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Abstract

Rough path-dependent volatility (RPDV) models (Parent 2022) e�ectively capture key empirical features

characteristic of volatility dynamics, making them a suitable choice for volatility forecasting. However,

their complex structure presents challenges when it comes to estimating this type of model using standard

approaches. Taking this into consideration, this article aims to develop an estimator function for a speci�c

RPDVmodel using historical data, making the estimated model a competitive tool for volatility forecasting.

To achieve this objective, the article proposes an innovative estimation method in which the estimator

function is formulated as a deep neural network (DNN) and is trained through interaction with a second

DNN. After formalizing the estimation problem within the framework of Bayesian decision theory, the

article details the methodology for constructing the estimator function. Finally, a comprehensive evaluation

of the obtained estimator is conducted using both synthetic and market data to assess its performance.

Keywords: PDV model, volatility forecasting, rough volatility, rough path-dependent volatility model,
volatility forecasting, deep learning, deep calibration, Bayesian decision theory.
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1 Introduction

Since the pioneering work of Robert Engle on ARCH models (Engle 1982), which was awarded the Nobel
Memorial Prize in Economic Sciences in 2003, a vast academic literature has emerged related to volatility
forecasting issues, owing to the signi�cant importance of this matter in risk and asset management (Poon
and Granger 2003). Until recently, a signi�cant amount of research in this �eld has been devoted to ARCH
family models (Nelson 1991, Bollerslev et al. 1992, Zakoian 1994, Brooks and Persand 2001, Andersen et

al. 2003), due to their robust performance and relatively straightforward estimation. However, in recent
years, more sophisticated volatility models have emerged, surpassing ARCH-type models in the context of
volatility forecasting (Bennedsen et al. 2016, Gatheral et al. 2020). Other recent models with solid theoretical
properties have not yet been utilized as tools for volatility forecast.

Among these are the rough path-dependent volatility (RPDV) models (Parent 2022), which provide a framework
for capturing the main empirical features that characterize volatility dynamics, making it a potentially suitable
model for volatility forecasting. However, due to its complex structure, estimating the model parameters and
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state variables from a given dataset1 is a challenging task. In light of these observations, this article aims to
achieve a dual objective: introducing an estimation method based on historical data for a version of the RPDV
model, and making the RPDV model �tted through this method a competitive tool for volatility forecasting.
Speci�cally, the goal is to develop an estimation method speci�cally designed to utilize the RPDV model in
simulating future volatility trajectories based on available information, with the aim of calculating conditional
volatility distributions at di�erent horizons from these simulations. The question then arises regarding the
choice of estimation approach. One option could be to employ maximum likelihood-type methods that involve
searching for the most probable set of parameters (Kim et al. 1998, Alizadeh et al. 2002, Aït-Sahalia
and Kimmel 2007). However, as decision theory demonstrates, the most probable set of parameters is not
necessarily the optimal choice from a consequentialist perspective (Parmigian and Inoue 2009, Berger 2013). In
fact, the optimality of a parameter set depends not only on the parameter distribution but also on the model's
intended use for estimation (Hernandez 2016). For instance, the optimality criterion for the parameters of
a model used in an options pricing perspective is typically de�ned by a �tting criterion, either of an option
price map as in the article by Horvath et al. (2021), or of an implied volatility surface as in the article by
Rosenbaum and Zhang (2021). Analogously, the optimality criterion used for the parameter estimation in this
article will be de�ned consistently with the objective of maximizing the e�ectiveness of the RPDV model as
a volatility forecasting tool. Additionally, the presented estimation procedure will exhibit the particularity of
being based on the theoretical framework of Bayesian decision theory (BDT).

The paper is organized as follows. Section 2 provides the de�nition of the RPDV model intended for estimation,
along with an explanation of its role in forecasting. This leads to the formalization of the estimation problem as
an optimization issue within the BDT framework. In section 3, a method for constructing an estimator function
is presented, aiming to address this problem by utilizing two deep neural networks within a collaborative game
framework. Lastly, in section 4, a comprehensive evaluation of the resulting estimator function is conducted
from various perspectives, using both synthetic and market data.

2 Exposition of the estimation problem

2.1 The model to be estimated

2.1.1 The considered rough path-dependent volatility model

In the present paper, we want to estimate the following RPDV model:

dPt
Pt

=
(
λ1σt + λ2(σt)

2
)
dt+ σtdBt,

σt = β0 + β1R1,t + β2

√
R2,t,

R1,t =

∫ t−ε

−∞
(t− u)−α1

(
dPu
Pu
− κ1 ·R1,udu

)
,

R2,t =

∫ t−ε

−∞
(t− u)−α2

(
σ2
u − κ2 ·R2,u

)
du

. (1)

Here, the asset price depends thus on λ1 and λ2 which are positive risk premia, B a Brownian motion that
constitutes the unique source of randomness, and σ the volatility process. This volatility process is a multilinear
function with β0 a positive constant, β1 ≤ 0 a sensitivity parameter to R1 that can be viewed as an asset price

1In this article, the the model estimation is carried out using historical data (historical prices and realized volatility) rather
than implied volatility as for instance in Rosenbaum and Zhang (2021).
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trend variable, and β2 ≥ 0 a sensitivity parameter to R2 that can be view as a variable measuming recent
market price activity regardless the sign of the trend. ε is a positive parameter close to zero that encodes
a latency of the impact of price dynamics on the volatility process. Technically, this parameter allows for
values of αj greater than 0.5 to be given without causing divergence issues. Furthermore, the memory of the
processes R1 and R2 depends on the respective positive parameters α1, κ1 and α2, κ2.

This model has several remarkable properties that make it highly suitable for volatility forecasting issues.
First, it is structurally adapted to jointly capture two important empirical features which are the rough
behavior and the path-dependence of the volatility process. The rough volatility dynamics is determined by
the rough kernels K1(τ) = τ−α1 and K2(τ) = τ−α1 , while the model incorporates path-dependency through
the processes R1 and R2. Additionally, this version of the RPDV model shares a similar structure with the
PDV model introduced by Guyon and Lekeufack (2022), which has demonstrated strong predictive capabilities
in volatility forecasting.

