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Abstract

To safeguard financial markets from crashes and bubbles, circuit breakers have been imple-

mented as protective mechanisms. However, these tools have faced significant criticism. Recent

research suggests that circuit breakers, rather than mitigating trading panic during extreme mar-

ket events, may amplify volatility through a ”magnet effect.” Additionally, they are often criticized

for relying solely on price variations, despite growing evidence that price movements can be an-

ticipated through order book activity. In this study, we employ machine learning algorithms

- specifically recurrent neural networks (RNNs) and random forests - to predict extreme mar-

ket events that could trigger circuit breakers based on detailed order book and trading activity

data. These advanced techniques excel at uncovering intricate patterns in large, high-frequency

datasets that traditional methods may overlook. Our analysis utilizes microsecond-level data

from Euronext Paris, capturing the full flux of messages and transactions from January 4, 2016,

to December 28, 2016. The dataset is uniquely enriched with trader classifications provided by

the French Market Authority, distinguishing among pure high-frequency traders (HFTs), mixed

HFTs, and non-HFTs. Moreover, it identifies whether trades were executed or orders placed on

a market member’s own account, on behalf of clients, or under liquidity provision contracts. Our

findings reveal that non-HFTs are the primary contributors to price instability leading to circuit

breaker activations, particularly during downward trends. Conversely, HFTs, often criticized for

destabilizing markets, exhibit stabilizing behaviors during circuit breakers, especially in post-halt

scenarios. Our results advance the understanding of circuit breakers in modern financial markets

and highlight the potential of machine learning to refine their design and effectiveness.
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1 Introduction

Financial markets are dynamic systems characterized by their susceptibility to extreme events, such as

market crashes and rapid price surges, which can destabilize the global economy (Lee and Schu, 2022).

Circuit breakers have been implemented to provide a regulatory safeguard against such disruptions,

offering temporary pauses in trading to stabilize volatile markets (Wang et al., 2022). Their importance

became evident following significant market disruptions, such as the 1987 crash, the 2010 Flash Crash

(Subrahmanyam, 2013), flash crashes in Cryptocurrency exchanges in 2017, the Brexit referendum,

and large intraday plunges of the DJIA in February 2018 (Sifat and Mohamad, 2020).

Yet, the implementation of circuit breakers remains a contentious topic as persistent criticism

pinpointed some unintended consequences such as delayed price discovery and exacerbation of volatil-

ity through the magnet effect. The rise of algorithmic trading, particularly high-frequency trading

(HFT), has further complicated market behaviors, demanding innovative approaches to managing

extreme events (Wang et al., 2022). In this regard, the integration of machine learning and big data

analytics present a promising avenue for addressing these challenges (Yuan, 2024). Particularly, deep

neural networks (DNNs) are revolutionizing financial market analysis with innovative methods to

predict time series data and performance forecasting (Kolte et al., 2023).

Existing studies offer mixed findings on the effectiveness of circuit breakers. While some research

highlights their role in reducing panic and stabilizing markets others argue that circuit breakers

may amplify volatility through the magnet effect (Wang et al., 2022). The issue has transcended

geographical limits with the increasing prevalence of cross-border market integrations, particularly

within Europe (Brennan, 1986; Chowdhry and Nanda, 1998). As a result, there have been calls to

harmonize regulatory measures across exchanges to prevent the migration of harmful order flows and

maintain market liquidity (Chen et al., 2024). Furthermore, the empirical focus has often overlooked

the distinct behaviors of different trader categories – HFTs, mixed HFTs, and non-HFTs – during

circuit breaker activations. Additionally, although machine learning has shown promise in financial

forecasting, its potential to enhance circuit breaker calibration and prediction remains underexplored.

This study bridges these gaps by combining granular order book data with machine learning techniques

to analyze trader behaviors and predict circuit breaker triggers.

The Euronext Paris market, one of Europe’s largest and most technologically advanced trading

platforms, provides a fertile ground for examining circuit breakers. In 2016, significant geopolitical and

financial events, such as the Brexit referendum and the collapse of Italy’s Monte dei Paschi di Siena

bank, resulted in unprecedented volatility. These events triggered multiple circuit breaker activations,

highlighting the critical role of these mechanisms in stabilizing markets. The choice of Euronext Paris

and 2016 as the focal point of this study is justified by the rich dataset of extreme market events,
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enabling a robust evaluation of circuit breaker efficacy in a high-stakes environment.

This study employs microsecond-level data from Euronext Paris, focusing on 125 automated circuit

breakers triggered on french equities between January 4, 2016, and December 28, 2016. The data,

sourced from Eurofidai’s BEDOFIH database, provides detailed insights into the activities of pure

HFTs, mixed HFTs, and non-HFTs. While previous studies have relied on proxies to estimate high-

frequency trading activity (Hendershott et al., 2011; Riordan and Storkenmaier, 2012), our dataset

contains the full flux of messages and transactions, labeled by the French Market Authority to indicate

the profiles of traders. Furthermore, our data allows us to distinguish whether a trade was executed

or an order placed on a market member’s own account, on behalf of clients, or in relation to a liquidity

provision contract, among other scenarios. This enables a uniquely detailed analysis of the trading

dynamics across different trader categories. Additionally, by employing recurrent neural networks

(RNNs) and random forest algorithms, this study identifies the trader categories most influential in

triggering circuit breakers and evaluates their contributions to market instability. The methodological

approach integrates machine learning techniques to predict extreme events and refine circuit breaker

mechanisms, addressing both theoretical and practical dimensions.

This paper makes several critical contributions to the literature. First, it provides a granular

analysis of trader behaviors before, during, and after circuit breaker activations, distinguishing be-

tween HFTs, mixed HFTs, and non-HFTs. Second, it leverages machine learning to enhance the

predictability of extreme market events, demonstrating the utility of advanced algorithms in regu-

latory applications. Third, by focusing on the high-stakes environment of Euronext Paris in 2016,

the study offers unique insights into the effectiveness of circuit breakers during periods of geopolitical

and financial instability. These contributions extend the discourse on market regulation, technological

advancements, and the interplay between the two.

