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Abstract

This paper proposes a dynamic model of the limit order book to test if a trading algorithm will
learn to spoof the order book. We derive testable conditions that are simple to implement and to
interpret. Our results show that as a market maker becomes more tolerant to bearing inventory risk,
the learning algorithm will find optimal strategies that spoof the book more frequently. Spoofing
occurs for two reasons: to induce mean reversion in inventory to an optimal level, and to execute
round-trip trades with limit orders at a higher probability than was otherwise likely to occur. The
conditions are tested with order book data from Nasdaq and we show that market conditions are
conducive for an algorithm to learn to spoof the order book. Finally, when two market makers use
learning algorithms to trade, their algorithms can learn to coordinate their spoofing.

Keywords: Market Microstructure, Market Making, Spoofing, Layering, Market Manipulation,
Learning Algorithms, Inventory Model

1. Introduction

There is growing concern that unintended behavior may arise when decision making is dele-
gated to artificial intelligence algorithms. Recently, the OECD and the Dutch Authority of Finan-
cial Markets (AFM) expressed concerns about algorithms learning to manipulate financial markets
(see OECD, 2021; AFM, 2023).1 In this paper, we derive conditions to test if an algorithm will
learn to spoof the order book to manipulate the market.
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dro Sánchez-Betancourt for helpful comments. We also thank seminar participants at the Fields Institute, University of
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1More generally, regulatory bodies around the world are concerned about market manipulation with trading al-
gorithms, and they have taken steps to introduce legislation to address this concern. In the EU, RTS 6 and 7 require
firms to test their trading algorithms so they do not behave in an unintended manner or contribute to disorderly trading
conditions. In the US, the SEC has approved FINRA’s rule that requires algorithmic trading developers to register as
securities traders, and are therefore subject to the SEC and FINRA rules that govern their trading activities.
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Spoofing is a manipulative strategy that consists of submitting limit orders to both sides of the
order book when the objective is either to buy or to sell an asset. If the objective is to buy an asset,
the strategy submits a large sell limit order that will be cancelled, and posts a limit order on the
bid which is the one intended to result in a transaction. The large ask order is a “spoof order” that
tilts the order book and creates misleading information about the sell pressure of the asset. Market
participants interpret the increase in sell pressure as an expected drop in the price of an asset, so a
sell-heavy tilt in the book is followed by an increase in the arrival rate of sell orders that cross the
spread in anticipation of a price drop. With the increase in the number of liquidity taking orders,
the probability of buying the asset with a limit order is higher than was otherwise likely to occur
because market participants will trade on the misleading signal. Similarly, if the objective is to sell
an asset, then a spoof order on the bid creates buy pressure that market participants interpret as an
expected increase in the price of an asset, which allows one to sell an asset with a limit order at a
higher probability than was otherwise likely to occur.

Spoofing relies on the change in behavior elicited by a spoof order, and this change in behavior
can be explained with the asymmetric information model of Glosten (1994) and a non-zero tick
size in the order book. The step-function theory of Fox et al. (2021) explains that asymmetry in
the volumes posted on the best bid and the best ask is interpreted by market participants as good or
bad news about the asset. Specifically, when a sell limit order for a large number of shares arrives
at a price equal to the existing best offer and there is no increase in the bids at the best bid price,
market participants tend to react as if bad news arrived about the asset. Similarly, upon the arrival
of a bid for a large number of shares at a price equal to the best bid and there is no increase in
the orders at the best offer price, market participants react as if good news arrived about the asset.
Therefore, when there is an imbalance between the liquidity posted at the best bid and the best ask
quotes, market participants tend to interpret this as a signal to trade in a particular direction, buy
or sell, in anticipation of a change in the price of the asset.

We summarize the volume imbalance between limit orders resting on the bid and on the ask
sides of the book as buy-heavy, sell-heavy, and neutral. The rates with which market orders, limit
orders, and cancellations arrive at the market depend on the tilt of the book; thus, the probability
with which limit orders are executed depends on the volume imbalance of the book. Specifically,
our empirical results with data from Nasdaq show that the fill probability of a sell limit order is
highest (lowest) when the book is buy-heavy (sell-heavy), and the fill probability of a buy limit is
highest (lowest) when the book is sell-heavy (buy-heavy). Spoofing is profitable because traders
can use spoof orders to manipulate the tilt of the book to buy or to sell an asset with a limit order
at a higher probability than was otherwise likely to occur.
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To analyze if algorithms can learn to spoof the book, we develop a dynamic model where the
market maker interacts with the limit order book at discrete time intervals for an infinite trad-
ing horizon.2 The market maker is non-myopic and is averse to holding high levels of inventory.
Specifically, her objective (i.e., optimality criterion) is to maximize the present value of her ex-
pected wealth, while penalizing exposure to inventory risk. The market maker provides liquidity
at the best bid and the best ask prices, and she delegates decision making to a learning algorithm to
find an optimal trading strategy.3 As with most learning algorithms, the marker maker’s algorithm
learns a stationary Markov strategy.4 Here, the Markov strategy depends on her level of inventory
and the state of the limit order book, which is given by its volume imbalance (i.e., tilt of the book).
To understand unintended behavior that may emerge, we do not focus on the behavior of a par-
ticular learning algorithm. Instead, we analyze the decision framework of learning algorithms, so
our results and testable conditions apply to any learning algorithm that finds an optimal stationary
Markov strategy.

In our analysis, the market maker does not endow the algorithm with an action that spoofs the
order book. Instead, we focus on how an innocuous set of actions leads to spoofing when individual
actions are sequenced in a particular order. Unintentional spoofing emerges because the learning
algorithm dynamically maximizes the market maker’s optimality criterion. Indeed, spoofing in our
setting is unintentional, but it is the best course of action when the algorithm learns the optimal
strategy. This is different from unintended behavior that arises when an algorithm fails to optimize
the optimality criterion. In such cases, the unintended behavior differs on a case-by-case basis and
depends on the idiosyncratic assumptions of the learning algorithm.

In our model, spoofing occurs when a large limit order is placed at time t and the following
action at time t+ 1 is to place a limit order on the opposite side of the book. To derive conditions
to test if an algorithm will learn to spoof the order book, we characterize the optimal stationary
Markov strategy as a function of the value of the market maker’s inventory aversion parameter
for each state of the Markov strategy, i.e., for each pair of inventory level and volume imbalance
regime.5 The optimal strategy spoofs the book when the optimal action in the current state (i.e., in-
ventory and volume imbalance pair) is a spoof order (i.e., a large limit order that will be cancelled),

2We focus on an infinite trading horizon because most learning algorithms are designed for this setting.
3There are several reasons why a market maker would delegate decision making to an algorithm. For example,

the rise of high-frequency trading means that delegating decision making to an algorithm is necessary for a market
maker to remain competitive.

4See Puterman (1994), Szepesvári (2010), and Sutton and Barto (2018) for examples of generic learning algo-
rithms. See also Calvano et al. (2020, 2021), and Abada and Lambin (2023) for examples of learning algorithms that
have been studied in the context of algorithmic collusion.

5Our characterization follows a similar spirit to the characterization of the optimal order choice in Parlour (1998).
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and the subsequent state prescribes an optimal action of placing a limit order on the opposite side
of the book to complete the spoofing sequence.

Our main result provides sufficient conditions on the limit order book to test if an algorithm can
learn to spoof the order book. If certain conditions hold and a trader can tilt the book with spoof
orders, then there is a range of values of the inventory aversion parameter where the algorithm will
learn to spoof the book. In particular, we show that as the market maker becomes more tolerant
to bearing inventory risk, the learning algorithm is more likely to learn spoofing strategies. The
conditions depend only on the parameters of the model, and are applicable to any limit order
book, e.g., Euronext, LSE, Nasdaq, NYSE. Our results show that market conditions in Nasdaq are
conducive for algorithms to learn optimal strategies that spoof the order book. In all the stocks we
consider, we find that an algorithm will always learn to spoof the order book for a range of values
of the inventory aversion parameter.

One of the consequences associated with spoofing is that the spoof order can get “caught out”,
i.e., the spoof order inadvertently leads to a transaction. Our model and the learning algorithms
account for this possibility. The market maker’s decision to spoof the order book balances the
tradeoff between the probability of a fill of the spoof order and the increase in inventory risk.
Often, when making markets, inventory levels deviate from the preferred inventory position.6 In
our model, the longer and further one deviates away from the preferred inventory position, the
more severe is the penalty arising from inventory risk aversion, so the optimal strategy increases
the pressure to ensure mean reversion to the preferred level of inventory. Thus, the market maker’s
strategy balances the trade-off between (i) buying or selling an asset to revert to the preferred
inventory position at standard fill probabilities (i.e., without spoofing the book), or (ii) posting
a spoof order to manipulate the fill probabilities through the tilt of the book, which exposes the
strategy to deviate further from the preferred inventory position (at least temporarily). With this
trade-off in mind, it is clear that spoofing becomes dynamically optimal and a more frequent action
in the optimal strategy when the market maker is less averse to holding high levels of inventory.

Counter-intuitive to the common understanding of spoofing, it is not always bad for the market
maker to receive a fill on her spoof limit order. Indeed, there are situations in which the intention
is for the spoof orders to be filled because the expectation is to unwind the acquired position very
quickly. In particular, we analyze if the market maker prefers that her spoof order is filled and show
that spoofing occurs for two reasons. One, spoofing is optimal because it increases the chances that
the market maker’s inventory will revert to a preferred position. Here, spoofing occurs with the
intention that the spoof order is not inadvertently filled, which is seen as the primary objective of

6In our model, the preferred inventory position is zero when the fundamental value of the asset is a martingale.
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spoofing in the literature. Two, spoofing is optimal because it can lead to an opportunistic round-
trip trade that, in expectation, will be completed faster than otherwise. Here, the spoof order is
submitted with the intention for it to be filled and to unwind it immediately with an increased
probability due to the tilt in the book caused by the spoof order, which, to our knowledge, is not
studied as an objective of spoofing in the literature.

Additionally, we also show that as the quoted spread narrows, learning algorithms will be
less likely to spoof the order book. Specifically, as the quoted spread decreases, the range of
values of the inventory aversion parameter where spoofing is optimal decreases. In the limit,
when the quoted spread is zero, an algorithm will not learn to spoof the book because spoofing
is suboptimal. Of course, theory shows that the quoted spread is positive even if the tick size is
zero.7 Nonetheless, the insight is that (i) if the profits from using limit orders are negligible and
the costs from using market orders are negligible, then it is more efficient to use market orders
to revert to the preferred inventory position, and (ii) if the expected profit from the opportunistic
round-trip trade, where one leg is a spoof order, does not outweigh the penalty imposed to manage
the inventory risk, then spoofing is not optimal.

We extend our results in three directions. One, derive testable conditions to determine if spoof-
ing is learned when a spoof order does not always succeed in manipulating the book. Our results
show that if a spoof order meaningfully affects the probability of tilting the book, then our testable
conditions continue to hold. Two, we use backward induction to solve numerically for an optimal
strategy and find that algorithms can also learn to spoof the order book when the trading horizon
is finite. Finally, we study the effect of introducing a competing market maker. We find that if
both market makers train their algorithms offline, then their algorithms either coordinate or mis-
coordinate depending on their initial inventory level. On the other hand, if both market makers
train their algorithms online, then their algorithms learn to coordinate by either riding the spoof-
ing sequences of each other or by allowing one market maker to ride the other market maker’s
spoofing sequences to avoid any mis-coordination.

In the literature, traders can attempt to manipulate the market in several ways. Studies focus
on information-based manipulation and trade-based manipulation. Information-based manipula-
tion occurs when the manipulator releases misleading information (see for example Bagnoli and
Lipman, 1996; Van Bommel, 2003; Vila, 1989), whereas trade-based manipulation occurs when
the manipulator buys or sells an asset to effect changes in the price (see for example Allen and
Gale, 1992; Allen and Gorton, 1992; Chakraborty and Yılmaz, 2004a,b).

7See for example Stoll (1978), Ho and Stoll (1981), Copeland and Galai (1983), Glosten and Milgrom (1985),
Amihud and Mendelson (1986), and Glosten (1994).
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On the other hand, spoofing is a form of quote-based manipulation that has received little anal-
ysis (see Fox et al., 2021). One exception is Williams and Skrzypacz (2021) who extend the setup
of Glosten and Milgrom (1985) to show that spoofing can occur in equilibrium, and to study the
equilibrium consequences. In our paper, instead of using an information-based model, we use an
inventory model to analyze if algorithms can learn to spoof the order book. Similar to the ap-
proach in Ho and Stoll (1981), we propose a model of the market dynamics that is consistent with
empirical stylized facts, where the market dynamics do not necessarily derive from principles of
individual economic behavior. The purpose of our paper is not to explain the underlying economic
reasoning of the market dynamics, but to use the market dynamics to derive conditions to test if an
algorithm will learn to use spoof orders to manipulate the market.

Our results also have implications for how a rational market maker should behave within the
market dynamics of our model. Indeed, our work is a discrete time analogue to papers that use
stochastic optimal control and continuous-time models to derive algorithmic trading strategies. For
example, Cartea et al. (2020) derive an optimal spoofing strategy to acquire or liquidate a large
position. A key difference is that they explicitly encode spoofing as an action, whereas spoofing
is optimal but unintentional in our model because the market maker does not endow the algorithm
with an action that spoofs the book. Also, their paper is not about learning algorithms. Our paper
is the first in the literature to study if algorithms will learn to spoof the order book, whereas the
extant literature assumes spoofing as a strategy.

On the empirical side, Lee et al. (2013) use a proprietary dataset with trader identification
from the Korea Exchange to show that spoofing achieves substantial extra profits and spoofing
tends to target stocks with higher return volatility, lower market capitalization, lower price level,
and lower managerial transparency. Wang (2019) uses data from the Taiwan Futures Exchange to
show that market participants spoof the order book in stocks that exhibit high volumes of trading,
high volatility, and high prices. Wang also shows that spoofing increases the volume of trading,
increases the volatility of prices, and increases the quoted spread. Our empirical results comple-
ment their findings because we find that market conditions from Nasdaq are such that algorithms
will learn to spoof the order book.

Finally, our work is closer to the literature that studies the unintentional effects of algorithms
that learn to collude (see for example Calvano et al., 2020, 2021).8 Our approach is similar to that
in Cartea et al. (2023) who prove that algorithms can learn to collude. They analyze the equilibria
that can be learned and prove convergence to collusive equilibria; whereas in this paper, we analyze

8See also Cartea et al. (2022a,b), Colliard et al. (2022), and Dou et al. (2023) for studies on algorithmic collusion
in financial markets.
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the decision framework where algorithms learn optimal strategies and derive testable conditions to
determine if algorithms will learn to spoof the order book. Additionally, similar to the algorithmic
collusion literature, we find that algorithms can also learn to coordinate their spoofing when they
learn together.

The remainder of the paper proceeds as follows. The next section shows the relationship
between volume imbalance and the behavior of market participants. Section 3 presents our model
and Section 4 derives the optimal strategy and testable conditions to determine if spoofing can be
learned. Section 5 analyzes the mechanics of spoofing and how the parameters of the model affect
spoofing as the optimal strategy. Section 6 tests the conditions with order book data from Nasdaq.
Section 7 relaxes model assumptions and extends our testable conditions. Finally, Section 8 studies
spoofing with multiple market makers and Section 9 concludes with some regulatory implications.

2. Volume Imbalance and Order Book Activity

This section uses data from Nasdaq for April 2023 to illustrate the relationship between volume
imbalance and the activity in the limit order book that is central to spoofing. For each trading day,
we remove the first and last 15 minutes to exclude behavior in the limit order book during the
opening and closing auctions.

Volume imbalance at time t is given by

ωt =
V b
t − V a

t

V b
t + V a

t

∈ (−1, 1) , (1)

where V b
t , V a

t > 0 are the liquidity posted at the best bid and the best ask, respectively, at time
t. Volume imbalance summarizes the tilt of the limit order book, so when ωt is close to 1 there is
a strong buy pressure and when ωt is close to −1 there is a strong sell pressure. To simplify our
subsequent analysis, we discretize volume imbalance into three regimes: buy-heavy (BH) when
ωt ∈ (1/3, 1), neutral (N ) when ωt ∈ [−1/3, 1/3], and sell-heavy (SH) when ωt ∈ (−1,−1/3).

Table 1 presents the arrival rates (per second) of buy and sell market orders in each volume
imbalance regime for the several assets, and Table 2 presents the average volume of the market
orders that arrive. The arrival rate of buy (sell) market orders is highest when the book is buy-heavy
(sell-heavy). However, the average volume of buy (sell) market orders is lowest when the book is
buy-heavy (sell-heavy). Nevertheless, the net effect (i.e., arrival rate times average volume) is that
there are more buy (sell) transactions when the book is buy-heavy (sell-heavy).

Similarly for limit orders, Table 3 presents the arrival rates (per second) of buy and sell limit
orders in each volume imbalance regime for the assets we consider, and Table 4 presents the
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Table 1: Arrival rates of market orders (MOs) for April 2023.