2.1.2 The Markovian approximation of the model and its discretization scheme

Like others rough volatility models, the RPDV model is non-Markovian which makes it di�cult to simulate
e�ciently (Parent 2022). However, as shown by Parent, we can approximate model 1 by the following
Markovian model (see appendix A.1), which will be referred to as the M-RPDV model, that substitutes
rough kernels t−αj by kernels of the form K̃j(τ) =

∑n
i=1 wj,iγj,ie

−γj,iτ :

dPt
Pt

=
(
λ1σt + λ2(σt)

2
)
dt+ σtdBt,

σt = β0 + β1R1,t + β2

√
R2,t,

dR1,t = Γ1 ·
(

dPt
Pt
− κ1R1,tdt

)
− Γ1 � R1,tdt,

dR2,t = Γ2 ·
(
σ2
t − κ2R2,t

)
dt− Γ2 � R2,tdt,

R1,t = W>1 R1,t,

R2,t = W>2 R2,t,

(2)

where Wj the vector of weights (wj,i)1≤i≤n and Γj the vector of discount coe�cients (γj,i)1≤i≤n, such as

Wj =

wj,1...
wj,n

 , Γj =

γj,1...
γj,n

 .
The method used to obtain these vectors is presented in appendix A.2. It should be noted that model 2
depends on the parameter vector

φ =
(
λ1, λ2, β0, β1, β2, α1, α2, κ1, κ2

)
,

and all relevant information at time T for the volatility dynamics is aggregated into the following vector of
state variables:

RT =
(
R

(1)
1,T , ..., R

(n)
1,T , R

(1)
2,T , ..., R

(n)
2,T

)
.

3



Consequently, the estimation procedure will consist of estimating the 2n+ 9 vector

θT =
(
λ1, λ2, β0, β1, β2, α1, α2, κ1, κ2, R

(1)
1,T , ..., R

(n)
1,T , R

(1)
2,T , ..., R

(n)
2,T

)
, (3)

with T a given period. This vector is therefore made up of 9 parameters and 2n state variables. In order to
operate simulations from the model required by the estimation procedure, we use the following explicit Euler
discretization scheme:

Pt+∆t = Pt

(
1 +

(
λ1σt + λ2(σt)

2
)
∆t+ σt

(
Bt+∆t −Bt

))
,

R1,t+∆t = R1,t �
(
1n − Γ1 ·∆t

)
+ Γ1 ·

(
Pt+∆t − Pt

Pt
− κ1R1,t∆t

)
,

R2,t+∆t = R2,t �
(
1n − Γ2 ·∆t

)
+ Γ2 ·

(
σ2
t −R2,t

)
∆t,

R1,t+∆t = W>1 R1,t+∆t,

R2,t+∆t = W>1 R1,t+∆t

σt+∆t = β0 + β1R1,t+∆t + β2

√
R2,t,

(4)

with ∆t the time step of simulations and (Bt+∆t − Bt) ∼ N (0,∆t). It is important to note that in order
to ensure the stability of the scheme, all coordinates of Γj must lower than 1

∆t . If one wishes to eliminate
this condition, an alternative is to opt for an implicit-explicit scheme analogous to the scheme proposed by
Rosenbaum and Zhang (2021) for the quadratic rough Heston model. The time step ∆t used in this article
is 1

19656
2 year, and the bigger discount factor is equal to 10000 (expressed in years). Therefore, because

∀{i, j}, γj,i∆t < 1 ,this stability issue does not arise.

2.2 The Bayesian estimation problem to solve: a forecasting objective-based

estimation problem

2.2.1 The forecasting issue

The estimation method presented in this article for model 2 is speci�cally designed to address a particular
forecasting problem. More precisely, we place in a context in which we have a data matrix D of the form

D =

Pt1 σ̃t1
... ...

PtN σ̃tN

 , (5)

where t1 < . . . < tN = T , P represents the price of a �nancial asset, and σ̃ is a proxy of realized volatility
de�ned as the square root of the sum of squares of a sample of 78 observations of logarithmic returns over the
considered period3. From this N × 2 data matrix, we want to get an estimator as accurate as possible of the
following set of conditional moment vectors

ΩM =
{(

E
[
σT+δk |D

]
,Std

[
σT+δk |D

])}p
k=1

, (6)

2The reason for choosing this discretization time step is that a trading day is approximately equal to 1
252

of a year, and the

realized volatility estimator used in this article is calculated using 78 price observations per trading day: 1
252
× 1

78
= 1

19656
.

3Regarding the simulated data, this proxy is calculated from 78 log-returns evenly distributed over a period of 1
252

year. For
the real data used in section 4.2, σ̃ is calculated from a sample of 78 5-minute log-returns.
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where δk1≤k≤p represents di�erent time horizons. In this article, we will consider the horizons of 1, 5, 21, 42,
and 63 trading days, which are de�ned here as 1

252 year. The RPDV model will therefore serve as a tool to
estimate these moments. Consequently, contrary to standard statistical approaches like maximum likelihood
estimation, the estimation procedure will not consist in determining the most likely vector θT , but the vector
θT that serve the most this forecasting goal.

2.2.2 The Bayesian estimation problem

In order to propose an appropriate estimation method for the RPDV model that aligns with the forecasting
objective de�ned in section 2.2.1, we adopt the theoretical framework of Bayesian decision theory (Berger
2013, Bickel and Doksum 2015). As a result, we assume that the dynamics of (P, σ) follow a model given
by 2, and θt is considered as a random vector with a prior distribution π (i.e. θt ∼ π), ∀ t. Under these
assumptions and following the principles of BDT, an estimator θ̂T of θT is considered optimal given D and a
loss function L if it minimizes the expected posterior loss de�ned as follows:

EπD

[
L
(
θT , θ̂T

)]
=

∫
R2n+9

L
(
θT , θ̂T

)
dπD (θT ) , (7)

where πD represents the posterior distribution for θT given D4. Regarding the loss function L, its purpose is
to capture the objective of the estimation, which is to obtain an estimator of the conditional moments in ΩM.
This function L is de�ned as follows:

L
(
θT , θ̂T

)
=

p∑
k=1

ck · C
(
M(θT , δk),M(θ̂T , δk)

)
, (8)

where {ck}pk=1 are positive weights, C is another loss function, and M is a function de�ned as:

M(θT , δk) =
(
E
[
σT+δk |θT

]
,Std

[
σT+δk |θT

])
, ∀ π(θT ) 6= 0 δk ∈ R+, (9)

where E
[
σT+δk |θT

]
and Std

[
σT+δk |θT

]
represent the conditional mean and standard deviation of volatility

at horizon δk given θT . In other words, the cost associated with an estimator θ̂T given the true θ-vector
θT is a function of the prediction error in the mean and standard deviation of volatility for time horizons
T + δ1, ..., T + δp induced by this choice of θ-estimator. This cost is in�uenced by the form of C, which will be
speci�ed in section 2.3. Irrespective of the speci�c form of C and within the previously established framework,
the Bayes estimator of θT under the posterior measure πD is a solution to the following optimization program:

arg min
θ̂T∈R2n+9

p∑
k=1

ck · EπD

[
C
(
M(θT , δk),M(θ̂T , δk)

) ]
. (10)

The objective of the estimation method introduced in this article, which will be presented in section 3, is to
�nd an approximate solution to this optimization problem.