The results reveal that non-HFTs are the most significant contributors to price instability leading to

circuit breaker activations, particularly during downward trends. Surprisingly, HFTs, often criticized

for destabilizing markets, demonstrate stabilizing behaviors during circuit breakers, particularly in

post-halt scenarios. Machine learning models achieve high accuracy in predicting circuit breaker

triggers, with RNNs achieving a recall rate of 82.59%, indicating their effectiveness in identifying

extreme events. However, both RNNs and random forests exhibit moderate precision, reflecting the

challenge of minimizing false positives in volatile markets.

The remainder of this paper is organized as follows: Section 2 reviews the existing literature on

circuit breakers, highlighting their theoretical foundations, empirical evidence, and gaps in research.

Section 3 outlines the data sources and methodology, detailing the machine learning models and their

implementation. Section 4 presents the results, focusing on trader behaviors and the predictive per-
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formance of machine learning algorithms. Section 5 discusses the findings in the context of regulatory

implications and market stability. Finally, Section 6 concludes with policy recommendations and

avenues for future research.

2 Literature Review

Circuit breakers are regulatory tools used to stabilize financial markets during periods of extreme

volatility. In the European Union (EU), their implementation is governed under the Markets in

Financial Instruments Directive II (MiFID II) framework. Article 48 mandates the use of mechanisms

like trading halts and price limits to prevent extreme price fluctuations and ensure orderly markets

(Lee and Schu, 2022). The Markets in Financial Instruments Directive II (MiFID II) framework in

the European Union mandates circuit breakers, requiring trading venues to incorporate mechanisms

calibrated for asset-specific liquidity and volatility profiles (ESMA, 2015).

The Paris Bourse operates under this regulatory framework, utilizing circuit breakers to manage

volatility during significant market events like the 2016 Brexit referendum. On this occasion, trading

halts on Euronext helped mitigate panic selling and facilitated the repricing of assets. As such, circuit

breakers acted as a buffer, providing market participants with the time to reassess and mitigate

abrupt sell-offs, thus stabilizing the CAC 40 index (Sifat and Mohamad, 2020). However, the global

landscape shows variance in circuit breaker calibration, underscoring the need for dynamic and data-

driven frameworks.

2.1 Theoretical and Empirical Foundations of Circuit Breakers

The theoretical basis for circuit breakers stems from the belief that allowing a pause in trading can al-

leviate information asymmetry, reduce order imbalances, and enhance liquidity (Greenwald and Stein,

1991). These mechanisms temporarily halt trading when predefined thresholds are breached. They are

designed to achieve three primary objectives: (1) provide a cooling-off period during turbulent market

conditions, (2) prevent panic selling, and (3) maintain orderly markets by allowing price discovery

(GROSSMAN and MILLER, 1988).

Proponents of circuit breakers emphasize their ability to reduce panic and stabilize markets during

periods of stress. For instance, Brennan (1986) highlights their role in lowering margin requirements

and transaction costs, while Chowdhry and Nanda (1998) emphasize their function in limiting daily

losses and preventing excessive speculation. Li et al. (2021) find that circuit breakers promote risk-

sharing among investors, enabling a more equitable distribution of market risks.

However, this theoretical consensus is not universal. Critics point to the magnet effect, where
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circuit breakers inadvertently accelerate price movements toward the trigger points as traders rush

to execute orders before a halt. Subrahmanyam (1994) demonstrates that this effect can increase

price variability, reduce price efficiency, and destabilize markets. Goldstein and Kavajecz (2004)

report liquidity reductions on the second day after trading halts. Chen et al. (2024) corroborate this,

highlighting how circuit breakers in falling markets exacerbate volatility by encouraging concentrated

trading activity near the thresholds. Jian et al. (2020) find that as thresholds approach, the likelihood

of price jumps and trading surges increases, supporting the magnet effect hypothesis in the Chinese

market. A circuit breaker often reduces the overall stock price level and significantly impacts its

behavior. Specifically, as the price nears the circuit breaker threshold, volatility increases sharply,

which in turn heightens the likelihood of triggering the mechanism–an effect commonly referred to as

the magnet effect (Chen et al., 2024). Subrahmanyam (2013) demonstrates that strategic trading near

circuit breaker thresholds can precipitate unnecessary halts, amplifying market instability. Empirical

evidence from the Tokyo Stock Exchange (Kim and Rhee, 1997) and the Chinese stock market (Wang

et al., 2019) supports this view, showing that trading activity intensifies as prices approach the limits,

undermining the stabilizing intent of circuit breakers. The circuit breaker failed to act as a time-out

buffer and instead triggered a rapid onset of the magnet effect, increasing the likelihood of stock prices

reaching their limits during the market crash (Li et al., 2021; Wong et al., 2020).

2.2 The Role of Machine Learning in Predicting Circuit Breaker Activa-

tion

Machine learning has emerged as a powerful tool for predicting market crashes and optimizing circuit

breaker mechanisms. Unlike traditional models, machine learning algorithms can process vast amounts

of historical and real-time data, identifying complex, nonlinear patterns associated with market stress.

Furthermore, the integration of ML into financial market regulation has provided new avenues

for enhancing the predictive and adaptive capabilities of circuit breakers. ML models, particularly

deep neural networks (DNNs), can process high-frequency data to identify patterns and forecast mar-

ket stress with exceptional accuracy (Boonpan and Sarakorn, 2025). In the context of our study,

incorporating machine learning into the calibration of circuit breakers could enhance their efficacy

by addressing challenges such as the magnet effect. For example, models trained on historical data

could identify the behavioral patterns of market participants that precede trading halts. This predic-

tive capability allows regulators and exchanges to implement proactive measures, such as adjusting

threshold levels or introducing dynamic halts based on real-time conditions.

Many studies showcase the beneficial effects of ML. By analyzing liquidity, volatility, and order

flow data, ML models can predict the likelihood of circuit breaker activation with high accuracy.
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For instance, Boonpan and Sarakorn (2025) utilized advanced data preparation techniques, such as

trend scanning and piecewise aggregate approximation, to enhance DNN-based predictions of stock

price directions. Gao et al. (2024) employed agent-based models augmented with ML to simulate

flash crash scenarios, offering insights into conditions that precipitate such events. Jian et al. (2020)

demonstrated how ML models could mitigate the magnet effect by preemptively identifying high-risk

scenarios. Additionally, agent-based simulations combined with ML algorithms provide a controlled

environment for testing regulatory responses to hypothetical market shocks (Leal and Napoletano,

2019).