Ticker
Buy MO arrival rates

(per second)

Sell MO arrival rates

(per second)

SH N BH SH N BH

AAPL 0.060 0.176 0.525 0.606 0.179 0.058

AMZN 0.067 0.168 0.447 0.456 0.167 0.065

CSCO 0.008 0.025 0.101 0.104 0.033 0.012

INTC 0.014 0.042 0.138 0.139 0.036 0.013

MSFT 0.297 0.350 0.461 0.475 0.352 0.286

TSLA 0.532 0.677 0.773 0.750 0.635 0.529

Table 2: Average volume of market orders (MOs) for April 2023.

Ticker
Buy MO average volume Sell MO average volume

SH N BH SH N BH

AAPL 145.58 111.16 62.27 64.29 103.11 135.29

AMZN 205.95 108.59 61.68 60.92 107.78 181.50

CSCO 149.88 182.33 110.30 111.74 161.72 131.67

INTC 212.79 256.93 143.67 134.62 266.80 227.45

MSFT 72.17 46.41 20.66 21.25 45.57 70.14

TSLA 132.27 56.33 26.55 25.35 54.34 120.54

Table 3: Arrival rates of limit orders (LOs) for April 2023.

Ticker
Buy LO arrival rates

(per second)

Sell LO arrival rates

(per second)

SH N BH SH N BH

AAPL 4.245 7.000 4.129 4.285 6.970 4.303

AMZN 4.367 7.346 4.381 4.637 7.600 4.213

CSCO 0.567 1.345 0.951 0.882 1.416 0.641

INTC 1.090 2.386 1.829 1.686 2.330 1.106

MSFT 3.631 4.126 4.452 4.830 4.268 3.582

TSLA 3.913 4.628 3.309 3.560 4.784 4.088

average volume of the limit orders that arrive. The arrival rates of buy limit orders are higher than
those of sell limit orders when the book is buy-heavy, and the arrival rates of sell limit orders are
higher than those of buy limit orders when the book is sell-heavy. On the other hand, the average
volume of buy (sell) limit orders is largest when the book is buy-heavy (sell-heavy). The net effect
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Table 4: Average volume of limit orders (LOs) for April 2023.

Ticker
Buy LO average volume Sell LO average volume

SH N BH SH N BH

AAPL 98.19 109.51 112.32 115.30 109.50 97.40

AMZN 87.95 96.32 101.95 101.53 95.44 87.83

CSCO 228.77 271.07 307.59 319.84 267.68 234.34

INTC 298.83 372.36 415.56 415.82 364.61 292.29

MSFT 42.93 44.81 45.69 45.25 45.73 44.76

TSLA 49.64 55.64 60.97 66.90 61.38 57.94

(i.e., arrival rate times average volume) is that there are more buy (sell) limit orders than sell (buy)
limit orders when the book is buy-heavy (sell-heavy).

Table 5: Arrival rates of limit order cancellations for April 2023.

Ticker
Arrival rates of limit buy

cancellation (per second)

Arrival rates of limit sell

cancellation (per second)

SH N BH SH N BH

AAPL 3.092 6.037 3.785 3.946 6.154 3.334

AMZN 3.594 6.464 3.631 3.885 6.734 3.529

CSCO 0.398 1.021 0.701 0.682 1.054 0.452

INTC 0.818 1.812 1.308 1.193 1.755 0.801

MSFT 3.673 3.561 3.082 3.316 3.756 3.719

TSLA 2.641 3.475 2.824 3.066 3.607 2.777

Table 6: Average volume of limit order cancellations for April 2023.

Ticker
Average volume of

limit buy cancellations

Average volume of

limit sell cancellations

SH N BH SH N BH

AAPL 92.25 109.29 112.92 116.77 111.55 91.26

AMZN 78.53 95.69 106.34 103.48 94.28 79.87

CSCO 172.01 281.82 370.26 378.71 281.96 179.55

INTC 230.90 393.75 499.81 489.77 392.68 228.14

MSFT 23.17 41.34 63.64 63.67 41.85 23.55

TSLA 29.17 50.51 71.24 82.05 54.89 35.21

Similarly, Table 5 presents the arrival rates (per second) of limit buy and limit sell cancellations
9



in each volume imbalance regime for the three assets we consider, and Table 6 presents the average
volume of limit order cancellations that arrive.

Volume imbalance clearly influences the behavior of market participants. This is consistent
with the work of Harris and Panchapagesan (2005), who find that market participants condition
their quotation behavior on volume imbalance. These empirical findings are further supported by
a survey sent to Dutch algorithmic trading firms, where AFM found that trading algorithms use
between 100 and 1000 features, and volume imbalance is one of the key features (see AFM, 2023).

Table 7: Fill probabilities.

Ticker Side
5 seconds 1 second 0.5 seconds

SH N BH SH N BH SH N BH

AAPL
Ask 0.4393 0.4782 0.5819 0.1048 0.1286 0.1910 0.0449 0.0579 0.0928
Bid 0.6210 0.5207 0.4687 0.2196 0.1499 0.1180 0.1121 0.0697 0.0518

AMZN
Ask 0.4155 0.4651 0.5669 0.1008 0.1232 0.1903 0.0451 0.0566 0.0933
Bid 0.5587 0.4570 0.4201 0.1767 0.1228 0.1044 0.0863 0.0566 0.0479

CSCO
Ask 0.0674 0.1005 0.1768 0.0093 0.0151 0.0384 0.0040 0.0060 0.0198
Bid 0.1851 0.1034 0.0713 0.0400 0.0154 0.0109 0.0201 0.0064 0.0048

INTC
Ask 0.0970 0.1384 0.2353 0.0158 0.0222 0.0561 0.0071 0.0095 0.0274
Bid 0.2124 0.1314 0.1116 0.0501 0.0211 0.0161 0.0251 0.0089 0.0070

MSFT
Ask 0.5577 0.5838 0.6286 0.2033 0.2135 0.2529 0.1037 0.1095 0.1333
Bid 0.6101 0.5739 0.5605 0.2339 0.2081 0.2041 0.122 0.1064 0.1048

TLSA
Ask 0.6051 0.6280 0.6729 0.2618 0.2751 0.3222 0.1459 0.1517 0.1876
Bid 0.668 0.6201 0.6047 0.3137 0.2660 0.2661 0.1820 0.1482 0.1480

Finally, Table 7 reports the probability that a limit order on the best bid or best ask is filled
within the next five seconds, one second, and half of a second, respectively. These fill probabilities
account for the effect of time-priority; see Section 6 for details about the estimation procedure.
This link between the fill probability and volume imbalance regimes makes spoofing viable and
profitable. By manipulating the volume imbalance and tilting the order book, the probability of
buying or selling the asset with a limit order is higher than it was otherwise likely to occur.

3. The Model

Here, we present our dynamic model of the limit order book where the market maker provides
liquidity at the best bid and best ask. The market maker is non-myopic and interacts with the limit
order book at discrete times t = 0, 1, 2, ...,+∞. The market maker delegates the decision making
process to a learning algorithm that can be trained online or offline.
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3.1. Setup

Framework. We model the decision process of the market maker as a Markov decision process
M = ⟨S, (As)s∈S , p, (us)s∈S , δ⟩. Let s ∈ S denote the state, where the set S is finite, and let
As denote the finite set of actions for the market maker in state s. The state evolves according
to the transition function p : S × As → ∆(S), where ∆(S) is the set of probability measures
on S. We denote by p(s′|s, a) the probability that the subsequent state is s′ given that the current
state is s and action a is played. At every time step t, the payoff is given by a utility function
u : S × As × S → R, where |u(s, a, s′)| < ∞ for all a ∈ As and s, s′ ∈ S . The payoff from the
utility function u(s, a, s′) depends on the transition from state s to state s′ under action a. Finally,
δ ∈ [0, 1) is the parameter with which the market maker discounts the future stream of payoffs.

Strategies. We assume that the market maker uses an algorithm to learn a time-invariant strategy
that depends only on the state s, i.e., we consider stationary Markov strategies. A stationary
Markov strategy describes a mapping to a set of probability measures on As for each state s,
i.e., σ ∈ ΣSM =

∏
s∈S ∆(As) such that σ : S → ∆(As). Similarly, a stationary pure Markov

strategy describes a mapping to an action As for each state s, i.e., σ ∈ ΣSPM =
∏

s∈S As such
that σ : S → As. More generally, a strategy is a mapping from the set of all possible histories to a
set of probability measures on As, i.e., σ ∈ Σ such that σ : H → ∆(As), where H = ∪∞

t=0Ht and
Ht satisfies the recursion Ht = Ht−1 ×S ×∪s∈SAs with H0 = S. In general, a strategy need not
be time-invariant.

The restriction to stationary Markov strategies is essential for a learning algorithm to find
an optimal strategy because it significantly reduces the space of possible strategies. Hence, an
algorithm does not need to search for an optimal strategy over the space of all possible (history-
dependent) contingency plans. Our focus on stationary Markov strategies is not restrictive be-
cause classical results (given below) show that there exists a stationary pure Markov strategy that
achieves the same optimality criteria as an optimal strategy from Σ. Indeed, most learning algo-
rithms search for an optimal strategy in the space of stationary Markov strategies.

Optimality Criteria. The value of a strategy σ ∈ ΣSM ,ΣSPM ,Σ that starts in state s is the con-
tinuation value of the strategy from state s, i.e., the expected discounted stream of payoffs from
implementing strategy σ is given by

υs(σ) = Eσ

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s

]
, (2)
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where the expectation in (2) is with respect to the strategy σ. That is, actions are sampled from σ

and the expectation is taken over p(st+1|st, at).
For a fixed value of the discount parameter δ ∈ [0, 1), the optimal continuation value is given

by υ∗
s = supσ∈Σ υs(σ). Existence and uniqueness of υ∗ = (υ∗

s)s∈S is guaranteed by Theorem
6.2.5a in Puterman (1994). Therefore, an optimal strategy σ∗ ∈ ΣSM ,ΣSPM ,Σ exists if υ∗

s =

υs(σ
∗) ≥ υs(σ) for all s ∈ S and all σ ∈ Σ. Crucially, Theorem 6.2.10 in Puterman (1994)

guarantees that there exists an optimal stationary pure Markov strategy σ∗ ∈ ΣSPM , such that
υs(σ

∗) ≥ υs(σ) for all s ∈ S and all σ ∈ Σ.
Therefore, with these theoretical guarantees, we ignore all strategies that are history-dependent

contingency plans, and for the remainder of the paper, a strategy refers to a stationary Markov
strategy, and a pure strategy refers to a stationary pure Markov strategy.

3.2. Trading Environment

We present our model of the limit order book. Many of our assumptions are for tractability
purposes and conform with the market dynamics described in Section 2. We use the midpoint of
the bid-ask spread as a proxy for the fundamental value of the asset Z. At each time point, the
value of the asset either goes to Z + φ with probability β ∈ (0, 1), or goes down to Z − φ with
probability 1− β, where φ > 0 is the tick size. The fundamental value of the asset is a martingale
when β = 0.5, and it drifts up or down when β > 0.5 or β < 0.5, respectively.

States. The set of states S is the Cartesian product of a set of environmental variables Ω and the
inventory of the market maker Q, i.e., S = Ω × Q. We restrict the level of inventory to the set
Q = {−q̄, ..., 0, ..., q̄}, where q̄ is some positive integer. The set Ω contains a finite number of
environmental variables which are relevant features of the order book and that affect the payoffs
the market maker receives. Here, the elements of Ω are the three regimes of volume imbalance in
the limit order book, i.e., ω ∈ Ω = {BH,N, SH}, because spoofing is the focus of our analysis.

As discussed in Section 2, volume imbalance affects the behavior of market participants, and
therefore affects the probability with which a limit order is filled. To capture this effect, let pbω ∈
(0, 1) and paω ∈ (0, 1) denote the probability that a limit buy and a limit sell order, respectively,
are filled in [t, t + 1) for each regime ω ∈ Ω.9 These fill probabilities account for the effect of

9In addition to affecting the fill probabilities, volume imbalance has substantial explanatory power in predicting
future price movements (see e.g., Harris and Panchapagesan, 2005; Cao et al., 2009). Therefore, submitting a spoof
order may change the volume imbalance regime, which may affect future price movements; however, it should not
affect the fundamental value of the asset because spoof orders contain no real information about the fundamentals. In
our model, we do not model how volume imbalance affects future price movements because we use the midpoint of
the bid-ask spread as a proxy for the fundamental value of the asset. This prevents unnecessary complications that
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time-priority in the limit order book and need not sum to unity. Our empirical results in Section 2
(see Table 7) show that the fill probabilities of bids and offers are similar (i.e., pbN ≈ paN ) when
the book is neutral, the fill probabilities of offers are higher (i.e., pbBH ≪ paBH) when the book
is buy-heavy, and the fill probabilities of bids are higher (i.e., pbSH ≫ paSH) when the book is
sell-heavy.

Actions. The market maker does not endow the algorithm with an action that spoofs the order
book. Instead, we focus on how an innocuous set of actions leads to spoofing when individual
actions are sequenced in a particular order. That is, spoofing occurs when the set of actions pro-
duces unintended manipulative behavior as a consequence of a learning algorithm dynamically
optimizing the market maker’s optimality criteria.

The set of actions at time t consists of:

• Submit a buy limit order (LB) on the best bid or a sell limit order (LS) on the best offer for
one unit of the asset. If the limit order is not executed between [t, t + 1), then the order is
cancelled before the start of t+ 1.

• Submit a large buy limit order (LLB) on the best bid or a large sell limit order (LLS) on the
best offer and cancel the order before the start of t+ 1.

• Submit a market order to buy (MB) or to sell (MS) one unit of the asset.

• Do nothing (DN ).

When a large limit order is submitted, the probability that the spoof order is filled is low. Recall
that when the large limit buy (limit sell) tilts the book to buy-heavy (sell-heavy), Table 1 shows
that the arrival rate of sell (buy) market orders is very low. To simplify the subsequent analysis
and presentation of our model, we assume that at most one unit of the large limit order can be
executed.

We do not model the strategic cancellation of limit orders for the sake of analytical tractabil-
ity.10 Rather, we focus on when algorithms learn to create misleading information to buy or to sell
an asset with a higher probability than was otherwise likely to occur, which is the key feature that

arise when computing the change in wealth for the payoffs received as a consequence of submitting a spoof order.
Instead, our analysis focuses specifically on how spoof orders affect the fill probabilities, and how the fill probabilities
affect the payoffs at the next period.

10Including cancellation of an order as part of the action prevents us from including an additional state variable
that tracks if a market maker has an outstanding order in the book. Additionally, the fill probability between time
[t, t+ 1) and [t+ 1, t+ 2) for a limit order submitted at time t is not the same unless the fill probability is Markov.
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enables spoofing. Explicitly cancelling a limit order, i.e., sending an instruction to the exchange
to cancel an outstanding limit order, is not necessary in Nasdaq if the limit order is submitted with
a time-in-force between t and t+ 1 because the limit order expires at time t+ 1.

The set of actions available to the market maker depends on the state s ∈ S. The market maker
has access to the full set of actions As = {LB,LS, LLB,LLS,MB,MS,DN} when s = (ω, q)

for all ω ∈ Ω and for all q ∈ Q\{q̄,−q̄}. At the boundaries of the inventory constraint, the market
maker does not buy or does not sell any additional assets. That is, the set of actions reduces to
As = {LS,LLS,MS,DN} when s = (ω, q̄) for all ω ∈ Ω, and to As = {LB,LLB,MB,DN}
when s = (ω,−q̄) for all ω ∈ Ω.

In this setup, no individual action spoofs the order book. However, if a large buy (sell) limit
order is placed at time t and the following action at time t + 1 is a sell (buy) limit order, then this
sequence of actions spoofs the order book; we formalize this later in Definition 1.

Transition Dynamics. We present the transition dynamics over the set Q and Ω separately to
simplify the presentation, and recall that the set of states is S = Ω×Q.

The transition dynamics of the inventory level is intuitive. If an action resulted in a buy trans-
action, then the level of inventory increases by one unit, i.e., qt+1 = qt + 1; if an action resulted
in a sell transaction, then the level of inventory decreases by one unit, i.e., qt+1 = qt − 1; and
if an action resulted in no transaction, then the level of inventory stays the same, i.e., qt+1 = qt.
The transition probabilities depend on the action taken and the fill probabilities (for limit order
submissions). Figure 1a presents the state transition diagram when the current state is q ∈ Q. The
edges indicate the transition probability conditional on the action taken.

The transition probabilities of the volume imbalance regime depend on two distinct cases:
when a small or no order is submitted, i.e., a ∈ {LB,LS,MB,MS,DN}, and when a large order
is submitted, i.e., a ∈ {LLB,LLS}. When a small or no order is submitted, volume imbalance
evolves according to the baseline dynamics in Figure 1b because unit orders and no orders have
little to no impact on the liquidity at the best bid-ask quotes, and hence have little to no impact on
the volume imbalance in (1).

On the other hand, when a large limit order is submitted, the volume of the buy (sell) limit order
is large enough to tilt the volume imbalance regime to the buy-heavy (the sell-heavy) regime. If
we ignore the change in behavior of other market participants, then the volume imbalance regime
changes at time t and reverts back before time t + 1 because of the timing of submission and
cancellation of large limit orders posted by the market maker. However, in Section 2, we saw
that market participants adjust their own liquidity provision. Empirically, we have the following
observations: (i) the average volume of limit orders and limit order cancellations is similar in size
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pbω|LB,LLB
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(a) Transition dynamics and probabilities conditional
on the action starting from state q ∈ Q.
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pBH|SH
pSH|SH

pN |BH

pSH|BH

pBH|BH

(b) Transition dynamics and probabilities conditional on small orders
or no orders, i.e., a ∈ {LB,LS,MB,MS,DN}.