2.3 The loss function: a sum of proxy divergence measures

As mentioned in section 2.2, the choice of the loss function is crucial as it implicitly encodes preferences
regarding estimation errors. The mean squared error (MSE) is commonly used as a loss function in forecasting
problems due to its simplicity. However, although the MSE has certain advantages, it may not be the most
suitable loss function for the forecasting objective. In this case, using the MSE would give excessive weight

4In practice, updating π with the information contained in D (i.e., determining πD) is not a trivial task. The estimation
procedure presented in section 3 does not require directly computing this posterior measure.
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to situations where the expected volatility and volatility of volatility are high compared to cases where these
quantities are low. Therefore, we will employ an ad-hoc loss function that can be interpreted as a sum of
proxy divergence measures.

The starting point is the empirical observation that log-volatility increments closely follow a Gaussian distribution
(Gatheral et al. 2018), and empirical volatility distributions closely resemble log-normal distributions (Tegnér
and Poulsen 2018). Additionally, the conditional volatility distributions generated by the RPDV model also
exhibit a similar log-normal behavior. Based on these observations, if we assume θT = θT , we can approximate
the distribution of σT+δ by a log-normal distribution with parameters m(θT+δ) and s(θT+δ). Leveraging the
analytical expressions for the expectation and variance of the log-normal distribution, we can express them as
follows:

E
[
σT+δ|θT

]
≈ em(θT+δk

)+s(θT+δk
)2/2, Var

[
σT+δ|θT

]
≈
(
es(θT+δk

)2 − 1
)
e2m(θT+δk

)+s(θT+δk
)2 .

Equivalently, we can write (see details in appendix B):

m̃
(
θT+δk

)
= log

(
E
[
σT+δ|θT

])
− 0.5 log

(
Var [σT+δ | θT ]

E [σT+δ | θT ]
2 + 1

)
,

s̃
(
θT+δk

)2
= log

(
Var [σT+δ | θT ]

E [σT+δ | θT ]
2 + 1

)
,

(11)

where m̃
(
θT+δk

)
and s̃

(
θT+δk

)2
are approximations of m(θT+δ) and s(θT+δ), respectively. Furthermore, the

divergence between two log-normal distributions, LN
(
m1, (s1)2

)
and LN

(
m2, (s2)2

)
, can be expressed as an

analytical function of m1, s1, m2, and s2. Speci�cally, for the case of Kullback-Leibler (KL) divergence, we
have (Gil et al., 2013):

DKL (P1,P2) =
(m1 −m2)2 + (s1)2 − (s2)2

2(s2)2
+ log

(
s2

s1

)
,

where P1 = LN
(
m1, (s1)2)

)
and P2 = LN

(
m2, (s2)2

)
.

Considering these elements, we specify the loss function as follows5:

L
(
θT , θ̂T

)
=

p∑
k=1


(

m̃
(
θ̂T+δk

)
− m̃

(
θT+δk

))2

+ s̃
(
θ̂T+δk

)2 − s̃
(
θT+δk

)2
2s̃
(
θT+δk

)2 + log

(
s̃
(
θT+δk

)
s̃
(
θ̂T+δk

))


︸ ︷︷ ︸
DKL(P̃i,Pi)

,

with Pi = LN
(

m̃
(
θT+δk

)
, s̃
(
θT+δk

)2)
and P̂i = LN

(
m̃
(
θ̂T+δk

)
, s̃
(
θ̂T+δk

)2)
.

Therefore, the loss function L can be understood as the summation of estimated KL divergences between the
predicted volatility distribution and the true volatility distribution at various time horizons. It quanti�es the
discrepancy between these distributions. It is worth noting that although the log-normal distribution is an
approximation of the distribution of σT+δ given θT , the KL divergence DKL

(
P̂i,Pi

)
achieves its minimum

value (which is 0) when E
[
σT+δ|θT

]
= E

[
σT+δ|θ̂T

]
and Var

[
σT+δ|θT

]
= Var

[
σT+δ|θ̂T

]
.

5Note that L is a loss function of the form 8.
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Figure 1: Example of two volatility distributions at a one-week horizon generated from the M-RPDV model
using two di�erent θ-vectors and their respective log-normal approximations. The KL-divergence between the
two associated distributions is equal to 4.66, while the KL-divergence between the log-normal approximations
of these distributions is equal to 3.92.

3 Construction of the Bayesian estimator function

Section 2.2 outlined the estimation problem we seek to solve, de�ned by the optimization program 10. However,
two main obstacles need to be overcome: �rstly, an analytical formula for the functionM is not available, and
secondly, updating the prior distribution π to obtain the posterior distribution πD is a highly complex task.
To address the �rst issue, we will adopt a strategy similar to that of Horvath et al. (2021), which compensate
for the lack of an analytical formula for the option price by using "a neural network that maps parameters of
a stochastic model to pricing functions" in their calibration process. In a comparable fashion, we introduce in
section 3.1 an estimator for the functionM , in the form of a NN, that maps (θT , δ) to the conditional moments
E
[
σT+δ|θT

]
and Std

[
σT+δ|θT

]
. This proxy of M will be used to calibrate a second NN, that will play the

role of Bayesian estimator function. Therefore, the objective of this second NN, whose architecture will be
detailed in section 3.2, is to provide, for any D, a proxy for the Bayesian estimator of θT , i.e., an approximate
solution to the optimization program 10. Section 3.3 will detail the calibration procedure followed to achieve
this situation, a method that circumvents the challenge of estimating the posterior distribution πD directly
by indirectly addressing the original problem, solving a related problem under the prior measure π.

