.21)

OA. 2.2. Taylor’s expansion of the Laplace transform

In our set-valued framework, the Laplace transform can be expanded using either the probability

mass function p(·), or the survival function G+(·).

Expansion through p(·) By definition of the Laplace transform, we have:

ΨX(u) = E
[

exp
(
− u1X1 − u2X2 − · · · − unXn

)]
=

∑
s⊂{1,...,n}

p(s)e−u(s). (eq. a.22)
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or equivalently, in terms of probability generating function13:

E[zX1
1 · · · zXn

n ] =
∑

s⊂{1,...,n}

[
p(s)

∏
i∈s

zi

]
, (eq. a.23)

with the convention
∏
i∈∅ zi = 1. In other words, p(s) is the coefficient of

∏
i∈s zi in the Taylor’s

expansion around (0, 0, ...., 0) of the pgf.

Expansion through G+(·) Alternatively, we can introduce yi = zi − 1, then equation (eq. a.23)

becomes:

E[zX1
1 · · · zXn

n ] = E[(1 + y1)X1 · · · (1 + yn)Xn ]

=
∑

s⊂{1,...,n}

[
p(s)

∏
i∈s

(1 + yi)
]

=
∑

s,s∗⊂{1,...,n}

[ ∑
s∗⊂s

p(s∗)
∏
i∈s∗

yi

]
=

∑
s,s∗⊂{1,...,n}

{[ ∑
s∗⊂s

p(s∗)
] ∏
i∈s∗

yi

}
=

∑
s∗⊂{1,...,n}

[
G+(s∗)

∏
i∈s∗

yi

]
=

∑
s⊂{1,...,n}

[
G+(s)

∏
i∈s

yi

]
. (eq. a.24)

Therefore, G+(s) is the coefficient of the term
∏
i∈s yi in the Taylor expansion of the shifted pgf

E[(1 + y1)X1 · · · (1 + yn)Xn ] around (0, 0, ...., 0), or equivalently the Taylor’s expansion of the pgf

around (1, 1, ...., 1).

As an illustration, let us consider the case n = 2. Then we have:

E[zX1
1 zX2

2 ] = p(∅) + p({1})z1 + p({2})z2 + p({1, 2})z1z2 (eq. a.25)

= p(∅) + p({1})(z1 − 1 + 1) + p({2})(z2 − 1 + 1) + p({1, 2})(z1 − 1 + 1)(z2 − 1 + 1)

= 1 + [p({1}) + p({1, 2})](z1 − 1) + [p({2}) + p({1, 2})](z2 − 1) + p({1, 2})(z1 − 1)(z2 − 1)

= G+(∅) +G+(({1}))(z1 − 1) +G+(({2}))(z2 − 1) +G+({1, 2})(z1 − 1)(z2 − 1).

(eq. a.26)

Here, the expansion in (eq. a.25) is with respect to u1 and u2, whereas it is with respect to

u1 − 1 and u2 − 1 in (eq. a.26).

13Since (X1, ..., Xn) has a discrete distribution, the probability generating function (pgf) exists and also char-
acterizes its joint distribution.
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OA. 2.3. Laplace transform in the LDPP framework

Let us now compute the Laplace transform, or equivalently the pgf of the set variable S, if S

follows a LDPP. We have:

E[zX1
1 · · · zXn

n ] =
∑

s⊂{1,...,n}

[
G+(s)

∏
i∈s

yi

]
(eq. a.27)

=
∑

s⊂{1,...,n}

[
detK+

s

∏
i∈s

(zi − 1)
]

= det
[
Id+K+diag(z1 − 1, z2 − 1, ..., zn − 1)

]
, (eq. a.28)

or equivalently,

ΨS(u) = E[exp(−u(S))]

= det
[
Id+K+diag(e−u − 1)

]
, (eq. a.29)

where e−u = (e−u1 , ...e−un)′ and 1 is the vector with all elements equal to 1.

When the u1, ..., un are different, the term u(S) can be interpreted as a total loss, with each

ui the individual loss given high risk. Then formula (eq. a.29) characterizes the distribution of

the total loss.

OA. 2.4. Distribution of the size in the LDPP framework

By considering the special case z1 = · · · = zn = z, we get in Section 2.3 the p.g.f. of the size

n(S) as:

E[zn(S)] =
n∏
i=1

[1 + (z − 1)λi] =
n∏
i=1

[1− λi + λiz].

Since 1− λ+ λz is the p.g.f. of the Bernoulli distribution B(1, λ), we deduce Proposition 12.