Figure 1: State transition diagram of (a) the level of inventory, and (b) the volume imbalance regime.

under each volume imbalance regime, but the arrival rates of limit orders are higher than the arrival
rates of limit order cancellations, and (ii) there are more buy (sell) limit orders than sell (buy) limit
orders when the book is buy-heavy (sell-heavy). Therefore, the empirical results show that market
participants adjust their own liquidity provision to submit more limit orders to the same side of
the book as the market maker’s large limit order. However, market participants can never react
instantaneously and will have a delay when reacting to a large limit order from the market maker.
Such delay can occur for a number of reasons, for example, other market participants do not have
the monitoring capabilities (i.e., latency, see Aquilina et al., 2021), or do not have the infrastructure
to react immediately.

The effect of the delay and change in liquidity provision is that the volume imbalance regime
at time t + 1 corresponds to the change in regime caused by the market maker’s large limit or-
der at time t. Therefore, when a large limit order is submitted, the volume imbalance regime
moves to the buy-heavy (the sell-heavy) regime with probability one at the next time step, i.e.,
p(BH |ω, LLB) = 1 and p(SH |ω, LLS) = 1 for all ω ∈ Ω, and the change in fill probabilities
comes into effect at time t+ 1 (as a consequence of the delay); in Section 7.1 below, we consider
the case where the spoof order does not always succeed in manipulating the tilt of the book.

These stylized facts are important for unintentional spoofing to occur. They create the nec-
essary temporal link between past actions and future actions of the market maker so spoofing
becomes dynamically optimal as a sequence of actions. Thus, spoofing emerges as an optimal
sequence of actions even if the market maker does not explicitly encode spoofing as a possible
action into the learning algorithm.
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Utility. The market maker is averse to holding inventory and maximizes the present value of her
wealth. The wealth W = X + Z q of the market maker is the sum of her cash position X and the
marked-to-market value of the inventory Z q, where Z is the fundamental value of the asset that
is proxied by the midpoint of the bid-ask spread. To cast the market maker’s objective into the
optimization problem of a learning algorithm, we write the one-step utility as

u(s, a, s′) = Y (s, a, s′)− α (q′)2 , (3)

where q′ ∈ Q is the inventory after action a and α > 0 is the inventory aversion parameter.11

The quadratic penalty ensures that the utility function is concave in the level of inventory. Hence,
the inventory aversion parameter α affects the willingness of the market maker to take on larger
levels, long or short, of inventory. For example, as the value of α increases, the market maker is
more averse to inventory risk so she is less willing to increase the level of inventory, long or short.
On the other hand, Y (s, a, s′) is the change in wealth as a consequence of action a ∈ As in state
s ∈ S. For a value of the tick size φ > 0, the expected change in wealth from state s = (ω, q) ∈ S
and taking action a ∈ As is given by

E [Y (s, a, s′)] =



pbω ϑ/2 + (2 β − 1) (φ q + pbω φ) for a = {LB,LLB} ,

paω ϑ/2 + (2 β − 1) (φ q − paω φ) for a = {LS,LLS} ,

−ϑ/2 + (2 β − 1) (φ q + φ) for a = MB ,

−ϑ/2 + (2 β − 1) (φ q + φ) for a = MS ,

(2 β − 1)φ q for a = DN ,

where the expectation is taken with respect to the fundamental value of the asset Z and the fill
probabilities pbω, p

a
ω of limit orders, and ϑ > 0 is the expected quoted spread.

With this one-step utility function, the optimal continuation value is given by

sup
σ∈Σ

Eσ

[
∞∑
t=0

δt
(
Y (st, at, st+1) + α q2t+1

) ∣∣∣∣∣ s0 = s

]
, (4)

which corresponds to maximizing the present value of wealth subject to a running inventory
penalty.12 The optimization problem in (4) is similar to the optimization problem posed in O’Hara

11The units of α are such that (4) is in units of wealth. In our model, the value of α is allowed to range between
(0,∞), but in practice, as a rule-of-thumb, the value of α must be several orders of magnitudes smaller than the
expected quoted spread, i.e., α ≪ ϑ, otherwise the market maker will not be willing to make markets.

12In (4), the payoffs received depends on the realization of the inventory level at the next time step; however, the
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and Oldfield (1986) where they assume a negative exponential for the one-step utility function.
Our choice of (3) leads to a clear interpretation of the continuation value, and it also simplifies our
analysis in the next section.

The objective to maximize wealth subject to a running inventory penalty is closely related to
robustness and ambiguity aversion from Hansen and Sargent (2007). Specifically, Cartea et al.
(2017) show in a related problem that the market maker’s objective of maximizing wealth subject
to a running inventory penalty is equivalent to a risk-neutral to inventory market maker who is
ambiguous to the drift of the fundamental value of the asset.

Finally, the optimality criterion in (3) produces behavior consistent with inventory models. The
behavior of the optimal strategy depends on the level of inventory, and there is a preferred inventory
position (the preferred inventory position is zero when the fundamental price is a martingale),
which is consistent with the results of Amihud and Mendelson (1986).13 The optimal strategy also
prefers to sell if inventory is long and prefers to buy if inventory is short, which is consistent with
the results of Stoll (1978) and Ho and Stoll (1981).

For simplicity, the remainder of the paper assumes that the fundamental value of the asset is a
martingale, i.e., β = 0.5, so that the expected one-step utility from state s = (ω, q) ∈ S and taking
action a ∈ As is given by

ū(s, a) =



pbω ϑ/2− α pbω (q + 1)2 − α (1− pbω) q
2 for a = {LB,LLB} ,

paω ϑ/2− α paω (q − 1)2 − α (1− paω) q
2 for a = {LS,LLS} ,

−ϑ/2− α (q + 1)2 for a = MB ,

−ϑ/2− α (q − 1)2 for a = MS ,

−α q2 for a = DN .

4. Theory

This section derives conditions to test if spoofing will occur when decision making is delegated
to a learning algorithm. Our analysis focuses on q ̸= 0, where the overall intention is to buy or to
sell the asset so that inventory reverts to the preferred position q = 0. When q = 0, the additional
work (and complications that arise) provides no additional insights beyond those conveyed when
q ̸= 0.

payoffs are discounted from the start of the period. The timing of the payoffs is constructed to fit within the framework
of learning algorithms, where the payoffs are assumed to be immediate. This construction presents no issue in (4)
because of the expectation operator, and the timing is also consistent with the model of O’Hara and Oldfield (1986).

13See also Madhavan and Smidt (1993) and Hasbrouck and Sofianos (1993) who examine this preferred inventory
position in more detail.
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Throughout the paper, we maintain the following assumptions on the parameters of our model.

Assumption The expected quoted spread and the inventory aversion parameter are both greater

than zero (i.e., ϑ > 0 and α > 0), the fill probabilities pbω ∈ (0, 1) and paω ∈ (0, 1) for all ω ∈ Ω,

and the market maker is not myopic, i.e., δ > 0.

4.1. Optimal Strategy

The optimal strategy satisfies Bellman’s optimality equations, so the optimal action in each
state s = (ω, q) ∈ S is given by

a∗ = argmax
a∈As

{
ū(s, a) + δ

∑
ω′∈Ω

p(ω′|ω, a)
∑
q′∈Q

p(q′|q, a) υ∗
ω′,q′

}
, (5)

where υ∗ is the optimal continuation value. The optimal action is non-myopic and balances the
immediate expected payoff ū(s, a) with the expected future stream of discounted payoffs. Hence,
the optimal action takes into account how the current action will affect the transition to subsequent
states s, and therefore accounts for how the current action will affect future actions.

To gain some insight into the optimal strategy, the following lemma shows that the optimal
continuation value υ∗ decreases in value as the level of inventory deviates further away from zero.
The implication is that the optimal continuation value υ∗ achieves its maximum value at zero
inventory.

Lemma 1 For q ≥ 0, the optimal continuation value υ∗
ω,q is non-increasing as q increases, i.e.,

when 0 ≤ q′ ≤ q, we have υ∗
ω,q ≤ υ∗

ω,q′ for all ω ∈ Ω. Similarly, for q ≤ 0, the optimal continuation

value υ∗
ω,q is non-decreasing as q increases, i.e., when q′ ≤ q ≤ 0, we have υ∗

ω,q′ ≤ υ∗
ω,q for all

ω ∈ Ω.

The result is intuitive because the market maker’s aversion to higher levels of inventory and
because the fundamental value of the asset is a martingale. One implication is that the preferred
level of inventory is zero because it leads to the highest expected stream of discounted payoffs;
hence, optimal strategies will induce mean reversion to zero inventory. The concavity of the
optimal continuation value υ∗

ω,q as a function of inventory holds for each volume imbalance regime
ω. The relationship between the optimal continuation value υ∗

ω,q and the volume imbalance regimes
is key for spoofing to be optimal.

The following lemma eliminates suboptimal actions, which reduces the number of actions to
consider when solving (5).
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Lemma 2 For all volume imbalance regimes ω ∈ Ω, the following two statements hold. The

actions do nothing (i.e., DN) and market buy order (i.e., MB) are suboptimal if q > 0. The actions

do nothing (i.e., DN) and market sell order (i.e., MS) are suboptimal if q < 0.

The following proposition characterizes the optimal action for each state s = (ω, q) when
q ̸= 0. The optimal action is characterized in terms of the value of the inventory aversion parameter
α, i.e., the willingness to hold inventory. Figure 2 shows the optimal action as a function of the
value of the inventory aversion parameter α when q > 0. For each pair of neighboring actions in
Figure 2, there is a cutoff value of α such that the optimal strategy is indifferent between the two
actions because they yield the same expected stream of discounted payoffs. Hence, for a given
value of α, the optimal action is one that maximizes the expected stream of discounted payoffs.

α0(ω, q) α1(ω, q) α2(ω, q) α3(ω, q)

LB LLB LLS LS MS

Figure 2: Optimal action choice for each state s = (ω, q) for q > 0.

For the remainder of the paper, we denote x ∨ y = max{x, y}, and x ∧ y = min{x, y}.

Proposition 1 Let q > 0 and assume paSH < paN < paBH holds. Then, for each state s = (ω, q),

there exist cutoff values of the inventory aversion parameter α0(ω, q) < α1(ω, q) < α2(ω, q) <

α3(ω, q) such that the optimal stationary pure Markov strategy σ∗ ∈ ΣSPM is given by

σ∗(ω, q) =



LB if α ∈
(
0, 0 ∨ α0(ω, q)

)
,

LLB if α ∈
(
0 ∨ α0(ω, q), 0 ∨ α1(ω, q)

)
,

LLS if α ∈
(
0 ∨ α1(ω, q), 0 ∨ α2(ω, q)

)
,

LS if α ∈
(
0 ∨ α2(ω, q), 0 ∨ α3(ω, q)

)
,

MS if α ∈
(
0 ∨ α3(ω, q),+∞

)
.

Similarly, let q < 0 and assume pbSH > pbN > pbBH holds. Then, for each state s = (ω, q), there

exist cutoff values of the inventory aversion parameter α0(ω, q) < α1(ω, q) < α2(ω, q) < α3(ω, q)
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such that the optimal stationary pure Markov strategy σ∗ ∈ ΣSPM is given by

σ∗(ω, q) =



LS if α ∈
(
0, 0 ∨ α0(ω, q)

)
,

LLS if α ∈
(
0 ∨ α0(ω, q), 0 ∨ α1(ω, q)

)
,

LLB if α ∈
(
0 ∨ α1(ω, q), 0 ∨ α2(ω, q)

)
,

LB if α ∈
(
0 ∨ α2(ω, q), 0 ∨ α3(ω, q)

)
,

MB if α ∈
(
0 ∨ α3(ω, q),+∞

)
.

In general, the cutoff values α0(ω, q), α1(ω, q), and α3(ω, q) are different for positive and
negative inventory. However, the cutoff values are the same for positive and negative of inventory
in the particular case when paBH = pbSH , paSH = pbBH , and paN = pbN , and when the transition
probability matrix for the Markov chain given in Figure 1b is a centrosymmetric matrix (i.e., a
matrix that is symmetric about its center).

For q > 0 and α = α0(s), the optimal strategy is indifferent between a buy limit order and
a large buy limit order in state s; similarly, for q < 0 and α = α0(s), the optimal strategy is
indifferent between a sell limit order and a large sell limit order in state s. A similar interpretation
applies to the remaining cutoff values α1(s), α2(s), and α3(s). For all pairwise actions, there is a
preference among the actions, where the preference depends on the inventory aversion parameter
α. The conditions in the proposition include the maximum operator because the inventory aversion
parameter is strictly positive and there is no guarantee that the cutoff values are positive. The
conditions on the fill probabilities are not restrictive because they hold for all assets and all the
timescales considered (see Table 7).

The proposition is intuitive because the optimal strategy induces mean reversion to zero in-
ventory. For example, when there is less willingness to hold larger values of inventory (i.e., for
large values of α), the action preference favors actions that aim to sell the asset and reduce the
level of inventory when q > 0, and the action preference favors actions that aim to buy the asset
and increase the level of inventory when q < 0. Similarly, for a fixed value of α, as the level
of inventory deviates away from zero, the cutoff value α1(ω, q) shifts closer to zero (the value of
ᾱ1(ω, q) in (6) decreases as the absolute value of q increases). Hence, the action preference favors
actions that aim at selling the asset to reduce the level of inventory when q > 0, and that aim at
buying the asset to increase the level of inventory when q < 0.
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4.2. Spoofing

To derive the conditions to test if algorithms will learn to spoof the order book, we first define
spoofing in terms of the set of actions available. Recall that an explicit consideration of our model
is that the market maker does not endow her algorithm with an individual action that spoofs the
book; rather, as the following definition captures, spoofing in our model occurs when a particular
combination of actions is sequenced together.

Definition 1 (Spoofing) Spoofing occurs if a large buy (sell) limit order is placed at time t, and it

is followed at time t+ 1 by a unit or large sell (buy) limit order.

Spoofing in our model is consistent with previous models in the literature and achieves the
same effect as those of the various ways in which one can spoof the order book (see e.g., Fox
et al., 2021). For instance, the spoof order does not have to be posted at the best bid or the best
ask, it can be placed away from the best quotes. Alternatively, the spoof order can be sent to
the exchange after the order that is intended to result in a transaction. Common to all forms of
spoofing is that an action creates misleading information about the bids or offers of an asset (i.e.,
misleading information about buy and sell pressure of the asset) so that one can buy or sell an
asset with a limit order at a higher probability than was otherwise likely to occur. In our model,
the large limit order placed at time t creates misleading information about the bids or offers of the
asset, so at time t + 1, the limit order on the other side of the spread enjoys a higher execution
probability because of the change in the arrival rates of market orders caused by the large limit
order placed at time t.

Definition 1 is a general description of spoofing in our model. However, in our analysis, we
account for the intention to buy or to sell an asset when we characterize spoofing. The continuation
value of the market maker’s value function is highest when q = 0 because the fundamental value
of the asset is a martingale. Thus, when q > 0, the intention is to sell the asset to revert the
inventory level to zero; here, spoofing occurs when a large buy limit order is placed at time t, and
at time t+ 1, it is followed by a unit or large sell limit order. Similarly, when q < 0, the intention
is to buy the asset to revert the inventory level to zero; so spoofing occurs when a large sell limit
order is placed at time t, and at time t+ 1, it is followed by a unit or large buy limit order.

One consequence of spoofing is that the spoof order may get caught out and lead to a transac-
tion. We distinguish this possibility into two cases. Type I spoofing occurs when the spoof order
is not caught out, i.e., it is not filled. Specifically, type I spoofing is the sequence initiated by
LLB in state s = (ω, q) and followed by LS or LLS in state s′ = (BH, q) when q > 0, or the
sequence initiated by LLS in state s = (ω, q) and followed by LB or LLB in state s′ = (SH, q)
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Type I:

Spoofing

0 α0(ω, q) α1(ω, q)

LLB

Starting in s = (ω, q)

at time t

α1(ω
′, q′) α2(ω

′, q′) α3(ω
′, q′)

LLB LS LLS MS Transition to s′ = (BH, q)
at time t+ 1

Type II:

Spoofing

0 α0(ω, q) α1(ω, q)

LLB

Starting in s = (ω, q)

at time t

α1(ω
′, q′) α2(ω

′, q′) α3(ω
′, q′)

LLB LS LLS MS Transition to s′ = (BH, q + 1)
at time t+ 1

Figure 3: Spoofing is optimal when the value of the inventory aversion parameter α lies within the shaded region for
q > 0. The top panel describes type I spoofing, and the bottom panel describes type II spoofing.

when q < 0. On the other hand, type II spoofing occurs when the spoof order is caught out, i.e., it
gets filled. Specifically, type II spoofing is the sequence initiated by LLB in state s = (ω, q) and
followed by LS or LLS in state s′ = (BH, q + 1) when q > 0, or the sequence initiated by LLS

in state s = (ω, q) and followed by LB or LLB in state s′ = (SH, q − 1) when q < 0.
Figure 3 illustrates the two types of optimal spoofing when q > 0. Here, spoofing occurs if

the value of the inventory aversion parameter α is within the shaded region. We say that spoofing
occurs in state s = (ω, q) if the optimal action is to submit a large buy limit order in state s =

(ω, q), and when the market transitions to the subsequent state s′ the optimal strategy prescribes to
submit either a sell limit order or a large sell limit order. From the figure, there are values of the
inventory aversion parameter α where spoofing occurs (i) regardless of whether the spoof order
was caught out or not, and (ii) only if the spoof order does not get caught out.