3.1 The neural network as a proxy for function M

The initial stage in constructing the estimator function involves developing an estimator for the function M ,
denoted as M. This estimator maps (θ, δ) to the conditional moments E

[
σT+δ|θT

]
and Std

[
σT+δ|θT

]
. The

objective is forM to approximateM for all θ : π(θT ) 6= 0 and δ ∈ δ1, ..., δp, as expressed by the approximation

M (θT , δ) ≈M (θT , δ) and ∇M (θT , δ) ≈ ∇M (θT , δ) . (12)

The objective is for M not only to be a good approximation of the function M , but also for the gradient
of M to be approximately equal to the gradient of M for all θ : π(θT ) 6= 0 and δ ∈ δ1, ..., δp. This
property (∇M(θT , δ) ≈ ∇M(θT , δ)) is crucial in the role that M will play in learning the estimator of the
θ-vector. To achieve this, M will be implemented as a neural network (NN) with a specialized and tailored
architecture designed for this task. In this section, we will provide a detailed description of the adopted
network architecture.
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3.1.1 General structure of the network

As mentioned earlier, the architecture ofM is speci�cally adapted to ensure that the gradient passed to the
estimator neural network contains informative information about the implications of the chosen θ-vector in
moment predictions. This choice is motivated by the observation that a more standard network structure
often results in an NN calibration that is primarily sensitive to state vectors R1 and R2, thus missing the
main purpose ofM. In order to address this issue and satisfy the requirements described in equations 12,M
adopts an architecture schematized in �gure 2.

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

Subnetwork 5

Input θT

Input δ

W (α1, α2) Ê
[
σT+δ|θT

]

Ŝtd
[
σT+δ|θT

]

Ê
[
R1,T+δ|θT

]

Ê
[√

R2,T+δ|θT
]2

β0, β1, β2

β1, β2

Ŝtd
[
R1,T+δ|θT

]

Ŝtd
[√

R2,T+δ|θT
]

ρ̂
[
R1,T+δ,

√
R2,T+δ|θT

]

α1, α2

W1

W2

Figure 2: The architecture of the neural networkM.

Firstly, the neural network (NN) consists of 2 distinct input layers: the �rst layer receives the θ-vectors and
thus has 9 + 2n input neurons, while the second layer has a dimension of 1 to specify the temporal horizon
δ for which the conditional moments are to be computed. These 2 input layers feed several subregions of the
network, which can be segmented into 2 main components. The �rst component is responsible for estimating
E[σT+δ|θT ], while the second component is tasked with estimating Std[σT+δ|θT ].

3.1.2 The part of the network responsible for estimating E[σT+δ|θT ]

The part of the network responsible for predicting E[σT+δ|θT ] utilizes the fact that this expectation can be
expressed as follows:

E[σT+δ|θT ] = β0 + β1E
[
R1,T+δ|θT

]
+ β2E

[√
R2,T+δ|θT

]
(13)

The approach is to estimate E
[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

] (
more precisely, E

[√
R2,T+δ|θT

]2)
separately

using two parallel subnetworks: subnetwork 1 and subnetwork 2 as depicted in �gure 2. Equation 13 is then
used to calculate an estimation of E[σT+δ|θT ]. These subnetworks each consist of 6 hidden layers, with the �rst
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5 layers containing 100 ReLU neurons each, and the �nal layer consisting of 20 linear neurons. The last hidden
layer connects to an output layer with a single neuron (each subnetwork has its own output neuron/layer),
which receives input from the two input layers associated with θT and δ, as well as from a function that
computes the vectors W1 and W2 from θT .

Hidden Layers
Subnetwork 1

Hidden Layers
Subnetwork 2

Output
Subnetwork 1

Output
Subnetwork 2

Ê[σT+δ|θT ]Input θT

Input δ

W (α1, α2)

δ

W1,W2

α1, α2

θT

θT

x1

x2

δ,R1,T ,W1

δ,R2,T ,W2

Ê1

Ê2

β0, β1, β2

Figure 3: The part of the networkM responsible for estimating E[σT+δ|θT ].

The activation function associated with this output neuron is of the form:

Êj
(
δ,Rj,T ,Wj , xj

)
=

n∑
i=1

wj,ie
−γiδRj,i,T︸ ︷︷ ︸

(1)

+

20∑
k=1

(
1− e−gkδ

)
xj,k︸ ︷︷ ︸

(2)

, (14)

where xj is the output vector of the last hidden layer associated with subnetwork j. The exponential weights(
gk
)

1≤k≤20
are de�ned as follows:

gk = exp

(
log

(
1

1000

)
+

log(100)− log
(

1
1000

)
20− 1

(k − 1)

)−1

. (15)

The speci�c form of this activation function is particularly suited to its objective in view of the analytical
expressions of E

[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

]
. First of all, when δ = 0,

Ê1

(
0,R1,t,W1, x1

)
= R1,t and Ê2

(
0,R2,t,W2, x2

)
= R2,t.

Thus, vectors xj have no impact on the calculation since we use the analytical formulas for R1,t and R2,t

which are θ-measurable. On the other hand, when δ =∞, the term (1) in equation 13 becomes zero, and we
have

Ê1

(
∞,R1,t,W1, x1

)
=

20∑
k=1

x1,k and Ê2

(
∞,R2,t,W2, x2

)
=

20∑
k=1

x2,k,

which can be respectively interpreted as the estimated asymptotic value of the expectation of R1 and the
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squared estimated asymptotic value of the expectation of
√
R2. Besides these polar cases, component (2) aims

to estimate clearly identi�ed variables. For the network responsible for estimating E
[
R1,T+δ|θT

]
, the objective

is that for all δ:

20∑
k=1

(
1− e−gkδ

)
x1,k ≈ E[R1,T+δ|θT ]−

n∑
i=1

γ1,iw1,ie
−γiδR1,i,T

= E

[∫ T+δ

T

n∑
i=1

γ1,iw1,ie
−γ1,i(T+δ−u)

(
dPu
Pu
− κ1R1,i,udu

)∣∣∣θT]

= E

[∫ T+δ

T

K̂1(T + δ − u)

(
dPu
Pu
− κ1R1,udu

)∣∣∣θT] .
For the network responsible for estimating E

[√
R2,T+δ|θT

]
, the objective is that for all δ6:

20∑
k=1

(
1− e−gkδ

)
x2,k ≈ E

[
R2,T+δ|θ

]
− Var

[√
R2,T+δ|θ

]
−

n∑
i=1

γ2,iw2,ie
−γiδR2,i,T

= E

[∫ T+δ

T

n∑
i=1

γ2,iw2,ie
−γ2,i(T+δ−u)

(
σ2
udu− κ2R2,i,udu

)∣∣∣θT]− Var
[√

R2,T+δ|θT
]
.