By leveraging real-time data, ML can dynamically adjust circuit breaker thresholds, addressing

criticisms related to static calibrations. These advancements align with regulatory calls for adaptive

and evidence-based calibration frameworks, as outlined in MiFID II and ESMA guidelines.

3 Data Description

Our data is provided by Eurofidai Base Européenne de Données Financières à Haute Fréquence (BED-

OFIH). It covers large variety of stocks listed on Euronext from January 4, 2016 to December 28,

2016. Since January 2012, Eurofidai launched the Base Européenne de Données Financières à Haute

Fréquence (BEDOFIH) project that aims to create a European intra-day financial database. One

notable characteristic of this data is its granularity, recorded at the microsecond level. Each message

within the database is assigned a category based on its owner. The Autorité des Marchés Financiers

(AMF) has identified three categories of market participants: pure-HFTs, investment banks engaged

in HFT activities (MIX), and all other remaining traders (Non-HFTs)1.

Moreover, each trader is required to flag every order based on specific criteria, such as:

1. Own account or own account for client facilitation (OWN).

2. Own account of an affiliate or when operating from a parent company of the stock (PARENT).

3. Account of a third party or client account (CLIENT).

4. Orders submitted pursuant to a liquidity provision agreement (MM).

5. Orders submitted for retail liquidity provider (RLP) or retail matching facility (RMO).

Our analysis centers on the French equity market. Trading in the French stock market takes

place on the Euronext Paris, which has been operating as a Regulated Market since 2009. The

trading environment is computerized and utilizes a limit order system on the UTP (Universal Trading

1According to the AMF, there are 10 to 20 pure-HFT, 10 to 20 IB-HFT and 100 to 150 non-HFT operating on

Euronext Paris.
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Platform). Due to the increasing automation of stock markets, the time interval for submitting,

modifying, or cancelling orders on the marketplace has become significantly shorter.

Euronext adheres to a general philosophy of not halting trading except under extreme circum-

stances. To maintain orderly markets, they employ a comprehensive set of safeguards designed to

prevent disruptions and detect unusual events. These protection mechanisms are regularly reviewed

and approved by regulators to ensure ongoing improvements in safety measures across all their reg-

ulated markets. To avoid disruptions, Euronext’s market protection mechanisms include rejecting

aberrant orders (e.g., unusually large in size or price) before they enter the market. They also have

the ability to halt trading on specific instruments affected by single orders that could cause market

disruption, as well as to prevent significant price fluctuations using dynamic and static collars.

Real-time algorithm-powered alerts are in place to monitor the markets and ensure fair and orderly

trading, with investigation and resolution as necessary. Dynamic and static collars, based on the

reference price that changes throughout the trading day after each trade, serve as the first and second

layers of Euronext’s circuit-breaker mechanism. Reservation periods during collars help mitigate the

impact of unexpected price movements, allowing sufficient time for market participants to review

orders and investment decisions before trading resumes.

On Euronext, a circuit breaker is recorded as a specific event with a series of states and their

exact timing. The ’Halted instrument’ state occurs when the static or dynamic price range is reached

or breached, causing a temporary trading interruption. Unlike traditional trading halts, a circuit

breaker does not fully suspend all trading activities but instead triggers an unscheduled call auction

stage called ’Delayed opening.’ During the call phase, orders can be submitted, modified, or canceled,

and indicative prices and volumes are displayed. The purpose of this temporary trading suspension is

to give market participants a few minutes to evaluate new information, reconsider their interests, and

remove any erroneous orders. The minimum duration of a trading halt is 3 minutes. If the potential

execution price remains outside the predetermined acceptable range, the auction can be extended. The

’Go to open’ state occurs when the opening price is determined, and ’Start continuous trading’ marks

the moment when continuous trading resumes. This method of recording a circuit breaker allows for

a reconstruction of all market events leading up to the circuit breaker and order book activity during

the trading halt.

The descriptive statistics for our sample are presented in Table 1.

Figure 1 illustrates the companies listed on Euronext in 2016 whose stocks were halted due to

circuit breaker events. Their price distribution is right-skewed, with the majority of stocks falling

within the lower price range (0-30). A noticeable decline in frequency is observed as prices rise. The

0-20 range shows the highest frequency, suggesting that most halted stocks were relatively low-priced.
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HFT Mix Non-HFT

mean median sd mean median sd mean median sd

%NbOfTradesAtOpening 8.6302 7.3621 6.0885 47.1037 47.2393 9.9121 44.2662 45.3988 10.6580

%NbOfTradesAtContinuous 37.1946 37.9208 5.5548 53.9164 54.4951 4.9283 8.8890 7.5842 5.9310

%VolumeAtOpening 32.7510 33.5307 7.7573 78.8883 80.8941 10.2023 35.1900 31.3304 14.4435

%VolumeContinous 55.2593 56.7006 7.2372 85.2437 86.6005 5.1813 16.1757 13.7992 8.5683

TotalMarket 7.7838 7 4.2891 88.8378 84 27.9826 205.2973 175 133.1183

TotalLimit 76510.4324 71669 17467.9366 76862.7838 74133 18182.6766 2979.8108 2877 936.4472

TotalLimitMarket 0 0 0 0.4865 0 0.5588 50.1622 37 58.139

ExecutedMarket 2.7297 3 1.8507 40.8649 39 18.7026 68.5676 60 37.8649

ExecutedLimit 2324.8649 2236 798.325 3847.5135 3485 1826.4959 422.2162 313 268.6831

ExecutedMarketLimit 0 0 0 0.2432 0 0.435 13.6486 13 6.4602

Table 1: Summary statistics of different categories of traders. These statistics are measured based on the

data of 102 equities companies listed on Euronext in the period from 04/01/2016 to 30/12/2016. %NbOf-

TradesAtOpenning = Nb of trades of a certain category of traders/nb of total trades realized during opening

session. %NbOfTradesAtCotinous = Nb of trades of a certain category of traders/nb of total trades realized

during continuous session.

Notable spikes at price levels of 60 and 100 indicate the presence of outliers. Lower-priced stocks

may exhibit higher volatility, making them more susceptible to triggering circuit breakers. Among

the largest companies affected by circuit breakers that year, BNP Paribas faced a significant legal

challenge on April 29, 2016, when a class-action lawsuit was filed by a group of Sudanese refugees.