We formalize the definition of spoofing in the context of an optimal strategy. We adopt the
standard convention that the interval (x, y) = ∅ if x ≥ y, and recall that x ∨ y = max{x, y}, and
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x ∧ y = min{x, y}.

Definition 2 (Spoofing Strategy) If there exists a state s = (ω, q) such that

(i) ∅ ≠ I1(s) =


(
0 ∨ α0(ω, q) ∨ α1(BH, q),

(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(BH, q)

))
if q > 0 ,(

0 ∨ α0(ω, q) ∨ α1(SH, q),
(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(SH, q)

))
if q < 0 ,

or

(ii) ∅ ≠ I2(s) =


(
0 ∨ α0(ω, q) ∨ α1(BH, q + 1),

(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(BH, q + 1)

))
if q > 0 ,(

0 ∨ α0(ω, q) ∨ α1(SH, q − 1),
(
0 ∨ α1(ω, q)

)
∧
(
0 ∨ α3(SH, q − 1)

))
if q < 0 .

Then, if the value of the inventory aversion parameter α ∈ I1(s), the optimal strategy is a spoofing

strategy, where type I spoofing occurs in states s where condition (i) is satisfied. Similarly, if the

value of the inventory aversion parameter α ∈ I2(s), the optimal strategy is a spoofing strategy,

where type II spoofing occurs in states s where condition (ii) is satisfied.

The intervals I1(s) and I2(s) describe conditions for spoofing to be dynamically optimal as a
sequence of actions. Specifically, if α ∈ I1(s) or α ∈ I2(s), then spoofing occurs in state s; if
α ∈ I1(s), then spoofing occurs in state s when the spoof order is not filled; if α ∈ I2(s), then
spoofing occurs in state s when the spoof order is filled; and if α ∈ I1(s) and α ∈ I2(s), then
spoofing occurs in state s regardless of whether the spoof order was filled or not.

4.3. Testable Conditions

To obtain testable conditions that apply to a wide variety of learning algorithms, we make the
following assumption.

Assumption A The learning algorithm used by the market maker learns an optimal stationary

pure Markov strategy σ∗ ∈ ΣSPM .

This assumption is not restrictive and allows us to analyze the framework where algorithms
learn optimal strategies so that the testable conditions we derive apply to generic learning algo-
rithms. The premise and objective of designing a learning algorithm is to learn an optimal sta-
tionary pure Markov strategy. Indeed, the most popular offline learning algorithms (such as policy
iteration and value iteration) and online learning algorithms (such as Q-learning and SARSA)
satisfy this assumption (see for example Puterman, 1994; Sutton and Barto, 2018).14

14See Watkins and Dayan (1992) for a convergence proof of Q-learning and Singh et al. (2000) for a convergence
proof of SARSA. See also Hambly et al. (2023), Ning et al. (2021), and Spooner et al. (2018) for applications of
learning algorithms in financial markets that satisfy this assumption.
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Clearly, when Assumption A and the conditions for spoofing in Definition 2 hold, the algo-
rithm will learn a spoofing strategy. The issue is that the intervals I1(s) and I2(s) may be empty.
Additionally, the intervals depend on the cutoff values, which in turn, depend on the parameters
of the model and on the optimal continuation value υ∗. The following theorem provides sufficient
conditions to determine if algorithms will learn spoofing strategies. These conditions depend only
on the fill probabilities of the limit orders.

Theorem 1 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If the conditions

pbBH < paBH (C1)

and

paSH < pbSH (C2)

hold, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i) s = (SH, q > 0), (ii) s = (BH, q <

0), and (iii) s = (N, q) for either q > 0 or q < 0.

These testable conditions have strong implications summarized in the following corollary.

Corollary 1 Let the following hold: (i) Assumption A, (ii) paSH < paN < paBH and pbSH > pbN >

pbBH , and (iii) (C1) and (C2). Then, for any state s = (ω, q) outlined in Theorem 1, there exist

values of the inventory aversion parameter α for which the algorithm will learn a type I spoofing

strategy in state s; similarly, there exist values of the inventory aversion parameter α for which

the algorithm will learn a type II spoofing strategy in state s.

In short, if the fill probabilities satisfy certain conditions, then there are values of the inventory
aversion parameter α where an algorithm will learn a spoofing strategy in which type I and/or type
II spoofing occurs in state s. Whether both types or only one type is learned depends on the value
of the inventory aversion parameter α and whether or not the intervals I1(s) and I2(s) overlap.

The role of the conditions in Theorem 1 is intuitive. The conditions for the fill probabilities
of the ask and of the bid are so that the ordering of action preferences in Proposition 1 hold. For
q > 0, condition (C1) ensures that buy limit orders are not optimal when the book is buy-heavy,
while condition (C2) ensures that there are values of the inventory aversion parameter α for which
it is optimal to initiate the spoofing sequence with a large buy limit order in sell-heavy. Similarly,
for q < 0, condition (C2) ensures that sell limit orders are not optimal when the book is sell-heavy,
while condition (C1) ensures that there are values of the inventory aversion parameter α for which
it is optimal to initiate the spoofing sequence with a large sell limit order in the buy-heavy state.
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For the neutral regime, conditions (C1) and (C2) ensure that the spoofing sequence will be
completed for positive inventory and negative inventory, respectively. Although we show that there
are values of the inventory aversion parameter α for which it is optimal to initiate the spoofing
sequence, we do not know if the spoofing sequence is initiated with a large buy limit order for
q > 0, or if the spoofing sequence is initiated with a large sell limit order for q < 0. The following
theorem imposes stronger conditions to resolve this indeterminacy.

Theorem 2 Let paSH < paN < paBH , pbSH > pbN > pbBH , (C1) and (C2) hold, and let

paBH − pbSH < min

{
(pbSH − pbN)

pN |BH

pBH|BH

, (pbSH − pbN)
pN |N

pBH|N

}
pbSH − paBH < min

{
(paBH − paN)

pN |SH

pSH|SH
, (paBH − paN)

pN |N

pSH|N

} (C3)

hold.

2.1 If (pbN − paN) >
δ

1 + δ
(pbSH − paBH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all states

s = (N, q > 0).

2.2 If (paN − pbN) >
δ

1 + δ
(paBH − pbSH) holds, then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all states

s = (N, q < 0).

Condition (C3) is a formal condition to describe that the values of the fill probabilities paBH

and pbSH are similar, i.e., paBH ≈ pbSH . This condition simplifies the analysis to determine if the
spoofing sequence is initiated in the neutral regime with a large buy limit order for q > 0, or
if the spoofing sequence is initiated with a large sell limit order for q < 0. On the other hand,
the conditions (pbN − paN) >

δ
1+δ

(pbSH − paBH) and (paN − pbN) >
δ

1+δ
(paBH − pbSH) describe the

condition to determine if spoofing occurs when inventory is long or short in the neutral regime.
These conditions are such that one inequality will always hold, but never both or neither.

One can think of the fill probabilities in the neutral regime as the short-term incentives asso-
ciated with the immediate payoffs, and the fill probabilities in the heavy regimes as the long-term
incentives associated with discounted future payoffs. The intuition behind these conditions is
clear. If the signs of pbN − paN and pbSH − paBH are different, then the short-term and long-term
incentives align. On the other hand, if the signs of pbN − paN and pbSH − paBH are the same, then
the short-term and long-term incentives are not aligned, so the determining factor is the tradeoff
between short-term and long-term incentives.

For example, for spoofing to occur in the neutral regime for q > 0, it must be that there
are values of the inventory aversion parameter α for which it is optimal to initiate the spoofing
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sequence with a large buy limit order. If pbN > paN and pbSH < paBH , then the signs of pbN − paN and
pbSH − paBH are different, so the short-term and long-term incentives align because the immediate
payoff from a buy limit order is greater than that of a sell limit order, and the future payoffs from
being in buy-heavy (proxied with paBH) are better than the future payoffs from being in sell-heavy
(proxied with pbSH). Thus, it is clear that there are values of the inventory aversion parameter α
for which it is optimal to initiate the spoofing sequence with a large buy limit order because the
incentives align. On the other hand, if pbN > paN and pbSH > paBH , then the signs of pbN − paN
and pbSH − paBH are the same, so the short-term and long-term incentives are not aligned. In this
case, if the immediate payoff outweighs the discounted future payoffs, then there are values of
the inventory aversion parameter α for which it is optimal to initiate the spoofing sequence with a
large buy limit order.

Both Theorems 1 and 2 are sufficient (but not necessary) conditions for the intervals I1(s) and
I2(s) to exist. Hence, the theorems provide testable conditions when spoofing could be optimal;
however, failure to satisfy the conditions does not mean that spoofing cannot be optimal. Moreover,
the theorems do not specify the values of the inventory aversion parameter α for which spoofing is
optimal. To narrow the search for values of the inventory aversion parameter α where an algorithm
will learn to spoof the book, we derive an interval I ′(s) that contains both I1(s) and I2(s), which
uses the following upper bound.

Lemma 3 Let m ∈ (0, 1) be the minimum element of the transition probability matrix for the

Markov chain given in Figure 1b. Then for all ω, ω′ ∈ Ω and q ∈ Q, we have υ∗
ω,q − υ∗

ω′,q ≤ ϑ/m.

With this lemma, the following proposition characterizes the interval I ′(s) that contains both
I1(s) and I2(s), and does not depend on the optimal continuation value υ∗.

Proposition 2 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. For all s = (ω, q) when q ̸= 0,

the interval I ′(s) =
(
0, ᾱ1(ω, q)

)
is such that I1(s) ⊂ I ′(s) and I2(s) ⊂ I ′(s).

The interval I ′(s) is characterized in terms of the upper bound of the cutoff value α1(ω, q)

given by

α1(ω, q) ≤ ᾱ1(ω, q) =


[(

pbω − paω
)
ϑ/2 + ϑ/m

][
paω (2 q − 1) + pbω (2 q + 1)

]−1
if q > 0 ,[ (

paω − pbω
)
ϑ/2 + ϑ/m

][
− paω (2 q − 1)− pbω (2 q + 1)

]−1
if q < 0 ,

(6)

for all ω ∈ Ω. The value of ᾱ1(ω, q) is strictly positive, depends only on parameters of the model,
and is easy to compute. The interval I ′(s) narrows the search for values of the inventory aversion
parameter α for which an algorithm will learn a spoofing strategy.
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Indeed, α ∈ I ′(s) is a necessary but not a sufficient condition for an algorithm to learn a
spoofing strategy in state s. Specifically, not all values of α ∈ I ′(s) will lead to spoofing in state
s because not all values of α ∈ I ′(s) lie within I1(s) or I2(s). Nonetheless, if α /∈ I ′(s), then
an algorithm cannot learn a strategy that spoofs the order book in state s. In the next section, we
use this condition to analyze how parameters of the model affect an algorithm’s ability to learn to
spoof the order book.

5. Understanding Spoofing

This section analyzes the mechanics of what makes spoofing dynamically optimal. We then
analyze how parameters of the model affect spoofing.

5.1. Mechanics of Spoofing

Motivation to Spoof. Counter-intuitive to the motivation to spoof the book, we find that getting
caught out with a spoof order is not always suboptimal. Indeed, there are situations in which
spoofing occurs because the intention is for the spoof order to get filled. To show this, we analyze
if the market maker prefers that her spoof order is caught out, or if she prefers that her spoof order
does not get caught out. We compute

υs(LLB, filled) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = LLB, q1 = q0 + 1

]
,

υs(LLB, not filled) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = LLB, q1 = q0

]
,

(7)

which corresponds to the expected stream of discounted payoffs conditional on a spoof order
getting filled or not for q > 0. If υs(LLB, filled) > υs(LLB, not filled), then the market maker
prefers that her spoof order is caught out. Conversely, if υs(LLB, filled) < υs(LLB, not filled),
then the market prefers that her spoof order does not get caught out.

Figure 4 illustrates this preference with data from AMZN and CSCO at five-second decision
intervals. The model parameters are estimated with the dataset from Section 2, and the estimation
procedure is discussed in Section 6. With a discount factor of δ = 0.95, we solve for the optimal
strategy with the policy iteration algorithm and compute (7). The shaded region denotes the values
of the inventory aversion parameter where spoofing is optimal, i.e., I1(s)∪ I2(s). Spoofing is only
optimal for AMZN when the market maker prefers that her spoof order is caught out, so spoofing
occurs with the intention that the spoof order is filled. On the other hand, there are two cases
when spoofing is optimal for CSCO. One, for lower values of the inventory aversion parameter α,
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Figure 4: Expected stream of discounted payoffs when the spoof order is filled or not filled for s = (SH, q = 2).

spoofing is optimal when the market maker prefers that her spoof order is caught out. Two, for
higher values of the inventory aversion parameter α, there is a region where spoofing is optimal
when the market prefers that her spoof order does not get caught out.

A market maker who prefers that her spoof order is filled may seem counter-intuitive when
the motivation to spoof the book is to manage inventory risk. However, managing inventory risk
is only one part of the optimization problem to determine if spoofing is optimal. The market
maker may prefer that her spoof order is filled because the spoof order increases the probability
to complete an opportunistic round-trip trade; i.e., the additional profit from the opportunistic
round-trip trade outweighs the costs to manage inventory risk.

Mechanics of Spoofing. To analyze the mechanics behind spoofing, Figure 4 plots the optimal
continuation values υ∗

ω,q for each volume imbalance regime as a function of the inventory level.
The inventory aversion parameter is set as α = 10−5.

For each volume imbalance regime, there is a gravitational pull towards zero inventory because
υ∗
ω,q achieves its maximum at q = 0. However, the relationship between the optimal continuation

values υ∗
ω,q differs across the regimes, i.e., there is asymmetry between the regimes. This asym-

metry is key for spoofing to arise. Specifically, consider AMZN at ω = SH with q = 1, and focus
only on the expected discounted future payoffs. If the market maker tries to revert to zero inven-
tory with a sell limit order, then the expected discounted future payoffs is an expectation across
the optimal continuation values υ∗

ω,q for all regimes and for inventory levels q = 0 and q = 1.
On the other hand, if the market maker uses a spoof order (a large buy limit order), then the ex-
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Figure 5: Optimal continuation values υ∗
ω,q.

pected discounted future payoffs is an expectation across the optimal continuation values υ∗
ω,q for

buy-heavy and for inventory levels q = 1 and q = 2. This difference in the expected discounted
future payoffs induced by the asymmetry is a key factor that makes spoofing dynamically optimal.
Specifically, if this difference outweighs the gravitational pull to zero inventory and the immediate
payoffs, then spoofing becomes dynamically optimal.

The concavity of these curves decreases as the value of the inventory aversion parameter α
decreases. A decrease in the concavity increases the difference in the expected discounted future
payoffs induced by the asymmetry; hence, spoofing is more likely to become dynamically optimal
as the market maker becomes more tolerant to bearing inventory risk.

5.2. Model Parameters and Spoofing

Building on the insights behind the motivation to spoof the book, we formalize how parameters
of the model affect an algorithm’s ability to learn to spoof the order book. The results rely on
Proposition 2 so that if α /∈ I ′(s), then an algorithm cannot learn a strategy that spoofs the order
book in state s.

Inventory Aversion. The following proposition shows that if the market maker is sufficiently
averse to holding larger levels of inventory, then their algorithm will not learn to spoof the or-
der book.
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Proposition 3 Let Assumption A hold and let paSH < paN < paBH and pbSH > pbN > pbBH hold. If

the market maker’s inventory aversion parameter is such that

α > max
ω∈Ω, q∈{−1,1}

{ᾱ1(ω, q)} , (8)

then the algorithm will not learn to spoof the order book for any state s = (ω, q) where q ̸= 0.

For a fixed volume imbalance regime ω, the upper bound of the cutoff ᾱ1(ω, q) decreases
monotonically as the absolute value of q increases. When the value of the inventory aversion
parameter α satisfies (8), then α /∈ I ′(s) for all states s = (ω, q) where q ̸= 0, and the algorithm
will not learn a spoofing strategy for all q ̸= 0.

Conversely, if the value of the inventory aversion parameter does not satisfy the inequality in
(8), then α ∈ I ′(s) for some states s = (ω, q) where q ̸= 0. Here, there is a possibility that an
algorithm will learn a spoofing strategy, but it is not guaranteed.

The result is intuitive if we consider the factors that make spoofing dynamically optimal. When
initiating the spoofing sequence with a large limit order, there is a possibility that the large limit
order is filled. Therefore, if the market maker is sufficiently averse to holding larger levels of
inventory, then the cost associated with a spoof order getting filled is too high for spoofing to be
optimal; thus, the algorithm will not learn to spoof the order book.

Quoted Spread. The following proposition shows how the expected quoted spread affects an al-
gorithm’s ability to learn to spoof the order book.