= E

[∫ T+δ

T

K̂2(T + δ − u)

(
σ2
udu− κ2R2,i,udu

)∣∣∣θT]− Var
[√

R2,T+δ|θT
]
.

These output layers of the two sub-networks thus produce an estimation of E
[
R1,T+δ|θT

]
and E

[√
R2,T+δ|θT

]
,

respectively, which feed into a global output neuron of the network M: the neuron whose output is the
estimator Ê[σT+δ|θT ]. This neuron, also fed by the input layer associated with θT , then computes the estimator
of E[σT+δ|θT ] using the analytical formula 13:

Ê[σt+δt|θ] = β0 + β1Ê1 + β2

√(
Ê2

)
+
, (16)

with Ê1 the output of the sub-network 1 and Ê2 the output of the sub-network 2.

3.1.3 The part of the network responsible for estimating Std[σT+δ|θT ]

The part of the network responsible for predicting Std
[
R1,T+δ|θT

]
,Std[σT+δ|θT ] uses the fact that the variance

is equal to (see appendix D.3):

Var[σT+δ|θT ] = (β1Std[R1,T+δ|θT ])2 +
(
β2Std

[√
R2,T+δ

∣∣θT ])2
+ 2β1β2Std[R1,T+δ|θT ]Std

[√
R2,T+δ

∣∣θT ]ρ[R1,T+δ,
√
R2,T+δ

∣∣θT ], (17)

where ρ
[
R1,T+δ,

√
R2,T+δ

∣∣θT ] is the correlation between R1,T+δ and
√
R2,T+δ given θT . Similar to the branch

of M responsible for estimating E[σT+δ|θT ], the approach is to estimate Std[R1,T+δ|θT ],Std
[√

R2,T+δ

∣∣θT ],
and ρ

[
R1,T+δ,

√
R2,T+δ

∣∣θT ] using 3 parallel sub-networks assigned to each of these components. These 3
sub-networks are each composed of 6 hidden layers, with the �rst layer being fed by the input layer θT .
The �rst 5 layers of each sub-network consist of 100 ReLU neurons. The last hidden layer is composed of
linear neurons, with 3 neurons for sub-networks 3 and 4, which are responsible for estimating Std[R1,T+δ|θT ]

6It arises from the relationship:

Var
[√

R2,T+δ|θT
]
= E

[
R2,T+δ|θT

]
− E

[√
R2,T+δ|θT

]2
⇔ E

[√
R2,T+δ|θT

]2
= E

[
R2,T+δ|θT

]
− Var

[√
R2,T+δ|θT

]
.
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and Std
[√

R2,T+δ

∣∣θT ], respectively, and 21 neurons for the 5th sub-network responsible for estimating the
correlation ρ

[
R1,T+δ,

√
R2,T+δ

∣∣θT ]. The last hidden layer of each sub-network feeds an output neuron, which
also receives input from the δ layer.

Hidden Layers
Subnetwork 3

Hidden Layers
Subnetwork 4

Hidden Layers
Subnetwork 5

Output
Subnetwork 3

Output
Subnetwork 4

Output
Subnetwork 5

Ŝtd
[
σt+δt|θ

]
Input θT

Input δ

β1, β2

δ

θT

θT

θT

x3

x4

x5

Ŝ1

Ŝ2

ρ̂

Figure 4: The part of the networkM responsible for estimating Std[σt+δ|θT ].

For sub-networks 3 and 4, the output neuron is associated with an activation function of the following form:

Ŝj(δ, xj) = exp

(
xj,1 + max(xj,2, ε) · log

(
δ

1 + (xj,3)+ · δ

))
where ε is a positive constant close to zero. The choice of this activation function is motivated by the fact
that, due to the properties of the RPDV model, the logarithms of the respective standard deviations of R1

and
√
R2 for the considered time horizons approximately follow a relationship of the form:

Ŝtd
[
(Rj,T+δ)

1/j |θT
]
≈ exp

(
a+ b · log (δ)

)
,

where b is positive. In the chosen activation function, log (δ) is replaced with log
(
δ/(1+xj,3 ·δ)

)
to potentially

capture concavity of the relationship for certain θ-vectors. Additionally, it is also interesting to note that this
function ensures that the estimated standard deviations are zero when δ = 0, consistent with the fact that
R1,T and R2,T are θ-measurable.

For subnetwork 5 responsible for estimating the correlation between R1,T+δ and
√
R2,T+δ given θT , the output

neuron is associated with the following activation function:

ρ̂(δ, y) = min

(
2; x5,1 +

21∑
k=2

(
1− e−gkδ

)
x5,k

)
− 1.

This activation function ensures that the output range is limited to the interval [−1, 1], which is suitable for
estimating a correlation. Furthermore, the instantaneous correlation and the asymptotic correlation between

11



R1 and
√
R2 conditioned on θT are given by:

ρ̂(0, x5) = min (2; x5,1)− 1 and ρ̂(∞, x5) = min

(
2; x5,1 +

21∑
k=2

x5,k

)
− 1.

Each output layer of subnetworks 3, 4, and 5 feeds the output neuron of M responsible for estimating
Std[σT+δ|θT ]. This output neuron, also fed by the input layer θT , is associated with the following activation
function using the analytical expression 17:

Ŝtd[σT+δ|θT ] =

√(
β1Ŝ1

)2
+
(
β2Ŝ2

)2
+ 2β1β2Ŝ1Ŝ2ρ̂,

with Ŝ1, Ŝ2 and ρ̂ being the respective outputs of sub-networks 1, 2, and 3.