The computation above is valid for any symmetric matrix K+ with eigenvalues smaller or

equal to 1 in modulus. In particular, it remains valid, if some of the eigenvalues are equal to

1. Since these eigenvalues are λi/(1 + λi), where λi is an eigenvalue of Σ, this arises if some

eigenvalues λi are infinite.

From the interpretation as sums of Bernoulli variables, we get the following result.

Proposition 24. In the LDPP framework, the size n(S) is constant if and only if the kernel K+

has all eigenvalues equal to either 0, or 1. Then n(S) is equal to the number of eigenvalues equal

to 1.
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More generally, if K+ has n0 eigenvalues equal to 1, then n(S) will be almost surely larger

than n0. This result is important to understand the behavior of the distribution of n(S) in the

illustrations of Section 6.2.

Online Appendix 3: Statistical inference

We will discuss statistical inference from i.i.d. observations St, t = 1, ..., T of a random set.14

We first consider unconstrained and constrained estimation. Then we develop the tests of the

exchangeability and LDPP hypotheses.

OA 3.1 Estimation

When some results are well-known, we just recall the associated properties.

Appendix C.4.1 OA. 3.1.1. Unconstrained estimation

We have first to order the subsets by layer, i.e. by size, then within the layer. For a given ordering,

the elementary probabilities p(s), s varying, can be stacked in a vector vec(p) of dimension 2n.

Proposition 25. i) The maximum likelihood (ML) estimator of p(s), s varying, is the sample

frequency:

p̂T (s) =
∑T
t=1 1St=s

T
.

ii) Its asymptotic distribution for large T is:

√
T
[
vec(p̂T )− vec(p)

]
∼ N

(
0,diag[vec(p)]− vec(p)[vec(p)]′

)
.

Note that the number of independent parameters is 2n − 1 and that the number T of obser-

vation has to be much larger than 2n − 1 for this asymptotic approximation to be valid. This

explains the importance of constrained models.

OA 3.1.2. Exchangeable model

In exchangeable models, the sequence of observations can be summarized by the sequence of sizes

n(St), t = 1, ..., T , that is a sufficient statistic to estimate the distribution P (ñ), ñ = 0, 1, ..., n.

14Extensions to serially dependent observations St, t = 1, ..., T is studied in Gouriéroux and Lu (2023b) under
a Markov LDPP model and Gouriéroux and Lu (2023a) under a dynamic LDPP model with stochastic Wishart
autoregressive kernel.
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Proposition 26. i) Under exchangeability, the maximum likelihood estimator of P = (P (ñ)) is

the sample counterpart with:

P̂T (ñ) =
∑T
t=1 1n(St)=ñ

T
, ñ = 0, ..., n.

ii) Its asymptotic distribution for large T is:

√
T (P̂T − P ) ∼ N

(
0,diag(P )− PP ′

)
.

OA 3.1.3. LDPP model

Let us denote p(s,Σ) = det Σs/ det(Id + Σ) the elementary probabilities. The log-likelihood

function is:

`T (Σ) = T
∑
s

p̂T (s) log p(s,Σ). (5.1)

When T tends to infinity, 1
T `T (Σ) tends to

∑
s p0(s) log p(s,Σ) := c∞(Σ,Σ0), where Σ0 denotes

the true value of matrix Σ and the LDPP model is assumed well-specified. This quantity is

maximal if and only if p(s,Σ) = p(s,Σ0),∀s. This condition of observational equivalence can

be written as “there exists a diagonal matrix D with diagonal elements +1 or −1 such that

Σ = DΣ0D” [see Griffin and Tsatsomeros (2006)]. Therefore, Σ0 is locally identifiable, but not

globally identifiable. The local identification is sufficient for consistent ML estimation of matrix

Σ.

The ML estimator of Σ is the solution:

Σ̂T = arg max
Σ

∑
s

p̂T (s) log p(s,Σ),

such that the nonnegativity condition Σ � 0 holds. The following proposition is proved in

Gouriéroux and Lu (2023a).

Proposition 27. In the LDPP framework, and standard regularity conditions15

i) Σ̂T is a consistent estimator of the true value Σ0.

ii)
√
T (vech(Σ̂T )− vech(Σ0)) ∼ N (0,Ω0),

where vech is the half-vectorization operator of a symmetric square matrix, and the asymp-

15These conditions include the invertibility of the information matrix Ω−1. In particular the matrix Σ cannot
be block diagonal [Brunel et al. (2017)].