Proposition 4 Let Assumption A hold and let paSH < paN < paBH and pbSH > pbN > pbBH hold. If

the expected quoted spread ϑ → 0, then the algorithm will not learn to spoof the order book for

any state s = (ω, q) where q ̸= 0.

The result follows because ᾱ1(ω, q) → 0 for all ω ∈ Ω and q ̸= 0 as ϑ → 0. This ensures that
for α > 0, we have α /∈ I ′(s) for all states s = (ω, q) where q ̸= 0, so the algorithm will not learn
a spoofing strategy.

Theory shows that the quoted bid-ask spread will not be zero even if the tick size is zero (i.e.,
φ = 0) because market makers must recover inventory costs (e.g., Stoll, 1978; Ho and Stoll, 1981),
and losses due to asymmetric information (e.g., Copeland and Galai, 1983; Glosten and Milgrom,
1985; Glosten, 1994). Nonetheless, the proposition demonstrates the relationship between the
expected quoted spread and spoofing. As the expected quoted spread decreases, the range of
values of the inventory aversion parameter for which spoofing is optimal decreases. Conversely,
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as the expected quoted spread increases, the range of values of the inventory aversion parameter
for which spoofing is optimal increases.

The result is also intuitive when one analyzes the factors that make spoofing optimal. First, as
the expected quoted spread decreases, the gains from using limit orders and the costs from using
market orders become negligible, so it is more efficient to revert to the preferred inventory position
using market orders because they guarantee execution. Therefore, the uncertainty of a limit order
execution and the possibility that a spoof order is caught out makes spoofing suboptimal. Finally,
as the expected quoted spread decreases, the expected profit from the opportunistic round-trip trade
also decreases. The decrease in the opportunistic profit does not outweigh the costs associated to
manage the inventory risk, and hence spoofing is suboptimal.

6. Empirical Estimation

This section uses Nasdaq data to test the conditions derived above. We discuss the estimation
procedure for the parameters of our model, and we use these estimates to determine if market
conditions from Nasdaq are conducive for an algorithm to learn to spoof the order book. We use
the dataset from Section 2.

Table 8 provides summary statistics for seven assets at three different decision intervals ∆t: 5
seconds, 1 second, and 0.5 seconds. We estimate the statistics by sampling the relevant features at
every decision interval.

6.1. Estimation Procedure

In our model, there are two sets of model parameters to estimate: the transition probabilities
of the volume imbalance regime pω′|ω for all ω, ω′ ∈ Ω, and the fill probabilities in each volume
imbalance regime paω and pbω for all ω ∈ Ω.

Transition probabilities. Let nω,ω′ denote the number of times that volume imbalance moved from
state ω to ω′. Then, from standard results, we have that

p̂ω′|ω =
nω,ω′∑
ω′′ nω,ω′′

,

where transitions from the end of one trading day to the start of the next trading day are excluded
from the count. Table 12 of Appendix B provides the estimates of the transition probability matrix
for the assets at the three different decision intervals.15

15The rows of the estimates of the transition probability matrix do not always sum to unity because we round the
estimates to the second decimal point.
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Table 8: Summary statistics for April 2023.

Ticker
Decision

interval ∆t

Ave. spread

(ticks)

Ave. queue

size best bid

Ave. queue

size best ask

Ave. volume

traded per ∆t

Ave. volume

imbalance

AAPL

5 seconds 1.168 583 600 1217 0.008

1 second 1.167 583 600 243 0.006

0.5 seconds 1.168 584 601 122 0.006

AMZN

5 second 1.205 532 572 1146 -0.027

1 seconds 1.206 532 571 229 -0.028

0.5 seconds 1.206 533 571 115 -0.027

CSCO

5 seconds 1.005 2088 2046 488 0.012

1 second 1.006 2100 2060 98 0.012

0.5 seconds 1.011 2120 2078 49 0.012

INTC

5 seconds 1.005 3378 3517 975 -0.014

1 second 1.005 3385 3530 195 -0.016

0.5 seconds 1.006 3405 3557 97 -0.017

MSFT

5 seconds 1.783 114 119 746 -0.021

1 second 1.784 114 119 149 -0.022

0.5 seconds 1.788 114 119 75 -0.022

TSLA

5 seconds 2.231 190 200 2089 -0.01

1 second 2.235 195 198 418 -0.01

0.5 seconds 2.232 194 198 209 -0.009

Fill probabilities. We estimate the fill probabilities with counterfactual analysis. Following Ar-
royo et al. (2023), we submit “hypothetical” limit orders (with unit volume) at the end of the best
bid and best ask queues at time t, and we track if the hypothetical order was filled between t and
t+1 following price-time priority. These hypothetical orders account for all the change in behavior
of market participants described in Section 2.

6.2. Spoofing Conditions

Table 9 uses the estimates from Tables 7 and 12 to check if conditions in Theorems 1 and 2 are
satisfied. The entry NA indicates that the conditions in Theorems 2.1 and 2.2 are not applicable
because condition (C3) does not hold.

For all assets and decision intervals considered, conditions (C1) and (C2) are satisfied. There-
fore, there are values of the inventory aversion parameter α where spoofing is optimal for s =

(SH, q > 0), s = (BH, q < 0), and s = (N, q) for either q > 0 or q < 0. On the other hand,
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Table 9: Testable conditions from Theorems 1 and 2.

Ticker
5 seconds 1 second 0.5 seconds

(C1), (C2) (C3) Side (C1), (C2) (C3) Side (C1), (C2) (C3) Side

AAPL ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0

AMZN ✓ ✓ q < 0 ✓ ✓ q > 0 ✓ ✓ q > 0

CSCO ✓ ✓ q < 0 ✓ ✓ q < 0 ✓ ✓ q > 0

INTC ✓ ✓ q > 0 ✓ ✓ q > 0 ✓ ✓ q > 0

MSFT ✓ ✓ q < 0 ✓ ✓ q > 0 ✓ ✗ NA

TSLA ✓ ✓ q < 0 ✓ ✓ q < 0 ✓ ✓ q < 0

condition (C3) allows one to determine if spoofing occurs in the neutral regime when inventory is
long or short.

Figure 6 in Appendix B plots ᾱ1(ω, q) as a function of inventory, so the area under the curves
describes the intervals I ′(s), where α ∈ I ′(s) is a necessary condition for the algorithm to learn
to spoof the order book. Therefore, for all assets and decision intervals considered, there exists
a range of values of the inventory aversion parameter α below the curve where an algorithm will
learn to spoof the book.

7. Extensions

This section analyzes extensions to our model, including additional testable conditions to de-
termine when algorithms will learn to spoof the order book.

7.1. Transition Probability

In our model, when a large limit order is submitted, the volume imbalance regime moves to the
buy-heavy (the sell-heavy) regime with probability one at the next time step, i.e., p(BH |ω, LLB) =

1 and p(SH |ω, LLS) = 1 for all ω ∈ Ω. Here, we relax the assumption so that a large buy (sell)
limit order moves the volume imbalance regime to buy-heavy (sell-heavy) with probability 1− κ,
and the volume imbalance moves to the “wrong” regime with probability κ/2, where κ ∈ [0, 1).
Formally, we have p(BH |ω, LLB) = 1− κ, p(N |ω, LLB) = κ/2, and p(SH |ω, LLB) = κ/2

when a large buy limit order is submitted; and p(SH |ω, LLS) = 1 − κ, p(N |ω, LLS) = κ/2,
and p(BH |ω, LLS) = κ/2 when a large sell limit order is submitted. We recover the original
model when κ = 0.

The following theorem shows that our testable conditions from Theorem 1 continue to hold
if the transition probabilities from large limit orders (i) tilt the volume imbalance regime into
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the appropriate heavy regime with a higher probability than the baseline transition dynamics in
Figure 1b, and (ii) tilt the volume imbalance regime into the wrong regime with a lower probability
than the baseline transition dynamics in Figure 1b.

Theorem 3 Let paSH < paN < paBH , pbSH > pbN > pbBH , (C1), and (C2) hold. If the transition
probabilities associated with large limit orders are such that

p(BH |ω,LLB) = 1− κ > pBH|ω , p(N |ω,LLB) =
κ

2
< pN |ω , p(SH |ω,LLB) =

κ

2
< pSH|ω ,

p(SH |ω,LLS) = 1− κ > pSH|ω , p(N |ω,LLS) = κ

2
< pN |ω , p(BH |ω,LLS) = κ

2
< pBH|ω ,

(C4)

hold for all ω ∈ Ω. Then I1(s) ̸= ∅ and I2(s) ̸= ∅ for all s ∈ S such that (i) s = (SH, q > 0), (ii)

s = (BH, q < 0), and (iii) s = (N, q) for either q > 0 or q < 0.

The conditions on the fill probabilities play the same role as before. However, condition (C4)
on the transition probabilities ensures large limit orders meaningfully affect the transition proba-
bilities so that one can exploit the benefits created by a spoof order, i.e., to facilitate the market
maker in reverting her inventory position, or to exploit an opportunistic round-trip trade.

For most assets in Table 12 of Appendix B, we see that condition (C4) holds for values of
κ ranging from 0.2 to 0.5 depending on the stock. Therefore, in certain instruments, if a spoof
order allows one to transition to the appropriate heavy regime half of the time, then spoofing can
become dynamically optimal. On the other hand, assets such as CSCO and INTC only hold for
small values of κ ranging from 0.04 to 0.2 depending on the decision interval. In these cases,
spoofing may no longer be dynamically optimal if a spoof order does not allow one to transition
to the appropriate heavy regime almost all of the time.

7.2. Finite Trading Horizon

Our analysis above focused on the tractable case with an infinite trading horizon because most
learning algorithms are designed for the infinite horizon setting. However, a finite horizon model
best captures intraday trading because many market makers close inventories before the end of the
trading day. To capture this, we assume the one-step utility at time T corresponds to DN . With a
finite trading horizon, theoretical results guarantee only that there exists an optimal non-stationary
pure Markov strategy (see for example Proposition 4.4.3 in Puterman, 1994), so the space of
strategies to search over significantly increases. This is intuitive because the optimal action with a
few minutes before the end of the trading horizon differs from the optimal action with a few hours
before closing. Nonetheless, the problem can be readily solved through backwards induction.

Intuitively, for a sufficiently long horizon T , the trading behaviour at the start should resemble
that from an infinite horizon problem. Although we do not have testable conditions for a finite
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trading horizon, we use dynamic programming to solve numerically for the optimal non-stationary
pure Markov strategy. Figures 7 and 8 of Appendix B use the empirical estimates from Tables 7
and 12, and discount factor δ = 1, to plot the optimal actions for each state and at each point in
time t = 0, 1, 2, ..., T = 30 . From the figure, we can string together the optimal action from one
time step to another, and we show that spoofing can occur at every time point t, and that spoofing
occurs for inventory levels closer to zero.

8. Multiple Market Makers

Our analysis thus far focused on spoofing by a single market maker. An extension is to study
multiple market makers who delegate their decision making processes to learning algorithms. How
does the introduction of another market maker (who also uses a learning algorithm) affect a single
algorithm’s ability to spoof the order book?

We ignore competition between limit orders from the different algorithms to simplify the anal-
ysis. Instead, we analyze the effect of multiple algorithms attempting to control the volume imbal-
ance regime through spoofing. To formalize the new transition dynamics of the volume imbalance
regime, we focus on two market makers where a = (a1, a2) is the action profile. The transition
dynamics now depend on the action profile p(ω′ |ω, a) for all ω, ω′ ∈ Ω, which we summarize
below:

• If both market makers submit a small or no order, then the volume imbalance evolves ac-
cording to its baseline dynamics in Figure 1b.

• If one market maker submits a large limit order and the other market maker submits a small
or no order, then the volume imbalance regime moves to buy-heavy or sell-heavy with prob-
ability one (depending on which side the large limit order is placed).

• If both market makers submit large limit orders on the same side of the book, then the volume
imbalance regime moves to buy-heavy or sell-heavy with probability one (depending on
which side the large limit orders are placed).

• If both market makers submit large limit orders on opposing sides of the book, then the
volume imbalance evolves according its baseline dynamics in Figure 1b.

The notion of optimality with multiple market makers is based on equilibrium solution con-
cepts. In turn, the solution concepts depend on the game and the strategies used by the learning
algorithms. Generic learning algorithms search for an optimal strategy in the space of station-
ary Markov strategies; hence, an algorithm conditions its behavior on the set of states encoded in
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the algorithm. In our setting, each algorithm conditions their behavior on the volume imbalance
regime which is publicly observable, but they also condition their behavior on their own level of
inventory which is private information.

With private information, the most appropriate equilibrium solution concept in this setting is a
perfect Bayesian equilibrium, where the belief determines the opponent’s level of inventory, and
the optimal strategy should be optimal with respect to the belief. However, generic learning algo-
rithms use stationary Markov strategies and do not account for an opponent’s level of inventory, so
a perfect Bayesian equilibrium is not appropriate for generic algorithms.16 Nevertheless, we can
analyze the effect of this misspecification on an algorithm’s ability to spoof the order book.

Table 10: Average number of spoofing sequences over 50 trading intervals.

Ticker Setup
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AMZN

Baseline

5 seconds 24.87 20.87 20.79 25.93 21.97 22.11

1 second 25.22 14.92 14.78 29.25 18.52 18.77

0.5 seconds 27.03 14.51 14.52 32.42 17.37 14.45

Offline

5 seconds 24.92 26.29 21.01 22.65 20.85 22.52

1 second 27.01 29.62 17.12 19.02 17.46 19.40

0.5 seconds 30.71 32.76 16.20 18.32 22.05 18.27

Online

5 seconds 24.40 25.89 20.47 22.12 20.41 22.04

1 second 22.49 29.16 12.69 19.26 11.98 18.16

0.5 seconds 21.27 32.13 1.21 15.20 1.12 14.43

CSCO

Baseline

5 seconds 25.56 15.25 15.12 29.19 18.29 18.82

1 second 32.98 13.88 13.70 36.48 11.59 10.40

0.5 seconds 37.27 9.54 9.55 40.27 7.73 7.89

Offline

5 seconds 29.72 29.65 20.50 18.91 21.67 19.99

1 second 37.13 37.10 14.73 12.62 21.25 18.53

0.5 seconds 40.90 41.04 9.40 8.66 21.07 19.69

Online

5 seconds 22.16 29.33 12.75 17.94 11.69 18.78

1 second 20.13 36.46 0.0 13.00 0.0 10.79

0.5 seconds 32.59 39.78 0.0 14.91 0.0 14.49

To study the effect of introducing a second learning algorithm, we first establish a baseline with

16A Berk–Nash equilibrium (see Esponda and Pouzo, 2016) is the most suitable equilibrium solution concept for
this misspecified setting, but the analysis is beyond the scope of the paper, and also not applicable to generic learning
algorithms.
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one market maker who uses an algorithm to learn the optimal trading strategy. The market makers
solve for the optimal strategy with the policy iteration algorithm using the empirical estimates
from Tables 7 and 12, discount factor δ = 0.95, and inventory aversion α = 10−4 for market
maker one and α = 10−5 for market maker two. Although we have two market makers for the
baseline, we do not study their interaction for the baseline setting. For each market maker, we
simulate their optimal strategy over 50 time steps 10,000 times when the market maker starts with
different values of the initial level of inventory. The initial volume imbalance regime is sampled
with equal probability. Table 10 reports the average number of spoofing sequences for each market
maker. We count a spoofing sequence as LLB at time t followed by LS or LLS at time t + 1 for
q ≥ 0, or LLS at time t followed by LB or LLB at time t + 1 for q ≤ 0. The table reports the
results of two representative assets AMZN and CSCO. The results of the other assets are reported
in Tables 13–15 of Appendix B.

8.1. Offline Learning

Here, both market makers train their algorithms offline with the misspecified model (the origi-
nal model from Section 3) which ignores the strategic behavior of other algorithms, and we analyze
the outcome of the interaction between the algorithms in the market. With the same setup as that
of the baseline, we simulate the interaction of the market makers over 50 time steps 10,000 times
when (i) both market makers start with zero inventory, (ii) both market makers start with the same
level of inventory (q = 4), and (iii) the market makers start with opposing levels of inventory
(q = 4 and q = −4).

When comparing the result with the baseline, the introduction of another market maker in-
creases the number of times spoofing occurs in the market (i.e., market makers ride the spoofing
sequences of each other) when the market makers start with zero inventory and with opposing
levels of inventory. On the other hand, the introduction of another market maker decreases the
number of times spoofing occurs in the market when the market makers start with the same level
of inventory.

To analyze the impact of introducing another market maker, Table 11 reports the percentage
of times when competing market makers submit large orders that cancel each other out divided
by the number of times the market makers used a large order (mismatching spoof orders), and the
number of times where only one out of the two market makers submits a large order (single spoof
order). The results of the other assets are reported in Tables 16 and 17 of Appendix B.

When starting with zero inventory or opposing levels of inventory, the additional market maker
does not lead to many instances where the large orders cancel each other out, but it does lead to
more instances where the order book moves to a heavy regime. This allows the market makers to
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Table 11: Average spoofing statistics.

Ticker Setup ∆t
Mismatching spoof orders Single spoof order

Zero inv. Same inv. Opposing inv. Zero inv. Same inv. Opposing inv.