The plaintiffs accused BNP Paribas of providing financial assistance to the Sudanese government,

allegedly facilitating human rights violations, including genocide, in the Darfur region. On November

22, 2016, Vinci, a leading French construction and concessions company, saw a sharp decline in its

stock price following the spread of a fraudulent press release. The false statement claimed that Vinci

would restate its 2015 and 2016 financial reports and had dismissed its CFO. This misinformation

rapidly circulated, causing Vinci’s stock price to drop by more than 18% before trading was suspended.

On June 24, 2016, Renault SA also experienced significant price volatility, triggering Euronext’s circuit

breaker. As a major European automaker, Renault was directly impacted by the market’s reaction to

the Brexit vote, with its stock price fluctuating sharply due to investor concerns about the economic

and regulatory consequences of the UK’s decision to leave the EU.
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Figure 1: Frequency of Opening Prices on the Day of Circuit Breaker Activation.

The histogram 2 reveals two distinct periods of heightened circuit breaker activity on Euronext

Paris in 2016, each corresponding to major geopolitical and financial events. A significant spike in

circuit breakers occurred in late June, closely tied to the Brexit Referendum, which triggered extreme

volatility and uncertainty across European markets. Earlier in the year, another cluster of circuit

breakers was observed, primarily driven by the default of the Italian bank Monte dei Paschi di Siena.

This event had a cascading effect on French banking and financial companies, exacerbating market

instability. These findings highlight how systemic risks and major geopolitical events can lead to

abrupt market dislocations, necessitating the activation of circuit breakers.
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Figure 2: Seasonal Patterns in Circuit Breaker Activations

4 Traders’ Activities Leading to Automated Circuit Breakers

To study the reaction of different categories of traders on stressful situation which leads to circuit

breaker and their reaction on trading halts, we focus on a sample of 125 automated circuit breakers

triggered on the equities listed on Euronext from January 4, 2016 to December 28, 2016. We report

that 42 breaking episodes were provoked by significant daily price drop (called ”negative circuit

breaker”), and 83 of circuit breakers were provoked by significant daily price rise (called ”positive

circuit breaker”). We find that non-HFTs significantly increase their usage of market orders before-,

during- and after trading pause. The ratio of market-to-limit registers about 10% for this category of

traders. They do not have the same abilities as HFTs to monitor and manage their outstanding limit

orders in highly volatile market, so to prevent adverse selection risk they heavily rely on market orders

during extreme market events. More surprisingly, we find that fast traders also increase their trading

aggressiveness and increase the usage of market orders during a circuit breaker. Market-to-limit ratio

of pure-HFTs is three times higher during the halting and delayed opening compared to the normal

market conditions. HFTs reduce their liquidity provision via limit orders during a circuit breaker.

To study the changes in liquidity provision and consumption of different categories of traders during

relatively calm periods and particular turbulent periods, we study the monetary net trade imbalance

in Table 2. That is the difference between the funds invested to buy transactions and funds gained as

result of sell transactions. Negative net imbalance of a trading category during a crash indicates that

it contributes to price drop; a positive net imbalance during a crash indicates that this category of
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Upward trend

pure-HFT mix-HFT non-HFT

mean median sd mean median sd mean median sd

5 minutes prior 36,561.07 0.00 101,959.4 79,861.22 4,407.82 217,561.3 121,280.20 10,671.61 356,494.9

halted intrument -12,065.39 0.00 150,370.3 -85,797.16 0.00 529,709.1 -51,133.22 0.00 355,598.2

delayed opening -44,583.87 -904.05 263,830.7 -140,474.19 -1,526.16 1,171,636.2 -388,644.11 -2,972.85 10,21,570.2

5 minutes after 10,460.15 4,621.21 382,539.9 -220,021.15 15,708.76 1,510,767.9 -247,376.83 -4,565.18 1,418,433.3

Downward trend

pure-HFT mix-HFT non-HFT

mean median sd mean median sd mean median sd

5 minutes prior -142,725.1 -8,608.923 386,429.6 -474,141.6 -41,055.007 15,85,882.3 -384,056.2 -94,598.257 755417.9

halted intrument -1,219.075 0.00 55,549.34 -149,697.718 0.00 820,600.74 -40,225.256 0.00 303,384.10

delayed opening -11,859.8 0.00 155,826.7 -148,345.3 -4,473.592 563,440.2 -168,807.0 -4,473.592 623,431.8

5 minutes after 53,510.91 -3,438.496 294,727.6 -266,183.86 -19,534.643 958,306.3 40,706.74 -24,104.517 870,640.0

Table 2: Net Positions are calculated as the sum of buy volume consumed and buy volume provided, minus

the dollar sell volume consumed and sell volume provided. The statistics are derived from 83 circuit breakers

triggered by upward trends and 42 circuit breakers triggered by strong downward trends on Euronext in 2016.

traders contribute to a market stabilization and price recovery. Analysing market participants’ quoting

behavior during trading pauses shows that non-HFTs increase liquidity consumption and create the

strongest liquidity pressure into the direction of underlying trend 5 minutes prior- and during the first

stage of a typical automated circuit breaker.

At the same time, they significantly reduce their liquidity pressure during the period of delayed

opening and contribute to the price recovery when the continuous trading is renewed. Hence, non-

HFTs start playing a role of liquidity suppliers and efficiently use trading pause to moderate price

movements. The trading pause creates a layer of protection for market participants willing to trade

against the price movement and initiate a trend reversal, as they are protected from adverse selection

during the circuit breaker.