3.2 The estimator function

As mentioned in the introduction of section 3, the purpose of the functionM de�ned in section 3.1 is to assist
in the training of a second neural network, the estimator function Θ, which is responsible for estimating the
Bayes estimator of θT from a data matrix D under the posterior measure πD. The objective is to construct
an estimator function Θ that satis�es the following criterion:

EπD

[
L
(
θT ,Θ(D)

)]
≈ min

θ̂T

EπD

[
L
(
θT , θ̂T

)]
, ∀ D : π(D) 6= 0. (18)

Therefore, the architecture of Θ should be designed to extract all relevant information contained in D in order
to achieve the stated objective. To this end, Θ take the following general form:

Θ
(

D
)

= NN
(
E
(
D
))
,

where NN is a neural network and E is a time-series encoder generally de�ned by:

E
(
D
)

=

 z1

...

znE

 , (19)

with nE the number of features extract by E . The estimator function �rst encodes with E the raw data matrix
D into a feature vector that is used as input for a neural network NN to predict the θ-vector. The sections
3.2.1 and 3.2.2 provide a detailed description of the structure of these two components that form Θ.

3.2.1 Dual encoder structure: combining non-trainable and trainable methods

The role of the encoder E is to extract informative features from D for estimating θT . Given the variety of
methods available for encoding time series, E can take di�erent forms. These methods, found in the academic
literature, include transforming time series into pattern variables (Kimoto et al., 1990; Usmani et al., 2016),
imaging time series (Wang and Oates, 2015; Barra et al., 2020), or using signature methods (Morill et al.,
2020). Depending on the chosen method, the encoding can be predetermined, meaning that features are
extracted using a �xed method determined in advance, or it can be learned during the training process,
allowing the encoder to adapt to the speci�c data characteristics. In this work, the encoder E combines both
approaches by incorporating a non-trainable component and a trainable component. The aim is to leverage
prior knowledge of the process by extracting informative metrics using the non-trainable component, while
complementing them with the trainable component of the encoder.

12



3.2.1.1 The non-trainable encoder

The non-trainable component of the encoder E , denoted as E1, is a pre-determined method that extracts
informative metrics from D for determining the θ-vector. Speci�cally, E1 computes the following features from
D:

� The serial correlation of the log realized volatility for the following lag times expressed in trading days:
1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

� The mean of the absolute value of realized log-volatility increments over the following time intervals in
trading days: 1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

� The �rst four moments of the distribution of returns and realized volatility for the time horizons of 1,
5, 21, 63, 252 expressed in trading days.

� The 20 percentiles of the distribution of returns and of the realized volatility for the time horizons of 1,
5, 21, 63, 252 expressed in trading days.

� The linear regression coe�cient between the volatility increments and the returns for the following lag
times expressed in trading days: 1, 2, 3, 4, 5, 10, 20, 60, 125, 252.

� The standardized exponential moving averages of returns, realized volatility, and realized variance, which
are de�ned respectively as

m1,j =

∑N
i=1 rtie

(ti−t)gj∑N
i=1 e

(ti−t)gj
, m2,j =

∑N
i=1 σ̃tie

(ti−t)gj∑N
i=1 e

(ti−t)gj
, m3,j =

∑N
i=1 σ̃

2
tie

(ti−t)gj∑N
i=1 e

(ti−t)gj
,

where gj ∈
(
gk
)

1≤k≤20
and their values are de�ned in equation 15 (section 3.1.2).

The metrics computed by E1 are diverse, allowing for a multifaceted approach to the data in D. These metrics,
along with those from the trainable component of the encoder E , will be used as inputs to the NN network.

3.2.1.2 The trainable encoder

The trainable component of E , denoted as E2, aims to complement the metrics calculated by E1, adopting a
more agnostic approach. It consists of a convolutional neural network (CNN) with a structure similar to that
of a multi-scale CNN (MCNN) proposed by Cui et al. (2016). The input layer of E2 takes the raw data matrix
D as input and feeds it into four branches. The �rst layer of each branch is associated with a function de�ned
as:

A
(
D, l
)

=


Pt1+l
Pt1

σ̃[t1:t1+l] r[t1:t1+l] σ̃t1+l − σ̃t1
... ...
PtN
Pt1

σ̃[t1:t1+l] r[tN−l:tN ] σ̃tN − σ̃tN−l

 , (20)

where

σ̃[ti:ti+l] =

√√√√1

l

l∑
k=1

σ̃2
ti+k

and r[ti:ti+l] =
Pti+l − Pti

Pti
.

This function transforms the original N × 2 matrix into a (N − l)× 4 matrix. The �rst column represents the
normalized price with respect to the date t1. The second column corresponds to the integrated volatility over
a time window of l trading days, while the third column denotes the asset return over the same time window.
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The fourth column captures the variation of volatility over the l-day period. For branches 1, 2, 3, and 4, the
time window parameter l is �xed at 1, 5, 21, and 63, respectively. This choice allows for the augmentation of
the original matrix D with two additional informative columns and captures important information at di�erent
time scales using multiple l values. Each augmented matrix is processed by a convolutional layer followed by
an average pooling layer for each of the four branches. Each convolutional layer consists of 50 �lters of size
5× 4, with a stride of 1. The pooling layers perform global average pooling for each �ltered time series. The
outputs of the four pooling layers associated with the branches of E2 are �nally �attened and concatenated
with the output of E1. This combined output is then used as input to the network NN .

A
(
D, 1

)

A
(
D, 5

)

A
(
D, 21

)

A
(
D, 63

)

D

Convolutional
layer 1

Convolutional
layer 2

Convolutional
layer 3

Convolutional
layer 4

Average pooling
layer 1

Average pooling
layer 2

Average pooling
layer 3

Average pooling
layer 4

Concatenate
layer

Figure 5: The architecture of the encoder E2.

3.2.2 The network NN : from encoded data to θ-vector

The NN network is responsible for predicting the Bayesian estimator of the θ-vector using the feature vector
provided by the encoder E . To accomplish this, NN proceeds sequentially by �rst estimating the 9 parameters
of the model and then, in a second step, estimating the state variables. These two operations are performed by
two separate multilayer perceptrons (MLPs): NN 1, which is responsible for estimating φ, and NN 2, which
is responsible for estimating RT .

To begin with, the input layer of NN 1 is fed by the output of E , which results in nE input neurons. This is
followed by 6 ReLU layers, each with 100 neurons. The last ReLU layer feeds into the output layer, which
consists of 9 neurons that correspond to the parameters to be predicted. The output neuron responsible for
estimating β1 is associated with an inverted ReLU activation function, while the other output neurons are
associated with a standard ReLU. The output layer of NN 1 is then fed into the network NN 2, as well as
into the output layer of NN (and therefore the output layer of Θ), where it is concatenated with the output
of the NN 2 network.