AMZN

Offline

5s 0.1554% 0.2388% 0.4408% 13.46 18.42 18.75

1s 0.1215% 1.3516% 0.0054% 22.47 22.01 29.52

0.5s 0% 0% 0% 19.07 18.71 34.65

Online

5s 0.2256% 0.3738% 0.4949% 19.39 21.58 21.92

1s 0.4190% 1.8937% 2.3348% 24.25 26.66 23.93

0.5s 0.7635% 0% 0% 25.25 25.96 25.69

CSCO

Offline

5s 0.3008% 0.0591% 1.0232% 20.13 19.82 34.29

1s 0.0115% 1.7566% 4.6456% 12.63 7.66 38.89

0.5s 0.0109% 0% 4.5198% 8.82 2.98 41.07

Online

5s 0.6417% 2.2775% 4.6541% 24.77 26.35 25.06

1s 1.4149% 0% 0% 25.85 24.88 20.30

0.5s 2.2263% 0% 0% 16.17 30.77 29.38

exploit the spoofing sequences of each other so that we have more spoofing sequences than would
otherwise occur with only one market maker. When starting with the same level of inventory,
the additional market maker does not lead to many instances where the large orders cancel each
other out, but there are fewer instances where only one market maker submits a spoof order. We
see that market maker one disrupts market maker two because market maker one spoofs as often
as the baseline setting but market maker two has significantly fewer spoofing sequences. In the
offline learning setting, the algorithms either coordinate or mis-coordinate depending on their
initial inventory.

8.2. Online Learning

Next, we assume that both market makers pre-train their algorithms offline with the misspec-
ified model and use the results to initialize an online learning algorithm. With the same setup as
that of the baseline, the market makers pre-train with the policy iteration algorithm and then use Q-
learning to learn online (see Sutton and Barto, 2018; Calvano et al., 2020, for a basic explanation
of Q-learning).17

17Training an algorithm online by interacting with the market is costly because the algorithm needs to experiment
frequently to learn to behave optimally. In most situations with multiple algorithms, learning algorithms are longer
guaranteed to behave optimally. Realistically, market makers train their algorithms offline or partially train their
algorithms offline (with some online experimentation) to minimize the cost of experimentation. We use the policy
iteration algorithm to solve for the optimal continuation value υ∗ in the misspecified model, which we use to compute
the optimal action values to initialize the Q-values for Q-learning.
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For the online learning, we follow the experimental setup of Calvano et al. (2020). The Q-
learning algorithms learn have an ε-greedy choice rule with a time-declining exploration rate given
by εt = exp(τ t), where the parameter τ > 0 controls the rate of decay of exploration. The ε-
greedy choice rule picks the (current) optimal action with probability 1 − ε, and a random action
is chosen with probability ε. The learning rate of the algorithms is 0.125 and the exploration
parameter is τ = 10−5. Similar to Calvano et al. (2020), we say that the online learning converged
if the optimal strategy for each player does not change for 100,000 consecutive periods.

To analyze the effect of online learning, we simulate the learning process until convergence
1,000 times. Once each learning process converges, we use the learned strategies to simulate the
interaction of the market makers over 50 time steps 10 times when (i) both market makers start
with zero inventory, (ii) both market makers start with the same level of inventory (q = 4), and
(iii) the market makers start with opposing levels of inventory (q = 4 and q = −4). This produces
a total of 10,000 interactions over 50 time steps as in the case of the baseline.

When comparing the number of spoofing sequences to the baseline, we see that online learning
often leads to a reduction in spoofing by market maker one, but an increase in spoofing by market
maker two when the market makers start with zero inventory and with opposing levels of inventory.
When the market makers start with the same level of inventory, there is a reduction in spoofing
from both market makers. When comparing the spoofing statistics to offline learning, we see that
online learning leads to more instances where only one market maker sends a spoof order when
the market makers start with zero inventory and with the same level of inventory. When the market
makers start with opposing levels of inventory, there are fewer instances where only one market
maker sends a spoof order.

In the online learning setting, we see that the market makers learn to coordinate. How they
coordinate depends on their initial inventory. If the market makers start with zero inventory, then
they coordinate by riding the sequences of each other to increase spoofing in the market. On the
other hand, if the market makers start with the same level of inventory or with opposing levels
of inventory, then they coordinate by allowing market maker one to ride market maker two’s
sequences to avoid their large limit orders cancelling each other out.

9. Discussion

Our analysis focuses on when an algorithm learns to create misleading information to buy or
to sell an asset with a higher probability than was otherwise likely to occur. This is consistent
with how Fox et al. (2021) defines spoofing. They identify the manipulative step of spoofing as
submitting a large quantity of limit orders to mislead other market participants to react to the
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misleading signal. Indeed, this manipulative step is consistent with what is considered illegal in
Article 12(2)(c) of Regulation (EU) No 596/2014 and Section 9(a)(2) of the Securities Exchange
Act of 1934.18,19 Therefore, our results can help identify limit order books in both the European
Union and US securities exchanges where spoofing is likely to occur.

Another definition of spoofing is given by the Dodd-Frank (2010) Act, which defines spoofing
as bidding or offering with the intent to cancel the bid or offer before execution. However, the Act
only applies to the commodities market. Moreover, as we showed, spoofing can occur with the
intention that the spoof order is filled. Therefore, the Dodd–Frank Act is limited in its reach.

Our model predicts simple spoofing sequences that are easy to identify. However, in practice,
identifying and detecting these sequences is not straightforward. For example, market fragmen-
tation allows for cross market spoofing, so our sequences need not appear within the same order
book. Moreover, the interaction of multiple market makers make it more difficult to detect these se-
quences because the market makers can coordinate and ride the spoofing sequences of each other.
Nonetheless, a straightforward mechanical artifact of spoofing is that the volatility of the micro-
price (volume weighted midprice) increases as spoofing increases; how one establishes a counter-
factual baseline without spoofing remains unclear. Finally, although we focused on spoofing, our
approach can be used to understand analytically other forms of unintended market manipulation
from learning algorithms such as layering or quote stuffing.
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Appendix

A. Proofs

Define the action value as

υs(a) = Eσ∗

[
∞∑
t=0

δt u(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = a

]
(9)

= ū(s, a) + δ
∑
ω′∈Ω

p(ω′|ω, a)
∑
q′∈Q

p(q′|q, a) υ∗
ω′,q′ ,

which is the expected stream of discounted payoffs from playing action a in state s then playing
optimally thereafter according to an optimal strategy σ∗.

Proof of Lemma 1 Order the set Q so that Q = {−q̄, ...,−2,−1, 0, 1, 2, ..., q̄}. To keep notation
simple, let As = A′ for all s ∈ S. The result continues to hold without this simplification (see
Puterman, 1994, pp. 108).20 The following statements hold:

(i) For q ≥ 0, ū(ω, q, a) is non-increasing in q so that when 0 ≤ q′ ≤ q, we have ū(ω, q, a) ≤
ū(ω, q′, a) for all ω ∈ Ω and for all a ∈ A′,

(ii) For q ≤ 0, ū(ω, q, a) is non-decreasing in q so that when q′ ≤ q ≤ 0, we have ū(ω, q′, a) ≤
ū(ω, q, a) for all ω ∈ Ω and for all a ∈ A′, and

(iii)
∑∞

j=k p(j|q, a) is non-decreasing in q for all k ∈ Q and for all a ∈ A′, where p(j|q, a) is the
transition probability from inventory level q to inventory level j under action a.21

Consider the finite-horizon version of our model up to period N . Let υ∗
s(t) denote the opti-

mal continuation value in state s at period t and adopt the convention that the terminal payoff
ūN(ω, q) = ū(ω, q,DN).

20Indeed, the three conditions laid out on pp. 108 are satisfied with an appropriate adjustment to the ordering of
the set Q and the proof follows with some minor adjustments.

21We adopt the convention that p(j|q, a) = 0 when j /∈ Q.
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Claim 1 For t = 0, 1, 2, ..., N , we have that

υ∗
ω,q(t) = max

a∈A′

{
ū(ω, q, a) + δ

∑
ω′

p(ω′|ω, a)
∞∑
j=0

p(j|q, a) υ∗
ω′,j(t+ 1)

}

is non-increasing in q when q ≥ 0, so that when 0 ≤ q′ ≤ q, we have υ∗
ω,q(t) ≤ υ∗

ω,q′(t) for all

ω ∈ Ω and for all t = 0, 1, 2, ..., N . Similarly, υ∗
ω,q(t) is non-decreasing in q when q ≤ 0, so that

when q′ ≤ q ≤ 0, we have υ∗
ω,q′(t) ≤ υ∗

ω,q(t) for all ω ∈ Ω and for all t = 0, 1, 2, ..., N .

Proof of Claim 1 The claim follows a straightforward modification of Proposition 4.7.3 in Puter-
man (1994) using backwards induction. Consider the case q ≥ 0. First, the result holds for t = N

from (i) because υ∗
ω,q(N) = ūN(ω, q). Next, assume (for induction) that when 0 ≤ q′ ≤ q, we

have υ∗
ω,q(t) ≤ υ∗

ω,q′(t) for all ω ∈ Ω and for all t = n+1, ..., N . By Proposition 4.4.3 in Puterman
(1994), there exists a∗ ∈ A′ so that

υ∗
ω,q(t) = ū(ω, q, a∗) + δ

∑
ω′

p(ω′|ω, a∗)
∞∑
j=0

p(j|q, a∗) υ∗
ω′,j(t+ 1) .

Let 0 ≤ q′ ≤ q. Use (i) and (iii), the induction hypothesis, and Lemma 4.7.2 in Puterman (1994)
to write

υ∗
ω,q(t) ≤ ū(ω, q′, a∗) + δ

∑
ω′

p(ω′|ω, a∗)
∞∑
j=0

p(j|q′, a∗) υ∗
ω′,j(t+ 1)

≤ max
a∈A′

{
ū(ω, q′, a) + δ

∑
ω′

p(ω′|ω, a)
∞∑
j=0

p(j|q′, a) υ∗
ω′,j(t+ 1)

}
= υ∗

ω,q′(t) .

Analogous calculations use (ii) and (iii) to complete the case for q ≤ 0. Thus, the claim follows.■

Finally, the pointwise limit (as N → ∞) of non-increasing functions is non-increasing, and the
pointwise limit (as N → ∞) of non-decreasing functions is non-decreasing. Hence, υ∗

ω,q(t) is
non-increasing in q for all t when q ≥ 0, and υ∗

ω,q(t) is non-decreasing in q for all t when q ≤ 0,
so the lemma follows. □

Proof of Lemma 2 The optimal action a∗ in state s = (ω, q) maximizes the action value in (9).
To show that an action a is not optimal in state s, we show that the action is strictly dominated by
another action a′, i.e., υs(a) < υs(a

′) for state s.
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For q > 0, we first show that submitting a sell limit order LS always dominates DN . Specifi-
cally, we have

υs(LS) = paω

[
ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1

]
+ (1− paω)

[
−α q2 + δ

∑
ω′

pω′|ω υ
∗
ω,q

]
> −α q2 + paω δ

∑
ω′

pω′|ω υ
∗
ω,q−1 + (1− paω) δ

∑
ω′

pω′|ω υ
∗
ω,q

≥ −α q2 + δ
∑
ω′

pω′|ω υ
∗
ω,q = υs(DN) ,

where the last inequality follows from Lemma 1. We then show that do nothing DN always
dominates submitting a buy market order MB to obtain

υs(DN) = −α q2 + δ
∑
ω′

pω′|ω υ
∗
ω,q

> −ϑ

2
− α (q + 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q+1 = υs(MB) ,

where the inequality follows from Lemma 1. Together we have that LS dominates DN , which
dominates MB. Therefore, both DN and MB are not optimal for q > 0.

The same reasoning and calculations hold for q < 0. Thus, the result follows after showing
that submitting a buy limit order always dominates do nothing, and do nothing always dominates
submitting a sell market order. □

Proof of Proposition 1 For q > 0, Lemma 2 ensures that the optimal action is never DN or MB.
We consider the 10 pairwise comparisons from the set of actions {MS,LS, LLS, LLB,LB}. For
each (ω, q), there exists a unique value αa,a′(ω, q) where two action values υω,q(a) and υω,q(a

′)

intersect because the action values are linear in α.
To compare the pairwise actions excluding LS vs LLS and LB vs LLB, we choose a value

of α large enough so that it is optimal to revert to zero inventory as fast as possible and then do
nothing at zero inventory. That is, MS is the optimal action at all (ω, q > 0) and DN is the
optimal action at all (ω, q = 0). Under this setting, it is easy to see that for q > 0 and all ω ∈ Ω:

1. There exists αLS,MS(ω, q) such that MS is preferred to LS if and only if α > αLS,MS(ω, q).

2. There exists αLLS,MS(ω, q) such that MS is preferred to LLS if and only if α > αLLS,MS(ω, q).

3. There exists αLLB,MS(ω, q) such that MS is preferred to LLB if and only if α > αLLB,MS(ω, q).
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4. There exists αLB,MS(ω, q) such that MS is preferred to LB if and only if α > αLB,MS(ω, q).

5. There exists αLLB,LS(ω, q) such that LS is preferred to LLB if and only if α > αLLB,LS(ω, q).

6. There exists αLB,LS(ω, q) such that LS is preferred to LB if and only if α > αLB,LS(ω, q).

7. There exists αLLB,LLS(ω, q) such that LLS is preferred to LLB if and only if α > αLLB,LLS(ω, q).

8. There exists αLB,LLS(ω, q) such that LLS is preferred to LB if and only if α > αLB,LLS(ω, q).

For the final two comparisons, we consider a reduced action set without MS. We choose a
value of α large enough so that it is optimal to revert to zero inventory as fast as possible and then
do nothing at zero inventory. Under this setting, we see that for q > 0 and all ω ∈ Ω:

9. If we play LLS over LS, then we end up in sell-heavy where the probability of selling a
limit order is the lowest, which will take longer to revert to zero inventory. Therefore, there
exists αLLS,LS(ω, q) such that LS is preferred to LLS if and only if α > αLLS,LS(ω, q).

10. If we play LLB over LB, then we end up in buy-heavy where the probability of selling
a limit order is the highest, which will shorten the time taken to revert to zero inventory.
Therefore, there exists αLB,LLB(ω, q) such that LLB is preferred to LB if and only if α >

αLB,LLB(ω, q).

Using the 10 pairwise preferences for q > 0, we have that Figure 2 is the only (non-contradictory)
ordering of action preferences and cutoffs. The same reasoning holds for q < 0. □

Lemma 4 For all ω ∈ Ω when 0 < q′ ≤ q, we have that υ∗
ω,q − υ∗

ω,q′ converges to zero from below

as α → 0. Similarly, υ∗
ω,q′ − υ∗

ω,q converges to zero from above as α → 0.

Proof of Lemma 4 The result follows from adapting the proof of Lemma 1 to show that if α = 0

then υ∗
ω,q − υ∗

ω,q′ = 0. First, observe that if α = 0, then ū(ω, q, a) is both non-decreasing and non-
increasing in q when q ≥ 0 for all ω ∈ Ω and for all a ∈ A′. Following the proof of Lemma 1, we
have that the optimal continuation value υ∗

ω,q is both non-increasing and non-decreasing in q when
q ≥ 0. Therefore, υ∗

ω,q − υ∗
ω,q′ = 0 for all q, q′ ≥ 0, and hence, the result follows as a consequence

of Lemma 1. □

Lemma 5 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. We have α3(ω, q) > 0 for all ω ∈ Ω

and q ̸= 0.

46



Proof of Lemma 5 We focus on q > 0. We prove this result by showing that the following claim
holds.

Claim 2 For q > 0, there exists α > 0 such that MS ≺ LS.

Proof of Claim 2 The action value of LS and MS are given by

υs(LS) = paω

[
ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1

]
+ (1− paω)

[
−α q2 + δ

∑
ω′

pω′|ω υ
∗
ω,q

]
,

υs(MS) = −ϑ

2
− α (q − 1)2 + δ

∑
ω′

pω′|ω υ
∗
ω,q−1 ,

and their difference is

υs(LS)− υs(MS) = (1 + paω)ϑ/2− α (1− paω) (2q − 1) + δ (1− paω)
∑
ω′

pω′|ω
(
υ∗
ω,q − υ∗

ω,q−1

)
.

From Lemma 4, we have that υs(LS)− υs(MS) → (1 + paω)ϑ/2 > 0 as α → 0. Thus, the claim
follows because there are values of α > 0 such that MS ≺ LS. ■

The remainder of the lemma follows by contradiction. Suppose α3(ω, q) ≤ 0. Then MS is
optimal for all α > 0, which contradicts Claim 2, so the result follows. The same reasoning holds
for q < 0. □

Lemma 6 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C1) holds, then

α1(BH, q) < 0 for all q > 0. Similarly, if condition (C2) holds, then α1(SH, q) < 0 for all q < 0.

Proof of Lemma 6 We focus on q > 0. The action value of LLB is given by

υs(LLB) = pbω
[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbω)

[
−α q2 + δ υ∗

BH,q

]
.

To prove the result, we show that if condition (C1) holds, then LLB is never optimal in s =

(BH, q) where q > 0. We proceed by contradiction. Suppose LLB is optimal in s = (BH, q)

where q > 0. This implies the following claim is true.