The behavior of HFTs differs with respect to the direction of the trend. They contribute to

market correction during a typical positive circuit breakers (at delayed opening) triggered by a strong

upward trend. Pure-HFTs similarly to other categories provide liquidity into the opposite direction of

the positive underlying trend. However, only mix-HFTs continue creating selling-pressure in case of

market crash during the last stages of circuit breaker. Mix-HFTs tend to be substantial sellers during

the price fall and after the circuit breaker is triggered. Even 5 minutes after reopening, average net

positions of mix-HFTs is negative reaching on average -200 000 euros. It means that mix-HFTs tend

to initiate more trades into direction of an average crash rather than they stabilize prices. These

findings suggest that a circuit breaker may be insufficient to dissuade all traders from trend following

and prevent the crash amplification.
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Normal Incident

Mean Median Sd Mean Median Sd p-value

Nb modif pure-HFT 3309.2189 506.2235 6294.2290 5884.2068 1716.2727 10510.9105 0.0224**

Cancel ratio pure-HFT 0.6719 0.8407 0.3332 0.5906 0.7695 0.3413 0.0643*

Buy/sell pure-HFT 2.0467 1.0330 4.9404 2.4480 1.0349 5.6994 0.5618

Market/limit pure-HFT 0.0347 0.0000 0.2099 0.0318 0.0000 0.1284 0.8973

NbTradesLinked pure-HFT 0.1841 0.0681 0.4878 0.2353 0.1176 0.4047 0.3802

Trade volume pure-HFT 2386.2568 1834.7617 2354.0556 2443.2073 2458.4237 2246.3063 0.8488

Nb trades pure-HFT 33.8034 7.0000 63.5892 93.3306 27.0000 201.8748 0.0024***

Nb modif mix-HFT 10477.2727 3498.2515 15251.2792 11352.8977 3380.2985 20324.8010 0.7067

Cancel ratio mix-HFT 0.5793 0.6421 0.2501 0.5947 0.6620 0.2342 0.6241

Buy/sell mix-HFT 1.5046 0.9556 2.0873 1.5368 0.9695 3.2499 0.9275

Market/limit mix-HFT 0.1369 0.0000 0.5201 0.2537 0.0006 0.8138 0.1870

NbTradesLinked mix-HFT 0.2040 0.1221 0.2613 0.4259 0.2269 0.6299 0.0005***

Trade volume mix-HFT 2415.6540 2421.1655 1863.8331 2981.3059 3006.5078 2569.3283 0.0526*

Nb trades mix-HFT 32.6667 14.0000 59.1762 114.6942 34.0000 287.6880 0.0026***

Nb modif non-HFT 9732.9432 680.9231 24669.6050 8001.5353 1498.5135 20497.9252 0.5572

Cancel ratio non-HFT 0.3237 0.2727 0.2627 0.3109 0.2909 0.1861 0.6658

Buy/sell non-HFT 6.2106 1.3333 28.1359 1.8454 1.0732 2.3156 0.0971*

Market/limit non-HFT 0.1604 0.0096 0.5212 0.2101 0.1343 0.2985 0.3694

NbTradesLinked non-HFT 0.7812 0.5789 0.7464 1.0387 0.9354 0.8455 0.0133**

Trade volume non-HFT 2515.5250 2164.6814 4066.9374 2998.0587 2496.0603 3617.9166 0.3351

Nb trades non-HFT 25.6410 5.0000 45.6764 131.4793 34.0000 257.2837 0.0000***

Table 3: This table compares order book dynamics and trading activity across various trader categories

during the 10 minutes preceding a circuit breaker trigger. The statistics labeled normal conditions correspond

to the same 10-minute interval on typical trading days without circuit breaker activation.

Nb modif represents the average number of modified orders during the period. Cancel ratio refers to the ratio

of canceled limit orders to submitted limit orders. Buy/sell indicates the ratio of bid orders to ask orders,

while Market/limit shows the ratio of market orders to limit orders during the same period. Order-to-trades

measures the average number of trades associated with each order, reflecting the number of trades an order

is involved in. Trade volume represents the average trade volume for each trader category, and Nb trades

denotes the average number of trades executed by each trader category during the period.

Significance levels are denoted as follows: ***: p−value < 0.01 (highly significant), **: 0.01 ≤ p−value < 0.05

(moderately significant), *: 0.05 ≤ p− value < 0.1 (weakly significant).
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Table 3 presents the changes in order book dynamics and trading activity across different trader

categories in the 10 minutes preceding a circuit breaker trigger. A notable rise is observed in the num-

ber of modifications made by pure-HFTs during circuit breaker events compared to normal conditions.

There is also a weakly significant decrease in transaction annulment rates by pure-HFT during inci-

dents. All trading categories exhibit a significant increase in both the number of trades and trading

volume during this period. Transactions involving mix-HFTs and non-HFTs surge sixfold.

Figure 3: Distribution of Relative Range 10 minutes prior to a circuit breaker. To capture

the underlying trend leading to a circuit breaker activation, we compute the relative range. First,

we determine the indexes of the minimum price Pmin
i and maximum price Pmax

j within the interval

[Pt−10, Pt], where t is the moment of a circuit breaker activation, and t−10 ≤ i ≤ t and t−10 ≤ j ≤ t.

If i > j, then Relative Range =
Pmin

i −Pmax
j

Pmax
j

. If i < j, then Relative Range =
Pmax

j −Pmin
i

Pmin
i

.

This histogram and boxplot summarize the distribution of the relative range. The mean is 0.0023,

the median is 0.005, the standard deviation is 0.0505, the minimum value is -0.16, and the maximum

value is 0.15.

The regression results in Table 4 examine the relationship between trade activity and the relative

price range, a measure of price movement leading up to a circuit breaker activation. This analysis

is presented for three trader categories: pure-HFT, mix-HFT, and non-HFT, with each category

examined over two intervals: 10 minutes prior to the circuit breaker (CB) activation and 10 minutes

after reopening.

For pure-HFT traders, the variable NbTradesClient, which represents the number of trades exe-

cuted on behalf of clients, shows a positive and statistically significant relationship with the relative

12



10 minutes prior CB 10 minutes after reopening

Category Variable Estimate p-value Estimate p-value

NbTradesClient 1.066 0.0206* 0.619 0.2292

NbTradesOwn 0.784 0.1128 -0.699 0.0691.

pure-HFT NbTradesLiquidity 0.706 0.6701 -0.442 0.4985

NbTradesRMO -0.171 0.7502 -0.147 0.7154

NbTradesOthers 0.603 0.6921 -0.730 0.1870

NbTradesClient -0.064 0.8751 0.564 0.1523

NbTradesOwn -1.831 0.0122* 0.613 0.1126

mix-HFT NbTradesLiquidity -0.170 0.9289 -0.370 0.5036

NbTradesRMO -0.578 0.0819. -0.001 0.9977

NbTradesOthers -0.169 0.9080 1.959 0.0602.

NbTradesClient -0.808 0.1228 -0.468 0.2713

NbTradesOwn 0.860 0.0210* -0.238 0.5002

non-HFT NbTradesLiquidity -1.102 0.0204* 0.335 0.2342

NbTradesRMO 0.648 0.0112* 0.231 0.6364

NbTradesOthers 0.262 0.7008 -1.125 0.0791.