The MLP NN 2 receives as input both the output of E and the output of NN 1, which results in nE + 9 input
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neurons. Like the input layer of NN 1, the input layer of NN 2 is followed by 6 ReLU layers, each with 100
neurons. Finally, the output layer of NN 1 consists of 2n linear neurons, representing the 2n state variables.
This output layer feeds into the output layer of NN , where it is concatenated with the output of the NN 2

network.

E1(D)

E2(D)

NN 1

NN 2

θ̂TD

E(D) NN
(
E(D)

)

D

D

E1(D)

E2(D)

φ̂

R̂T

φ̂E1(D)

E2(D)

Figure 6: The architecture of the estimator function Θ.

3.3 The estimation procedure

This section presents an estimation approach for the RPDV model, utilizing the functionsM and Θ introduced
in sections 3.1 and 3.2, respectively. This method can be divided into three phases: the generation of training
data, the calibration of M, and the calibration of Θ. These three steps are subsequently described in this
section. At the end of this procedure, Θ can be used as an estimator function for the θ-vectors.

3.3.1 Generation of initial data

To calibrate the functionsM and Θ, it is necessary to generate training sets. This process involves de�ning
the method for generating the θ-vectors, which is equivalent to establishing the prior measure π. We will then
outline the di�erent steps involved in constructing the training sets forM and Θ.

3.3.1.1 De�ning the prior measure π

The estimation procedure requires de�ning the prior measure π. The speci�cation of this measure incorporates
prior knowledge about the parameters, even if this knowledge is vague. By constraining the parameter space,
it is likely to increase the estimation quality without overly restricting the range of possible values. The idea
is therefore to propose a generation procedure for parameter θ-vectors that exploits prior knowledge about
price and volatility dynamics, without excessively constraining the parameter space.

In this context, certain coordinates of the random vector θT are assumed to be independent random variables,
while others exhibit a correlation structure. Speci�cally, the parameters β0, α1, α2, κ1, κ2 are distributed
independently, as follows:

(β0, α1, α2, κ1, κ2) ∼ U(0, 0.25)× U(0, 1)× U(0, 1)× U(0, 5)× U(0, 5)× U(0, 0.15).
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Regarding the risk premia, their generation is slightly more complex. Firstly, the value of the price drift
λ1σt + λ2(σt)

2 is generated when the volatility is equal to 15% (σt = 0.15) as follows:

µ̄ ∼ U(0, 0.1).

In other words, under the measure π, the price drift ranges from 0 to 10% when the volatility level is 15%.
Then, there is a 1

3 probability that λ1 = µ̄
0.15 and λ2 = 0, a 1

3 probability that λ1 = 0 and λ2 = µ̄
0.152 , and a

1
3 probability that

λ1 ∼ U(0, 1) · µ̄

0.15
, λ2 =

µ̄− 0.15λ1

0.152
.

Therefore, there is an equal probability of having a pure volatility premium, a pure variance premium, or
a mixture of both. The last two remaining parameters are β1 and β2. In both cases, it makes sense to
consider the speci�city of the kernel associated with the variables for which β1 and β2 determine the volatility
sensitivity. With respect to β1, it is generated as follows:

β1 ∼ U(−1.5, 0) ·

(
n∑
i=1

n∑
k=1

w1,iw1,kγ1,iγ1,k

γ1,i + γ1,k
e−(γ1,i+γ1,k)

)−0.5

.

The term that weights U(−1.5, 0) is the inverse of the asymptotic standard deviation of the BSS process
associated with the kernel K̂1 (see appendix D.2). This weighting allows for the generation of reasonable
values of β1 given α1. Similarly, the parameter β2 is generated as follows:

β2 ∼
U(0, 1)∑n
i=1 w2,i

.

The term that weights U(0, 1) corresponds to the inverse of the integral over R+ of the kernel K̂2 (see appendix
D.1). This weighting prevents volatility from exploding regardless of the value of κ2.

Next, we de�ne how the state variables {(R1)j}nj=1 and {(R2)j}nj=1 are generated. The approach consists of
three steps. The �rst step is the initialization of the state variables. The state variables {(R1)j}nj=1 are simply
initialized to zero, and the state variables {(R2)j}nj=1 are initialized as follows:

(R2,0)i ∼ (β0)2 · U(0.9, 1.1).

From these initial values and the associated parameter vector, a simulation of the volatility dynamics is
performed over a period of 5 years. Finally, the values of the state variables at the end of this simulation are
retained.

The θ-vector is retained if and only if the initial value of the volatility is positive and lower than 300%, i.e.,
if 0 < β0 + β1R1,T + β2

√
R2,T < 3.

3.3.1.2 Constructing training sets

The objective is to generate data samples{
D, θT ,

{
Ē1,T+δk , Ē2,T+δk , S̄1,T+δk , S̄2,T+δk , ρ̄T+δk

}p
k=1

}
,

where D is a data matrix of the form 5 (section 2.2.1) generated from the generator 4 (section 2.1.2), θT is the
value taken by the θ-vector at the end of the simulation of D, and where Ēk,T+δj , S̄1,T+δk , ρ̄T+δk are unbiased
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estimators of E[Rk,T+δ|θT ],Std[Rk,T+δ|θT ] and ρ
[
R1,T+δ,

√
R2,T+δ|θT

]
, respectively. To do this, we use the

following algorithm.

Algorithm 1 Procedure for generating training sets.

Require: π, n1, n2

1. Generate an i.i.d. sample Ωθ0 =
{
θ

(i)
t0

}
1≤i≤n1

from the distribution π.

2. Generate from Ωθ0 and model 4 the pairs
{

D(i), θ
(i)
T

}
1≤i≤n1

.

3. Generate n2 time series over the periods T + δ1, ..., T + δp using model 4 for each θ ∈
{
θ

(i)
T

}
1≤i≤n1

, and

extract from each series the sets ΩR =

{{
R

(i,k)
1,T+δk

, R
(i,j)
2,T+δk

}p
k=1

}
1≤i≤n1
1≤j≤n2

.