Claim 3 If LLB is optimal in s = (BH, q) where q > 0, then ϑ/2 − α (q + 1)2 + δ υ∗
BH,q+1 ≥

−α q2 + δ υ∗
BH,q.
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Proof of Claim 3 We prove this claim by contradiction. Suppose that −α q2 + δ υ∗
BH,q > ϑ/2 −

α (q + 1)2 + δ υ∗
BH,q+1, then we have

υBH,q(LLB) = pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
≤ pbBH

[
−α q2 + δ υ∗

BH,q

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= −α q2 + δ υ∗

BH,q ,

which follows from Lemma 1. However, υ∗
BH,q = υBH,q(LLB) because LLB is optimal by

assumption. Therefore, the inequality above becomes υ∗
BH,q ≤ −α q2 + δ υ∗

BH,q, which implies

υ∗
BH,q ≤ − α q2

1− δ
.

Now, consider a suboptimal strategy σ that does nothing in all ω ∈ Ω at inventory level q. The
value of this strategy in s = (BH, q) where q > 0 is given by

υBH,q(σ) = − α q2

1− δ
.

Therefore, υBH,q(σ) ≥ υ∗
BH,q is a contradiction because the strategy σ is suboptimal as a conse-

quence of Lemma 2. Hence, the claim follows. ■

Next, the claim implies that υSH,q(LLB) ≥ υBH,q(LLB) because

υSH,q(LLB) = pbSH
[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbSH)

[
−α q2 + δ υ∗

BH,q

]
≥ pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= υBH,q(LLB) ,

where the inequality follows as a result of pbSH > pbBH .
Use 1−pbBH = (1−paBH)+(paBH −pbBH) in the action value of LLB in s = (BH, q) to obtain

υBH,q(LLB) = pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (1− pbBH)

[
−α q2 + δ υ∗

BH,q

]
= pbBH

[
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1

]
+ (paBH − pbBH)

[
−α q2 + δ υ∗

BH,q

]
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ pbBH max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (paBH − pbBH)max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
= paBH max

{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
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+ (1− paBH)
[
−α q2 + δ υ∗

BH,q

]
,

where the inequality above follows as a result of pbBH < paBH from condition (C1) and because
x ≤ max{x, y} and y ≤ max{x, y} for all x, y ∈ R.

Next, observe that both ϑ/2−α (q+1)2 + δ υ∗
BH,q+1 and −α q2 + δ υ∗

BH,q are less than ϑ/2−
α (q − 1)2 + δ υ∗

SH,q−1 because υ∗
SH,q−1 ≥ υ∗

SH,q ≥ υSH,q(LLB) ≥ υBH,q(LLB) = υ∗
BH,q ≥

υ∗
BH,q+1. Therefore,

υBH,q(LLB) ≤ paBH max
{
ϑ/2− α (q + 1)2 + δ υ∗

BH,q+1,−α q2 + δ υ∗
BH,q

}
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ paBH

[
ϑ/2− α (q − 1)2 + δ υ∗

SH,q−1

]
+ (1− paBH)

[
−α q2 + δ υ∗

BH,q

]
≤ paBH

[
ϑ/2− α (q − 1)2 + δ υ∗

SH,q−1

]
+ (1− paBH)

[
−α q2 + δ υ∗

SH,q

]
= υBH,q(LLS) ,

where the last inequality follows from υ∗
SH,q ≥ υSH,q(LLB) ≥ υBH,q(LLB) = υ∗

BH,q. This
implies that υBH,q(LLB) ≤ υBH,q(LLS). Hence, we have a contradiction as LLB cannot be
optimal in s = (BH, q) where q > 0.

Finally, if LLB is never optimal in s = (BH, q), then α1(BH, q) < 0. Thus, the lemma
follows. The same reasoning holds for q < 0. □

Lemma 7 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C2) holds, then

α1(ω, q) > 0 for all q > 0 and ω = SH . Similarly, if condition (C1) holds, then α1(ω, q) > 0 for

all q < 0 and ω = BH .

Proof of Lemma 7 We focus on q > 0. We require the following claim.

Claim 4 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. If condition (C2) holds, then there

exists α > 0 such that LS ≺ LB for all q > 0 and ω = SH . Therefore, for this α > 0, LS is not

optimal.

Proof of Claim 4 The action values of LS and LB are given by

υs(LS) = paω ϑ/2 + δ
∑
ω′

pω′|ω υ
∗
ω,q + δ paω

∑
ω′

pω′|ω
(
υ∗
ω,q−1 − υ∗

ω,q

)
− α paω(q − 1)2 − α(1− paω)q

2
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υs(LB) = pbω ϑ/2 + δ
∑
ω′

pω′|ω υ
∗
ω,q + δ pbω

∑
ω′

pω′|ω
(
υ∗
ω,q+1 − υ∗

ω,q

)
− α pbω(q + 1)2 − α(1− pbω)q

2 .

As α → 0, the difference in action value between LB and LS converges to υs(LB)− υs(LS) →(
pbω − paω

)
ϑ/2 as a consequence of Lemma 4. Therefore, LS ≺ LB in ω because of paω < pbω

from condition (C2). Hence, as LS ≺ LB, then LS cannot be optimal. ■

From Claim 4, there exists α > 0 such that LS ≺ LB so that LS is not optimal. We set the
value of α so that MS is not optimal. For this value of α, either LB, LLB or LLS is the optimal
action. If LB or LLB is the optimal action, then we have α1(ω, q) > 0. To complete the proof
we see that LLS cannot be the optimal action for the value of α. We proceed by contradiction.
Assume LLS is optimal and take α close to zero so that we can forget about the inventory level
when considering optimal continuation value. We denote υ∗

ω = υ∗
ω,q = υ∗

ω,q′ to obtain

υSH(LLB) = pbSH(ϑ/2 + δ υ∗
BH) + (1− pbSH) δ υ

∗
BH = pbSH ϑ/2 + δ υ∗

BH

≥ pbSH ϑ/2 + δ υBH(LLS) = pbSH ϑ/2 + δ (paBH ϑ/2 + δ υ∗
SH)

> pbSH ϑ/2 + δ (paSH ϑ/2 + δ υ∗
SH)

where the last inequality follows from paBH > paSH .
Observe that

pbSH ϑ/2 + δ (paSH ϑ/2 + δ υ∗
SH) = pbSH ϑ/2 + δ υSH(LLS) = pbSH ϑ/2 + δ υ∗

SH

where the last equality follows from assuming that LLS is optimal at SH . Therefore, we have

υSH(LLB) > pbSH ϑ/2 + δ υ∗
SH > paSH ϑ/2 + δ υ∗

SH = υ∗
SH ,

which is a contradiction. Therefore, LLS is not optimal. The same reasoning holds for q < 0. □

Lemma 8 Let paSH < paN < paBH and pbSH > pbN > pbBH hold. For ω = N , we have α1(ω, q) > 0

for either q > 0 or q < 0.

Proof of Lemma 8 From Lemma 4, we have

υN(LLS) = paN ϑ/2 + δ υ∗
SH

υN(LLB) = pbN ϑ/2 + δ υ∗
BH ,
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for a small enough value of α so that if

paN ϑ/2 + δ υ∗
SH > pbN ϑ/2 + δ υ∗

BH ,

then α1(ω, q) > 0 for q < 0. Similarly, if

paN ϑ/2 + δ υ∗
SH < pbN ϑ/2 + δ υ∗

BH ,

then α1(ω, q) > 0 for q > 0. □

Proof of Theorem 1 Lemma 5 ensures that α3(ω, q) > 0 for all ω ∈ Ω and q > 0, while Propo-
sition 1 ensures that α0(ω, q) < α1(ω, q) for all ω ∈ Ω and q > 0. The result is immediate from
Lemmas 6, 7, and 8. □

Proof of Corollary 1 The result follows as an immediate consequence of Theorem 1. □

Lemma 9 Let paSH < paN < paBH , pbSH > pbN > pbBH , and (C3) hold. If (pbN − paN) >
δ

1+δ
(pbSH −

paBH), then α1(ω, q) > 0 for q > 0 and ω = N . Similarly, if (paN − pbN) >
δ

1+δ
(paBH − pbSH), then

α1(ω, q) > 0 for q < 0 and ω = N .

Proof of Lemma 9 To prove the lemma, we first establish the following claim.

Claim 5 If paSH < paN < paBH , pbSH > pbN > pbBH , and (C3) hold, then for a small enough value

of α, LS ≺ LLS for ω = BH , LB ≺ LLB for ω = SH , and LB ≺ LLB and LS ≺ LLS for

ω = N .

Proof of Claim 5 If (C3) holds, then the following hold:

paBH − pbSH < (pbSH − pbN)
pN |BH

pBH|BH

, pbSH − paBH < (paBH − paN)
pN |SH

pSH|SH
,

paBH − pbSH < (pbSH − pbN)
pN |N

pBH|N
, pbSH − paBH < (paBH − paN)

pN |N

pSH|N
.

We first focus on ω = BH . For a small enough value of α, the optimal action is LS or LLS.
Moreover, LLS is preferred to LS if and only if

υ∗
SH > pBH|BH υ∗

BH + pN |BH υ∗
N + pSH|BH υ∗

SH ⇐⇒

pBH|BH υ∗
SH + pN |BH υ∗

SH + pSH|BH υ∗
SH > pBH|BH υ∗

BH + pN |BH υ∗
N + pSH|BH υ∗

SH .
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If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH , then the last inequality trivially holds.22 On the other hand, if
max{υ∗

SH , υ
∗
N , υ

∗
BH} = υ∗

BH , then the last inequality holds if and only if

pN |BH (υ∗
SH − υ∗

N) > pBH|BH (υ∗
BH − υ∗

SH) ⇐⇒ υ∗
BH − υ∗

SH < (υ∗
SH − υ∗

N)
pN |BH

pBH|BH

.

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH , then υ∗
BH < paBH ϑ/2 + δ υ∗

BH so that

υ∗
BH − υ∗

SH < paBH ϑ/2 + δ υ∗
BH − pbSH ϑ/2− δ υ∗

BH = (paBH − pbSH)ϑ/2

Now, the optimal action in ω = SH is LLB because max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

BH . Hence,

v∗SH − v∗N = vSH(LLB)− v∗N ≥ vSH(LLB)− vN (LLB) = pbSH
ϑ

2
+ δ v∗BH − pbN

ϑ

2
− δ v∗BH = (pbSH − pbN )

ϑ

2

Therefore, if

paBH − pbSH < (pbSH − pbN)
pN |BH

pBH|BH

,

then LLS is preferred to LS because

(v∗SH − v∗N)
pN |BH

pBH|BH

> (pbSH − pbN)
ϑ

2

pN |BH

pBH|BH

> (paBH − pbSH)
ϑ

2
> v∗BH − v∗SH .

For ω = SH , we follow an analogous reasoning so that if

pbSH − paBH < (paBH − paN)
pN |SH

pSH|SH
,

then LLB is preferred to LB in ω = SH .
For ω = N , we first compare LLS with LS. As before, LLS is preferred to LS if and only if

v∗SH > pBH|N v∗BH + pN |N v∗N + pSH|N v∗SH .

If max{υ∗
SH , υ

∗
N , υ

∗
BH} = υ∗

SH , then the former inequality holds. On the other hand, if max{υ∗
SH , υ

∗
N , υ

∗
BH} =

22It is not possible that both v∗N > v∗SH and v∗N > v∗BH hold because paN < paBH and pbN < pbSH . This is enough
to exclude the case max{υ∗

SH , υ∗
N , υ∗

BH} = υ∗
N .
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υ∗
BH , then the last inequality holds if and only if

pBH|N v∗SH + pN |N v∗SH + pSH|N v∗SH > pBH|N v∗BH + pN |N v∗N + pSH|N v∗SH ⇐⇒

pN |N (υ∗
SH − υ∗

N) > pBH|N (υ∗
BH − υ∗

SH) ⇐⇒ υ∗
BH − υ∗

SH <
pN |N

pBH|N
(υ∗

SH − υ∗
N) .

The remainder follows the same reasoning as the case with ω = BH so that if

paBH − pbSH < (pbSH − pbN)
pN |N

pBH|N
,

then LLS is preferred to LS in ω = N .
Finally, using a similar reasoning, we have that if

pbSH − paBH < (paBH − paN)
pN |N

pSH|N
,

then LLB is preferred to LB in ω = N . ■

For ω = N , if the value of α is sufficiently small, then we have the following action values

υN(LLB) = pbN (
ϑ

2
+ δ υ∗

BH) + (1− pbN) δ υ
∗
BH = pbN

ϑ

2
+ δ υ∗

BH

υN(LLS) = paN (
ϑ

2
+ δ υ∗

SH) + (1− paN) δ υ
∗
SH = paN

ϑ

2
+ δ υ∗

SH .

For a sufficiently small value of α, the optimal action is either LLS or LS in ω = BH , whereas
the optimal action is either LLB or LB at ω = SH . From Claim 5, we have LS ≺ LLS for
ω = BH and LB ≺ LLB for ω = SH . Therefore,

vN(LLB) = pbN
ϑ

2
+ paBH

ϑ

2
(δ + δ3 + ...) + pbSH

ϑ

2
(δ2 + δ4 + ...) = pbN

ϑ

2
+

δ paBH
ϑ
2
+ δ2 paBH

ϑ
2

1− δ2

and similarly

vN(LLS) = paN
ϑ

2
+ pbSH

ϑ

2
(δ + δ3 + ...) + paBH

ϑ

2
(δ2 + δ4 + ...) = paN

ϑ

2
+

δ pbSH
ϑ
2
+ δ2 paBH

ϑ
2

1− δ2
.
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Hence, LLB is preferred to LLS if and only if

pbN
ϑ

2
(1− δ2) + δ paBH

ϑ

2
+ δ2 pbSH

ϑ

2
> paN

ϑ

2
(1− δ2) + δ pbSH

ϑ

2
+ δ2 paBH

ϑ

2
⇐⇒

(pbN − paN) (1− δ2) > (δ − δ2) (pbSH − paBH) ⇐⇒ (pbN − paN) >
δ

1 + δ
(pbSH − paBH) .

Similarly, LLS is preferred to LLB if and only if (paN − pbN) >
δ

1+δ
(paBH − pbSH). □

Proof of Theorem 2 The result is immediate from Lemmas 5, 6, and 9. □

Proof of Lemma 3 We compare the value of two strategies. Specifically, we consider an optimal
stationary pure Markov strategy σ∗ and a strategy σ that is suboptimal.

We run both the suboptimal strategy and the optimal strategy until the states match, and then
the suboptimal strategy plays according to the optimal strategy. Here, the target state continues
to change as a consequence of running the optimal strategy; so the suboptimal strategy is defined
to follow the inventory level of the optimal strategy. Specifically, if the optimal action leads to
the inventory staying at the same level, then the suboptimal strategy does nothing; if the optimal
action leads to the inventory increasing by one unit, then the suboptimal strategy submits a buy
market order; finally, if the optimal action leads to the inventory decreasing by one unit, then the
suboptimal strategy submits a sell market order. Therefore, the states of the two chains are always
at the same level of inventory, so the difference in the payoff received (at each step) is less than ϑ.

Now, for the states to match, the volume imbalance regime ω also needs to be the same. Ob-
serve that at each time step, the probability that the two chains meet in the same volume imbalance
regime (after one step) is greater than m, where m is the minimum element of the transition prob-
ability matrix for the Markov chain given in Figure 1b. Hence, the hitting time is dominated by a
geometric random variable with success probability m; thus, the expectation of the hitting time is
less than 1/m. Therefore, we have

υ∗
ω,q − υ∗

ω′,q ≤ υ∗
ω,q − υω′,q(σ) ≤ ϑ/m ,

because the discount parameter δ < 1. □

Proof of Proposition 2 From the action values, LLB ≺ LLS if and only if

α >

(
pbω − paω

)
ϑ/2

paω(2q − 1) + pbω(2q + 1)
+ δ

pbω
(
υ∗
BH,q+1 − υ∗

BH,q

)
+ paω

(
υ∗
SH,q − υ∗

SH,q−1

)
+
(
υ∗
BH,q − υ∗

SH,q

)
paω(2q − 1) + pbω(2q + 1)

,
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We use the upper bound from Lemma 3 and the upper bound υ∗
ω,q − υ∗

ω,q−1 ≤ 0 from Lemma 1, to
obtain

α1(ω, q) ≤
(
pbω − paω

)
ϑ/2 + ϑ/m

paω(2q − 1) + pbω(2q + 1)
= ᾱ1(ω, q) ,

as an upper bound for α1(ω, q) that is strictly positive.
From Lemma 5, we have α3(ω, q) > 0 for all ω ∈ Ω and q > 0. Therefore, the result follows

because α1(ω, q) ∧ α3(BH, q) ≤ ᾱ1(ω, q) and α1(ω, q) ∧ α3(BH, q + 1) ≤ ᾱ1(ω, q). □

Proof of Proposition 3 For a fixed volume imbalance regime ω, the function ᾱ1(ω, q) monotoni-
cally decreases as the absolute value of q increases. The choice of α ensures that α /∈ I ′(s) for all
states s = (ω, q) where q ̸= 0, so the result follows. □

Proof of Proposition 4 If ϑ → 0, then ᾱ1(ω, q) → 0 for all ω ∈ Ω and q ̸= 0. Therefore, the
result follows as a consequence of Proposition 3. □

Lemma 10 If condition (C4) holds, then Proposition 1 continues to hold.