R2 0.7415 0.4421

Table 4: Regression Results of Relative Range on Trade Activity Across Trader Categories. To capture the

underlying trend leading to a circuit breaker activation, we compute the relative range. First, we determine

the indexes of the minimum price Pmin
i and maximum price Pmax

j within the interval [Pt−10, Pt], where t

is the moment of a circuit breaker activation, and t − 10 ≤ i ≤ t and t − 10 ≤ j ≤ t. If i > j, then

Relative Range =
Pmin
i −Pmax

j

Pmax
j

. If i < j, then Relative Range =
Pmax
j −Pmin

i

Pmin
i

. Trade activity: NbTradesClient

denotes the number of trades executed on behalf of clients, NbTradesOwn is the number of trades executed for

one’s own account, NbTradesLiquidity is the number of trades executed as a liquidity provider (market maker),

NbTradesRMO is the number of trades executed for Retail Market Organization (RMO), and NbTradesOthers

is the number of trades executed for other reasons. All variables are scaled to have comparable magnitudes.

Z-score normalization transforms the variables to have a mean of 0 and a standard deviation of 1. Significance

levels: ***: p < 0.001, **: p < 0.01, *: p < 0.05.

range 10 minutes before the circuit breaker activation (estimate = 1.066, p = 0.0206). This indi-

cates that as the number of client trades increases, the relative range tends to widen, suggesting a

possible acceleration in price movement as the circuit breaker approaches. However, the relationship

becomes statistically insignificant after the market reopens, with an estimate of 0.619 and a p-value

of 0.2292, indicating no notable effect on the price movement after reopening. Other variables, such

as NbTradesOwn, NbTradesLiquidity, NbTradesRMO, and NbTradesOthers, do not show significant

effects either before or after the circuit breaker event for pure-HFT traders.

In the case of mix-HFT traders, the results are more varied. The variable NbTradesClient shows

a negative and statistically significant relationship before the circuit breaker (estimate = -1.831,

p = 0.0122), indicating that an increase in client trades is associated with a decrease in the relative

range in the pre-circuit breaker period. This suggests a stabilizing effect of client trades in the lead-up
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to the circuit breaker. However, this effect does not persist after the market reopens, as the estimate

of 0.613 and p = 0.1126 indicate a lack of statistical significance. Other variables for the mix-HFT

category, including those representing trades executed for own account and liquidity provision, do not

show any significant impact on the relative range before or after the circuit breaker.

For non-HFT traders, the findings are more pronounced. The variable NbTradesClient shows a

significant negative relationship before the circuit breaker (estimate = -1.102, p = 0.0204), suggesting

that higher trading activity on behalf of clients leads to a reduction in the relative range, which

could be interpreted as a mitigating effect on price volatility leading up to the circuit breaker. After

reopening, the relationship becomes less clear, with an estimate of 0.335 and p = 0.2342, indicating

no significant effect. Other variables, such as those representing own account trades and liquidity

provision, show varying degrees of significance before and after the circuit breaker, with some results

reaching significance, such as NbTradesOwn (estimate = 0.860, p = 0.0210) before the circuit breaker.

The model’s explanatory power, as indicated by the R2 values, is 0.7415 before the circuit breaker,

suggesting that the model explains a substantial portion of the variability in the relative range. After

the circuit breaker, the R2 drops to 0.4421, reflecting a decrease in explanatory power after the event.

These observations can be explained by the fact that most companies in this study have low-

priced equities with high volatility usually avoided by HFTs (Hendershott et al., 2011; Chung and

Zhang, 2014; Budish et al., 2015; Menkveld, 2013). High-frequency trading strategies typically rely

on executing numerous small, rapid trades that capitalize on minor price movements. However, in

markets with low liquidity, there may not be sufficient buy or sell orders to execute these trades

efficiently without causing significant price impacts. Consequently, low liquidity increases the risk

of being unable to enter or exit positions at desired prices, which is undesirable for HFTs. HFTs

prefer stable and liquid environments where they can deploy high-speed algorithms to capture small

price changes, and they tend to avoid markets with high volatility and low liquidity (Menkveld, 2013;

Budish et al., 2015).

In conclusion, the results suggest that the relationship between trade activity and price movement

leading up to a circuit breaker varies across trader categories and time intervals. For pure-HFT and

mix-HFT traders, the effects are mostly insignificant, while non-HFT traders exhibit more notable

relationships with the relative range. These findings highlight the different dynamics at play among

different types of traders, particularly in how they influence market conditions before and after a

circuit breaker activation.
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5 Leveraging Machine Learning to Enhance Market Stability

In this section, we explore the use of artificial intelligence (AI) tools to predict extreme market events

via trading and order book activities that may trigger circuit breakers. At the core of AI is machine

learning, a methodology where algorithms improve their ability to analyze and classify data through

repeated exposure to historical datasets. This process, commonly referred to as training or learning,

enables models to identify patterns and make accurate predictions on new data.

Machine learning-based studies typically follow two key phases. The first involves selecting relevant

variables and optimizing models through a process of training and validation. A subset of the data is

reserved for this purpose, allowing models to fine-tune their predictive capabilities. The second phase

tests these optimized models on a separate dataset to assess their predictive performance.

Two principal methodologies dominate AI and machine learning applications: neural networks

and decision trees. Neural networks operate in a supervised learning environment, processing inputs

through multiple interconnected layers of nodes. These layers refine their outputs iteratively using

backpropagation, adjusting weights to enhance prediction accuracy. Deep learning extends this ap-

proach, incorporating additional intermediate layers to process complex data patterns, which further

improves prediction outcomes.

On the other hand, decision trees follow a more traditional approach by partitioning data sequen-

tially. Each branch of the tree represents a decision split based on predictor variables, making this

method intuitive and effective for many classification tasks. Both neural networks and decision trees

exemplify AI’s broader ability to recognize patterns and extract classification rules from historical

data. Crucially, machine learning algorithms not only adapt to new information but also excel in

generating predictions with minimal human intervention.