54



totic variance matrix Ω0 is given by:

Ω−1
0 =

∑
s

{ det Σ0s

det(Id+ Σ0)H
′J ′s(Σ−1

0s ⊗ Σ−1
os )JsH}+H ′[(Id+ Σ0)−1 ⊗ (Id+ Σ0)−1]H,

Js and H being the selection matrices such that vecΣs = JsvecΣ, vecΣ = HvechΣ and ⊗

denoting the Kronecker product.

Proof. We will perform a second-order expansion of the asymptotic log-likelihood to derive the

information matrix and then the asymptotic variance-covariance matrix of the maximum likeli-

hood estimator of parameter ΣL. This expansion is performed in a neighborhood of the “true

value” Σ0, that is: Σ = Σ0 + ∆, where ∆ is a small symmetric matrix.

The asymptotic log-likelihood function is :

L(Σ0,∆) = Σs
det(Σ0s)

det(Id+ Σ0) log det(Σ0s + ∆s)− log det(Id+ Σ0 + ∆),

where ∆ is small. We have :

L(Σ0,∆) = L(Σ0, 0) + Σs
det(Σ0s)

det(Id+ Σ0) log det(Id+ Σ−1
0s ∆s)− log det(Id+ (Id+ Σ0)−1∆).

Since : log det(Id+A) =Tr log(Id+A) ' Tr(A− 1
2A

2), if A is small, we deduce :

L(Σ0,∆) ' L(Σ0, 0) + {Σs det Σ0s

det(Id+Σ0)Tr(Σ
−1
0s ∆s)− Tr[(Id+ Σ0)−1∆]

− 1
2{Σs

det Σ0s

det(Id+Σ0)Tr(Σ
−1
0s ∆sΣ−1

0s ∆s)− Tr[(Id+ Σ0)−1∆(Id+ Σ0)−1∆]}.

This differential expression is written in term of matrix ∆. Then the last term has to be

rewritten in terms of vec or vech operators.

Since : Tr(AX ′BXC) = (vecX)′(CA ⊗ B′)vecX, where ⊗ denotes the Kronecker product

[see Henderson and Searle (1979), eq . 9], we can typically write twice the second-order term of

the expansion as :

−
{

det Σ0s

det(Id+ Σ0) (vec∆s)′(Σ−1
0s ⊗ Σ−1

0s )(vec∆s)
}
− (vec∆)′[(Id+ Σ0)−1 ⊗ (Id+ Σ0)−1]vec∆.

Let us denote Js the selection matrix of dimension (n(s), n) such that vec∆s = Jsvec∆ and

the matrix H such that vec∆ = Hvech∆, we deduce the closed form expression of the information

matrix, that is the inverse of the asymptotic variance-covariance matrix as :

V −1 = Σs
{

det Σos
det(Id+ Σ0)H

′J ′s(Σ−1
0s ⊗ Σ−1

0s )JsH
}

+H ′[(Id+ Σ0)−1 ⊗ (Id+ Σ0)−1]H.
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In the LDPP framework, some of the parameters can also be estimated by using a method of

moments. Indeed, for i 6= j:

p({i})/p(∅) = σii, p({i, j})/p(∅) = σiiσjj − σ2
ij .

Thus, by focusing on subsets of size 1 or 2, we can identify all the diagonal elements of Σ, as

well as all the off-diagonal elements of Σ, up to their sign.

As a consequence, by replacing p({i}), p(∅), p({j}) and p({i, j}) by their empirical counter-

parts, we obtain moment estimates of σii and |σij |. This method can be used to obtain a first

step estimate, which can be used as the initial value for the algorithm of likelihood maximiza-

tion. However, this method of moment has two weaknesses. First, this method of moment does

not identify the signs of the off-diagonal terms. Second, it is generically less efficient than the

maximum likelihood approach.

OA 3.2. Test of constrained models

The approach is standard and based on likelihood ratios. We denote H1 the unconstrained

model, HOE the null hypothesis of exchangeability, HOD the null hypothesis of LDPP model,

and ˆ̀
T , ˆ̀E

T ,
ˆ̀D
T the associated estimated log-likelihoods.

Proposition 28. Asymptotically valid likelihood ratio tests at level α are:

i) for exchangeability:

if 2T (ˆ̀
T − ˆ̀E

T ) < χ2
α(2n − n− 1), accept HOE , reject it, otherwise.

ii) for LDPP:

if 2T (ˆ̀
T − ˆ̀D

T ) < χ2
α(2n − 1− n(n+ 1)

2 ), accept HOD, reject it, otherwise.
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