Proof of Lemma 10 The first 8 comparisons follow from the same reasoning in Proposition 1.
Therefore, we consider the comparisons LS vs LLS and LB vs LLB. We consider a reduced
action set without MS. For a large enough value of α, we have v∗BH,q > v∗N,q > v∗SH,q and
v∗BH,q−1 > v∗N,q−1 > v∗SH,q−1 because the probability of selling a limit order is highest (lowest) in
BH (SH). The action values of LLS and LS (excluding the one-step utility) are

υω,q(LLS) = paω

(
(1− κ) υ∗

SH,q−1 +
κ

2
υ∗
N,q−1 +

κ

2
υ∗
BH,q−1

)
+ (1− paω)

(
(1− κ) υ∗

SH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
BH,q

)

υω,q(LS) = paω
(
pSH|ω υ∗

SH,q−1 + pN |ω υ∗
N,q−1 + pBH|ω υ∗

BH,q−1

)
+ (1− paω)

(
pSH|ω υ∗

SH,q + pN |ω υ∗
N,q + pBH|ω υ∗

BH,q

)
,

respectively. Therefore, υω,q(LLS) < υω,q(LS) if and only if

(1− κ− pSH|ω) (p
a
ω υ∗SH,q−1 + (1− paω) υ

∗
SH,q) <

paω

(
(pN |ω − κ

2
) υ∗N,q−1 + (pBH|ω − κ

2
) υ∗BH,q−1

)
+ (1− paω)

(
(pN |ω − κ

2
) υ∗N,q + (pBH|ω − κ

2
) υ∗BH,q

)
,

which follows because(
pN |ω − κ

2

)
υ∗
N,q−1 +

(
pBH|ω − κ

2

)
υ∗
BH,q−1 > (pN |ω + pBH|ω − κ) υ∗

N,q−1
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= (1− κ− pSH|ω) υ
∗
N,q−1 > (1− κ− pSH|ω) υ

∗
SH,q−1

and (
pN |ω − κ

2

)
υ∗
N,q +

(
pBH|ω − κ

2

)
υ∗
BH,q > (pN |ω + pBH|ω − κ) υ∗

N,q

= (1− κ− pSH|ω) υ
∗
N,q > (1− κ− pSH|ω) υ

∗
SH,q .

Hence, LS is preferred to LLS for a large enough value of α. Next, we compare LLB and LB.
The action values of LLB and LB (excluding the one-step utility) are

υω,q(LLB) = pbω

(
(1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1

)
+ (1− pbω)

(
(1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q

)

υω,q(LB) = pbω
(
pBH|ω υ∗

BH,q+1 + pN |ω υ∗
N,q+1 + pSH|ω υ∗

SH,q+1

)
+ (1− pbω)

(
pBH|ω υ∗

BH,q + pN |ω υ∗
N,q + pSH|ω υ∗

SH,q

)
,

respectively. Thus, υω,q(LLB) > υω,q(LB) if and only if

(1− κ− pBH|ω) (p
b
ω υ

∗
BH,q+1 + (1− pbω) υ

∗
BH,q) >

pbω

(
(pN |ω − κ

2
) υ∗

N,q+1 + (pSH|ω − κ

2
) υ∗

SH,q+1

)
+ (1− pbω)

(
(pN |ω − κ

2
) υ∗

N,q + (pSH|ω − κ

2
) υ∗

SH,q

)
,

which follows because(
pN |ω − κ

2

)
υ∗
N,q+1 +

(
pSH|ω − κ

2

)
υ∗
SH,q+1 < (pN |ω + pSH|ω − κ) υ∗

N,q+1

= (1− κ− pBH|ω) υ
∗
N,q+1 < (1− κ− pBH|ω) υ

∗
BH,q+1

and (
pN |ω − κ

2

)
υ∗
N,q +

(
pSH|ω − κ

2

)
υ∗
SH,q < (pN |ω + pSH|ω − κ) υ∗

N,q

= (1− κ− pBH|ω) υ
∗
N,q < (1− κ− pBH|ω) υ

∗
BH,q .

The same reasoning holds for q < 0. □

Lemma 11 If condition (C4) holds, then Lemma 6 continues to hold.
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Proof of Lemma 11 Suppose that LLB is optimal at (BH, q > 0), then

ϑ

2
− α (q + 1)2 + δ ((1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1) > −α q2 + δ ((1− κ) υ∗

BH,q +
κ

2
υ∗
N,q +

κ

2
υ∗
SH,q) .

Suppose the inequality above is not true. We know max{υ∗
BH,q, υ

∗
N,q, υ

∗
SH,q} = υ∗

BH,q because
if the maximum was υ∗

SH,q, then υBH,q(LLS) > υBH,q(LLB), which cannot be true assuming
LLB is optimal at (BH, q > 0). Therefore, if both υ∗

BH,q is the maximum and LLB is optimal
at (BH, q), then staying at (BH, q > 0) forever would be optimal. However, this would give the
same payoff as doing nothing forever, which is never optimal. Therefore the previous inequality
holds. From the previous inequality, we have υSH,q(LLB) > υBH,q(LLB) because pbSH > pbBH .
Therefore, υ∗

BH,q < υ∗
SH,q. Now, observe that

υBH,q(LLB) = pbBH (
ϑ

2
− α (q + 1)2 + δ ((1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1))

+ (1− pbBH) (−α q2 + δ ((1− κ) υ∗
BH,q +

κ

2
υ∗
N,q +

κ

2
υ∗
SH,q))

= pbBH (
ϑ

2
− α (q + 1)2 + δ ((1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1))

+ (paBH − pbBH) (−α q2 + δ ((1− κ) υ∗
BH,q +

κ

2
υ∗
N,q +

κ

2
υ∗
SH,q))

+ (1− pbBH) (−α q2 + δ ((1− κ) υ∗
BH,q +

κ

2
υ∗
N,q +

κ

2
υ∗
SH,q))

≤ paBH (
ϑ

2
− α (q + 1)2 + δ ((1− κ) υ∗

BH,q+1 +
κ

2
υ∗
N,q+1 +

κ

2
υ∗
SH,q+1))

+ (1− paBH) (−α q2 + δ ((1− κ) υ∗
BH,q +

κ

2
υ∗
N,q +

κ

2
υ∗
SH,q))

≤ paBH (
ϑ

2
− α (q − 1)2 + δ ((1− κ) υ∗

BH,q−1 +
κ

2
υ∗
N,q−1 +

κ

2
υ∗
SH,q−1))

+ (1− paBH) (−α q2 + δ ((1− κ) υ∗
BH,q +

κ

2
υ∗
N,q +

κ

2
υ∗
SH,q)) = υBH,q(LLS).

Hence, a contradiction, so LLB is never optimal at (BH, q > 0). The same reasoning holds for
q < 0. □

Lemma 12 If condition (C4) holds, then Lemma 7 continues to hold.

Proof of Lemma 12 It is straightforward to see that Claim 4 still holds because the transition
probabilities of large limit orders do no play a role in its proof. To show that Lemma 7 continues
to hold, we prove that LLS is not optimal in (SH, q > 0) for a small enough value of α. We
proceed by contradiction. Assuming that LLS is optimal in (SH, q > 0), for a small enough value
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of α, we have

vSH(LLB) = pbSH (
ϑ

2
+ δ ((1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH)

+ (1− pbSH) δ ((1− κ) υ∗
BH +

κ

2
υ∗
N +

κ

2
υ∗
SH)

= pbSH
ϑ

2
+ δ ((1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH)

vSH(LLS) = paSH (
ϑ

2
+ δ ((1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH)

+ (1− paSH) δ ((1− κ) υ∗
SH +

κ

2
υ∗
N +

κ

2
υ∗
BH)

= paSH
ϑ

2
+ δ ((1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH)

Since we assume that LLS is optimal at (SH, q > 0), we have υ∗
BH > υ∗

SH because paBH > paSH
and there is less penalty at q−1 than at q. Therefore, use pbSH > paSH , υ∗

BH > υ∗
SH , and (1−κ ) > κ

2

to obtain

pbSH
ϑ

2
+ δ ((1− κ) υ∗

BH +
κ

2
υ∗
N +

κ

2
υ∗
SH) > paSH

ϑ

2
+ δ ((1− κ) υ∗

SH +
κ

2
υ∗
N +

κ

2
υ∗
BH)

so that υSH(LLB) > υSH(LLS) = υ∗
SH , and therefore a contradiction. The same reasoning holds

for q < 0. □

Remark 1 If condition (C4) holds, then Lemma 8 continues to hold because the transition prob-

abilities of the large limit orders do not play a role in the proof of Lemma 8.

Proof of Theorem 3 The result is immediate from Lemmas 10, 11 and 12 and Remark 1. □

B. Additional Tables and Figures
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Table 12: Transition probability matrix.

(a) AAPL: 5 seconds

SH N BH

SH 0.32 0.41 0.28

N 0.28 0.43 0.29

BH 0.27 0.41 0.32

(b) AAPL: 1 second

SH N BH

SH 0.42 0.37 0.21

N 0.26 0.48 0.26

BH 0.20 0.37 0.43

(c) AAPL: 0.5 seconds

SH N BH

SH 0.52 0.32 0.16

N 0.22 0.55 0.23

BH 0.15 0.33 0.52

(d) AMZN: 5 seconds

SH N BH

SH 0.35 0.41 0.24

N 0.3 0.44 0.26

BH 0.27 0.41 0.32

(e) AMZN: 1 second

SH N BH

SH 0.47 0.35 0.18

N 0.26 0.51 0.23

BH 0.20 0.36 0.43

(f) AAPL: 0.5 seconds

SH N BH

SH 0.56 0.31 0.13

N 0.23 0.57 0.21

BH 0.15 0.32 0.52

(g) CSCO: 5 seconds

SH N BH

SH 0.52 0.39 0.09

N 0.15 0.7 0.15

BH 0.08 0.38 0.54

(h) CSCO: 1 second

SH N BH

SH 0.76 0.21 0.03

N 0.08 0.84 0.08

BH 0.03 0.21 0.76

(i) CSCO: 0.5 seconds

SH N BH

SH 0.82 0.16 0.02

N 0.06 0.87 0.07

BH 0.01 0.16 0.83

(j) INTC: 5 seconds

SH N BH

SH 0.48 0.41 0.11

N 0.17 0.67 0.16

BH 0.11 0.43 0.45

(k) INTC: 1 second

SH N BH

SH 0.71 0.24 0.04

N 0.10 0.81 0.09

BH 0.04 0.26 0.70

(l) INTC: 0.5 seconds

SH N BH

SH 0.79 0.18 0.03

N 0.08 0.85 0.07

BH 0.02 0.20 0.78

(m) MSFT: 5 seconds

SH N BH

SH 0.38 0.34 0.28

N 0.33 0.36 0.31

BH 0.31 0.34 0.35

(n) MSFT: 1 second

SH N BH

SH 0.46 0.32 0.22

N 0.31 0.40 0.29

BH 0.24 0.33 0.43

(o) MSFT: 0.5 seconds

SH N BH

SH 0.52 0.30 0.18

N 0.29 0.44 0.27

BH 0.20 0.30 0.49

(p) TSLA: 5 seconds

SH N BH

SH 0.34 0.39 0.27

N 0.30 0.41 0.29

BH 0.28 0.39 0.32

(q) TSLA: 1 second

SH N BH

SH 0.42 0.37 0.22

N 0.28 0.46 0.27

BH 0.23 0.37 0.41

(r) TSLA: 0.5 seconds

SH N BH

SH 0.49 0.34 0.17

N 0.25 0.50 0.25

BH 0.18 0.33 0.48
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Table 13: Baseline: Average number of spoofing sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.77 20.78 20.80 25.72 21.80 22.45

1 second 25.04 13.88 14.09 28.72 18.56 19.10

0.5 seconds 26.23 11.56 11.68 31.48 16.36 15.08

INTC

5 seconds 25.28 17.27 17.27 28.75 20.27 18.88

1 second 32.00 17.00 17.05 34.83 12.59 13.14

0.5 seconds 35.22 12.04 12.03 39.12 9.40 9.92

MSFT

5 seconds 25.07 21.68 21.70 25.43 22.20 21.97

1 second 25.55 16.87 16.87 27.33 19.15 18.86

0.5 seconds 26.31 10.32 10.30 29.82 15.30 15.95

TSLA

5 seconds 24.97 21.85 21.87 25.41 22.41 22.31

1 second 25.32 18.50 18.55 27.38 20.65 21.01

0.5 seconds 26.13 14.29 14.17 29.25 18.64 19.48

Table 14: Offline learning: Average number of spoofing sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.86 26.09 20.96 22.20 20.79 23.00

1 second 26.31 29.13 15.75 19.00 14.82 20.25

0.5 seconds 28.92 31.90 14.34 16.79 13.54 17.38

INTC

5 seconds 27.79 28.89 21.76 20.62 22.16 19.44

1 second 35.28 35.48 17.76 14.53 21.76 17.39

0.5 seconds 39.53 39.49 12.18 10.66 21.17 18.93

MSFT

5 seconds 25.03 25.77 21.55 22.54 21.72 22.38

1 second 25.94 28.10 17.56 20.08 17.42 19.88

0.5 seconds 27.02 30.51 11.30 16.06 11.24 17.27

TSLA

5 seconds 25.07 25.91 21.98 22.97 21.90 22.86

1 second 25.53 27.66 18.92 21.24 18.73 21.36

0.5 seconds 26.32 29.22 14.83 19.35 14.91 20.09
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Table 15: Online learning: Average number of spoofing sequences over 50 trading intervals.

Ticker
Decision

Interval ∆t

Zero inventory Same inventory Opposing inventory

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

q = 0 q = 0 q = 4 q = 4 q = 4 q = −4

AAPL

5 seconds 24.68 25.76 20.80 21.81 20.63 22.40

1 second 21.80 28.62 12.57 18.25 11.84 19.39

0.5 seconds 20.42 31.51 1.49 15.05 1.41 15.10

INTC

5 seconds 22.89 28.53 14.26 19.96 13.75 18.8

1 second 20.26 34.81 0.0 12.36 0.0 12.39

0.5 seconds 27.04 38.39 0.0 14.77 0.0 16.13

MSFT

5 seconds 24.65 25.38 21.27 22.05 21.32 21.85

1 second 23.84 27.33 15.48 18.88 15.41 18.67

0.5 seconds 23.03 29.36 8.53 14.31 8.51 14.37

TSLA

5 seconds 24.56 25.44 21.44 22.31 21.47 22.30

1 second 24.30 27.23 17.67 20.79 17.65 20.86

0.5 seconds 24.18 29.19 12.78 18.91 12.67 19.02

Table 16: Offline learning: Average spoofing statistics.

(a) Percentage of large orders on opposite sides over 50
trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 0.1002% 0.1008% 0.4369%

1s 0.1187% 1.2180% 0.0044%

0.5s 0.0250% 1.0324% 0%

INTC

5s 0.1235% 1.1789% 0.6517%

1s 0.0609% 0.0153% 4.9916%

0.5s 0% 0.0005% 4.1832%

MSFT

5s 0.6766% 1.6972% 0.1863%

1s 0.2604% 1.0269% 0.0401%

0.5s 0.1993% 0.7633% 0.0095%

TSLA

5s 0.1195% 0.1283% 0.5394%

1s 0.3506% 0.2716% 1.9706%

0.5s 1.7434% 1.6606% 0.9519%

(b) Number of times where only one market maker sub-
mits a large order over 50 trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 13.28 18.26 18.47

1s 23.10 25.81 27.52

0.5s 20.75 24.17 28.98

INTC

5s 21.58 20.71 29.97

1s 14.64 8.99 35.89

0.5s 10.10 4.29 39.34

MSFT

5s 25.92 25.22 27.84

1s 24.00 22.06 26.58

0.5s 22.07 17.58 26.12

TSLA

5s 13.48 17.35 18.69

1s 24.01 23.99 27.89

0.5s 22.65 24.07 29.37
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Table 17: Online learning: Average spoofing statistics.

(a) Percentage of large orders on opposite sides over 50
trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 0.2159% 0.4622% 0.5406%

1s 0.3898% 1.3460% 3.5092%

0.5s 0.6900% 0% 0%

INTC

5s 0.3182% 1.6649% 1.7663%

1s 1.7169% 0% 0%

0.5s 1.8299% 8.2368% 0%

MSFT

5s 0.0366% 0.2648% 0.5282%

1s 0.1880% 2.0196% 2.4215%

0.5s 0.3387% 0% 6.8309%

TSLA

5s 0.0415% 0.2238% 0.3103%

1s 0.3340% 1.3380% 1.8276%

0.5s 0.4559% 3.1344% 4.5598%

(b) Number of times where only one market maker sub-
mits a large order over 50 trading intervals.

Ticker ∆t Zero inv. Same inv. Opposing inv.

AAPL

5s 19.24 23.47 19.97

1s 25.29 26.97 24.09

0.5s 26.78 27.36 24.69

INTC

5s 24.01 26.20 25.41

1s 25.89 20.79 23.26

0.5s 19.58 29.51 32.50

MSFT

5s 21.35 22.15 22.31

1s 23.32 23.67 23.77

0.5s 23.81 22.90 23.22

TSLA

5s 18.51 20.67 19.76

1s 21.67 24.39 23.59

0.5s 22.15 25.94 24.22
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