Since trades originate from activities within the order book, this section investigates the use of

machine learning techniques to predict potential extreme market events, such as flash crashes or

sharp bubbles, by examining trading patterns within the order book. To assess the contribution of

each trading category-pure-HFT, mix-HFT, and non-HFT-the following metrics are analyzed: the

average number of order modifications during the period; the order cancellation rate, defined as the

number of canceled limit orders divided by the number of submitted limit orders; the buy/sell ratio,

calculated as the number of bid orders divided by the number of ask orders during the period; the

market/limit ratio of orders; the average number of trades associated with each order, representing

the number of trades an order is involved in; the average number of trades executed by each trader

category during the period; and the average trade volume for each trader category during the period.

These metrics form the structure of the vector used for data processing by the machine learning

algorithms.
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5.1 Recurrent Neural Network (RNN) with ADAM Optimization Func-

tion

The dataset introduced in the previous section is both multivariate and temporally dependent, making

it particularly challenging to analyze. To address this complexity, we employed a Recurrent Neural

Network (RNN), which is well-suited for processing such data structures.

These models iterate repeatedly to optimize for the best approximation function between inputs

and outputs. A key component of any neural network is its optimization function (Schmidhuber,

2015; LeCun et al., 1998). For our model, we selected the ADAM (Adaptive Moment Estimation)

optimizer (Kingma and Ba, 2014; Ruder, 2016). ADAM is a stochastic gradient-based optimization

algorithm that improves upon traditional stochastic gradient descent by dynamically adjusting learn-

ing rates, handling noisy gradients effectively, and enabling faster convergence. These attributes make

it especially suitable for training complex neural networks, such as ours, designed to predict poten-

tial incidents. During each iteration, ADAM operates by calculating gradients, updating moments,

correcting biases, and finally updating parameters:

• Moment Updates:

– Update the first moment (mean of the gradients):

mt = β1 ·mt−1 + (1− β1) · gt

– Update the second moment (mean of the squared gradients):

vt = β2 · vt−1 + (1− β2) · g2t

• Bias Correction:

– Correct the bias for the first moment:

m̂t =
mt

1− βt
1

– Correct the bias for the second moment:

v̂t =
vt

1− βt
2

• Parameter Updates:

θt = θt−1 −
η · m̂t√
v̂t + ϵ

where η is the learning rate, β1 is the exponential decay rate for the first moment (mean), β2 is the

exponential decay rate for the second moment (variance), ϵ is a numerical stability term, mt is the
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first moment estimate (initialized to 0), vt is the second moment estimate (initialized to 0), and t is

the iteration counter (initialized to 0).

To properly configure an RNN, it’s crucial to carefully tune several hyperparameters: the learning

rate (lr), the numerical stability term (ϵ), and the number of layers, to ensure optimal performance

and avoid common issues like overfitting or underfitting. The learning rate controls how much the

weights of the RNN are updated during each iteration of training. It is one of the most important

hyperparameters because it directly affects the convergence of the model. If the learning rate is too

high, the model may fail to converge or may oscillate around the optimal weight values, leading to poor

performance. If the learning rate is too low, training can be slow and may get stuck in local minima,

resulting in suboptimal results and increased training time. Additionally, too few layers might not

have the capacity to capture complex temporal patterns in the data, leading to underfitting. On the

other hand, too many layers (deep RNNs) can lead to overfitting, where the model memorizes the

training data and fails to generalize well to unseen data. Deep RNNs can also suffer from vanishing

gradients (when gradients become too small to update weights properly) or exploding gradients (when

gradients become excessively large, destabilizing the training process).

Figure 4 shows that increasing the number of layers initially improves the validation loss but

eventually leads to deterioration in performance. To counteract this, we implemented an early stopping

mechanism that halts training when the validation loss increases for a specified number of iterations,

which we set to 10 after conducting several tests. The learning rate (lr) also plays a significant role in

convergence: the smaller the value, the faster the function converges, though it introduces more noise

during training. Based on our experiments, we selected lr = 0.0001 as the optimal value. The term ϵ

is used to prevent division by zero during training. If ϵ is too small, the model may become unstable,

while if it is too large, it may diminish the effect of the corrected gradients. We chose ϵ = 10−8, as it

provided a reasonable balance.
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(a) lr = 0.00001, ϵ = 10−6, Nblayer = 3000 (b) lr = 0.00001, ϵ = 10−6, Nblayer = 300

(c) lr = 0.001, e = 10−5, Nblayer = 300

Figure 4: The performance of the neural network as a function of the number of the training layers.
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Figure 5: Confusion matrix RNN algorithm.

Using the values from the confusion matrix presented in the figure 5, the following metrics are

calculated:

• Accuracy:

Accuracy =
TP + TN

Total
=

39.58 + 31.25

39.58 + 8.33 + 20.83 + 31.25
= 70.83%

This indicates that the model correctly predicts 70.83% of the incidents.

• Precision (for Circuit Breaker):

Precision =
TP

TP + FP
=

39.58

39.58 + 20.83
= 65.51%

This means that when the model predicts a circuit breaker, it is correct 65.51% of the time.

• Recall (for Circuit Breaker):

Recall =
TP

TP + FN
=

39.58

39.58 + 8.33
= 82.59%

This suggests that the model identifies 82.59% of actual circuit breaker incidents.

• F1 Score:

F1 = 2× Precision · Recall
Precision + Recall

= 2× 0.6551 · 0.8259
0.6551 + 0.8259

= 73.16%

This represents the harmonic mean of precision and recall.

where TP is the number of true positives, FP is the number of false positives, TN is the number

of true negatives and FN is the number of false negatives.

The model demonstrates a high recall rate (82.59%), signifying its effectiveness in identifying

actual circuit breaker events. However, its moderate precision (65.51%) suggests the presence of some

19



false alarms, where the model predicts a circuit breaker that does not occur. The relatively high

false positive rate (20.83%) indicates a tendency to overestimate the likelihood of circuit breakers.

In financial markets, avoiding false negatives (missed circuit breakers) is often more critical than

minimizing false positives (false alarms). Thus, the model’s low false negative rate (8.33%) is a

particularly favorable attribute.

To further refine the analysis, we employ a RNN algorithm to identify the features most influential

in triggering circuit breakers. Figure 6 illustrates the individual order book activities across different

trading categories, highlighting their respective impacts.

Figure 6: The importance of features of RNN algorithm affecting predicted market ex-

treme events leading to the circuit breaker triggering. Impact of order book and trading

activity of each category of traders on the extreme events.

Nb modif represents the average number of modified orders during the period. Cancel ratio refers to

the ratio of canceled limit orders to submitted limit orders. Buy/sell indicates the ratio of bid orders

to ask orders, while Market/limit shows the ratio of market orders to limit orders during the same

period. Order-to-trades measures the average number of trades associated with each order, reflecting

the number of trades an order is involved in. Trade volume represents the average trade volume for

each trader category, and Nb trades denotes the average number of trades executed by each trader

category during the period.
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5.2 Random Forest

Another effective method for this type of data is the ”Random Forest” algorithm. Random Forest is

a supervised ensemble learning algorithm that combines multiple simpler models, typically decision

trees, to achieve more robust and accurate performance. The algorithm works by training several

decision trees, each built on a different subset of the training dataset (bootstrap sampling). Addi-

tionally, each tree is trained using a random subset of features, which improves model diversity and

reduces correlation among the trees.

Once training is completed, the algorithm makes predictions in two ways:

• For regression problems: Random Forest averages the predictions of all the trees.

• For classification problems: Random Forest uses majority voting among the predictions of

the trees.

The key parameters to consider include the number of trees in the ”forest,” the maximum depth

of the individual trees, and the minimum number of samples required to split a node:

• Number of trees: Increasing this number often improves performance but also increases com-

putational time and memory usage.

• Maximum depth: Limiting tree depth helps prevent overfitting, especially with noisy datasets.

• Minimum number of samples required to split a node: Lowering this value allows for

more complex trees.

We used the scikit-learn library to implement our Random Forest. This library’s built-in version

is far more efficient and comprehensive than manually coding a Random Forest algorithm.

We chose to create a forest of 500 trees with a maximum depth of 20 and a minimum of 10 samples

required to split a node. These parameters were selected empirically. Since our dataset is extensive,

highly detailed, and noisy, overly complex models led to divergence in results, while overly simplistic

models were less accurate.
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Figure 7: Confusion matrix random forest algorithm.

• The overall accuracy of the model is calculated as:

Accuracy =
TP + TN

TP+ TN+ FP + FN
=

41.67 + 37.50

37.50 + 10.42 + 10.42 + 41.67
= 79.17%

This indicates that the model correctly predicts about 79.17% of the cases.

• Precision (Positive Predictive Value) evaluates the reliability of positive predictions:

Precision =
TP

TP + FP
=

41.67

41.67 + 10.42
= 80.00%

This means that 80% of the predicted circuit breakers are correct.

• Recall (Sensitivity or True Positive Rate) assesses the model’s ability to identify actual

circuit breakers:

Recall =
TP

TP + FN
=

41.67

41.67 + 10.42
= 80.00%

The model detects 80% of actual circuit breaker events.

• The proportion of normal conditions misclassified as extreme events (False Positive Rate,

FPR) is:

FPR =
FP

FP + TN
=

10.42

10.42 + 37.50
= 21.74%

This suggests a manageable level of overestimation of risk.

• The proportion of missed circuit breakers (False Negative Rate, FNR) is:

FNR =
FN

FN+ TP
=

10.42

10.42 + 41.67
= 20.00%

This reflects a relatively low rate of missed events, which is crucial in financial markets.
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The Random Forest model exhibits strong predictive performance, with balanced precision and

recall rates both at 80%. This suggests that the model is effective in identifying extreme events leading

to circuit breaker triggers, which is crucial for risk management in financial markets. The accuracy of

79.17% indicates that the model correctly classifies most of the market events, distinguishing between

actual circuit breaker events and normal trading conditions. However, the presence of some false

positives (FPR: 21.74%) indicates that the model tends to overestimate the likelihood of extreme

events, which could result in unnecessary market interventions or a higher risk aversion.

Despite this, the model’s ability to correctly identify 80% of the true circuit breaker events (Recall:

80.00%) is a critical strength, especially in environments where false negatives—missed circuit break-

ers—pose a higher risk. The model’s relatively low false negative rate (FNR: 20.00%) demonstrates

that it is capable of capturing the majority of extreme market movements, which could be vital for

preventing financial crises or excessive volatility.
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Figure 8: Impact of order book activity of each category of traders relying on random

forest algorithm to predict circuit breakers.

Nb modif represents the average number of modified orders during the period. Cancel ratio refers to

the ratio of canceled limit orders to submitted limit orders. Buy/sell indicates the ratio of bid orders

to ask orders, while Market/limit shows the ratio of market orders to limit orders during the same

period. Order-to-trades measures the average number of trades associated with each order, reflecting

the number of trades an order is involved in. Trade volume represents the average trade volume for

each trader category, and Nb trades denotes the average number of trades executed by each trader

category during the period. Features with the negative impact are not informative for the prediction

task.

6 Conclusion

The results of this paper reveal that non-HFTs are the most significant contributors to price instability

leading to circuit breaker activations, particularly during downward trends. Surprisingly, HFTs,

often criticized for destabilizing markets, demonstrate stabilizing behaviors during circuit breakers,

especially in post-halt scenarios.

We also demonstrate that machine learning algorithms can be effectively utilized to predict events

leading to circuit breaker activations by analyzing trading and order book activities of traders. The

machine learning models explored in this study achieve high accuracy in predicting circuit breaker
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triggers, with RNNs achieving a recall rate of 82.59%, highlighting their effectiveness in identifying

extreme events. However, both RNNs and random forests exhibit moderate precision, reflecting the

challenge of minimizing false positives in volatile markets.

In the context of financial market regulation, where the ability to predict and mitigate the risks of

flash crashes or bubbles is vital, the performance of the neural network and random forest models is

promising. While further tuning and optimization of the algorithms may help reduce the false positive

rate, their current performance strikes an effective balance between minimizing missed events (false

negatives) and avoiding unnecessary alarms (false positives). This balance makes them useful tools

for predicting circuit breaker triggers and supporting timely, data-driven interventions to stabilize

market conditions.

Moreover, the models’ robustness in detecting extreme events could be further enhanced by in-

corporating additional market features or refining the underlying algorithms. Future research could

explore the integration of more advanced machine learning techniques, such as deep learning or en-

semble models, to improve their ability to handle even more complex market dynamics.

Including additional features, such as order book depth or a global market sentiment index, could

provide a more comprehensive understanding of market dynamics and trader behavior, potentially

enhancing the predictive power of machine learning models.
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