4. Compute set

{{
Ē

(i)
1,T+δk

, Ē
(i)
2,T+δk

, S̄
(i)
1,T+δk

, S̄
(i)
2,T+δk

, ρ̄
(i)
T+δk

}p
k=1

}
1≤i≤n1

from sample set ΩR.

return

{
D(i), θ

(i)
T ,
{
Ē

(i)
1,T+δk

, Ē
(i)
2,T+δk

, S̄
(i)
1,T+δk

, S̄
(i)
2,T+δk

, ρ̄
(i)
T+δk

}
1≤k≤p

}
1≤i≤n1

This data generation procedure aligns with the adopted Bayesian approach. The set of i.i.d. matrices{
D(i)

}
1≤i≤n1

is generated from initial vectors
{
θ

(i)
t0

}
1≤i≤n1

sampled from the prior distribution π, which
incorporates vague knowledge about the model parameters. In this article, we specify n1 = 200 000 and
n2 = 200. The large value chosen for n1 ensures good coverage of the parameter and state variable space. As
for n2, its value allows for empirical moment estimators with reasonable variance on average.

Figure 7: The left �gure plots a historical trajectory of realized joint price and volatility of an asset over
1260 trading days contained in a matrix D(i), generated from the initial θ-vector value θ(i)

0 . The right �gure

represents 5 continuations of this trajectory over 252 trading days generated from θ
(i)
1260.
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3.3.2 The calibration of M

The second phase of the general procedure involves calibratingM using the datasets generated in section 3.3.1.
The method to be proposed for this purpose is derived from the following proposition proved in appendix C.1.

Proposition 1 Let be θ
(1)
T , ..., θ

(n1)
T a sequence of i.i.d. random variable following π, and

{
M̄

(1)
T+δk

}
1≤j≤p

, ...,{
M̄

(n1)
T+δk

}
1≤j≤p

a sequence of sets such as ∀ i, k, M̄ (i)
T+δk

is an unbiased estimator of M
(
θ

(i)
T , δk

)
calculated

from a sample of size n2. If it exists M?, such as M? (θT , δk) = M (θT , δk) , ∀ θT : π (θT ) 6= 0 and

δk ∈ {δ1, ..., δp}, thus ∀ M̂? solution to

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ

(i)
T , δk

)
− M̄ (i)

T+δk

∥∥∥2

2
,

M̂? (θ, δk) = M (θT , δk) ,∀ θT : π (θT ) 6= 0 and δk ∈ {δ1, ..., δp}.

Therefore, this proposition implies a way to makeM a convergent estimator of M , under suitable conditions
of existence, for the time horizons δ1, ..., δp and the θ-vectors associated with a non-zero probability under the
measure π. It simply involves minimizing the mean squared di�erence between the estimators returned byM
and the unbiased estimator M̄ for each pair

(
δ(i), θ

(i)
T

)
in the training set. This minimization constitutes the

second step of algorithm 2, which we propose for calibratingM.

Algorithm 2 Calibration procedure forM

Require:

{
θ

(i)
T ,
{
Ē

(i)
1,T+δj

, Ē
(i)
2,T+δj

, S̄
(i)
1,T+δj

, S̄
(i)
2,T+δj

, ρ̄
(i)
T+δj

}
1≤k≤p

}
1≤i≤n1

1. Optimize

arg min
M

1

n1

n1∑
i=1

p∑
k=1

(
ρ̂

(i)
T+δk

− ρ̄(i)
T+δk

)2

+

2∑
j=1

((
Ê

(i)
j,T+δk

− Ē(i)
j,T+δk

)2

+
(
Ŝ

(i)
j,T+δk

− S̄(i)
j,T+δk

)2
)
.

2. Optimize

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ

(i)
T , δk

)
− M̄ (i)

T+δk

∥∥∥2

2
,

starting from the calibration ofM obtained at the end of step 1.

return M̂?

The �rst step of the procedure serves only to prepare for the second (and �nal) step of the calibration ofM.
It consists in the independent calibration of the 5 subnetworks that composeM (see Figure 2). The objective
by the end of step 1 is as follows:

Ê
(i)
j,T+δk

≈ E

[
(Rj,T+δk)1/p

∣∣θ(i)
T

]p
, Ŝ

(i)
j,T+δk

≈ Std
[
Rj,T+δk

∣∣θ(i)
T

]
and ρ̂

(i)
T+δk

≈ ρ
[
R1,T+δk ,

√
R2,T+δk

∣∣θ(i)
T

]
,

∀ {i, k}. In this �rst phase, the calibration of M is conducted to align with the speci�c role of each of the
5 subnetworks within it. This �rst phase, which frames the outputs of the subnetworks inM, is followed by
step 2, which is aimed at achieving the objective 12 stated in the introduction of section 3.1. As previously
mentioned, according to proposition 3.3.2, under suitable conditions of existence, as n1 and n2 approach
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in�nity, solving the optimization problem associated with step 2 involves �nding M̂? such that:

M̂? (θ, δk) = M (θT , δk) ,∀ θT : π (θT ) 6= 0 and δk ∈ {δ1, ..., δp}.

The assumption of the existence of M? is related to the �exibility of the network M in approximating the
functionM . Moreover, the reasonableness of this assumption is guaranteed by the structure of the subnetworks
that constitute M, which can approximate any continuous function due to the universal approximation
theorem (Hornik et al. 1989).

3.3.3 The calibration of Θ

The third and �nal step of the calibration process involves calibrating Θ to achieve the desired situation
described in 18 at the beginning of section 3.2. The consistency of the method to be proposed in this section
for this purpose stems from the following proposition demonstrated in appendix C.2.

Proposition 2 Let θ
(1,1)
t0 , ..., θ

(n1,1)
t0 be a sequence of i.i.d. random variables following π, D(1), ...,D(n1)

a set of time-series such that D(i) is generated from the M-RPDV associated with the θ-vector θ
(i)
t0 , and

θ
(1,2)
T , ..., θ

(n1,2)
T the set of values taken by θ at time tN for each time series D(i). If there exists Θ? such that

for all D : Pπ(D) 6= 07, Θ?(D) is a Bayes estimator of θT under the posterior measure π, then for any Θ̂?

solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ

(1,i)
T ,Θ

(
D(i)

))
,

Θ̂?(D) is a Bayes estimator of θT under the posterior measure πD,∀ D : Pπ(D) 6= 0.

This proposition, therefore, has signi�cant implications as it provides a way to calibrate Θ, such that asymptotically
and under a suitable existence condition, Θ(D) becomes a Bayesian estimator of θT under the posterior measure
πD, for all D : Pπ(D) 6= 0. This result is even more remarkable considering that the calibration method does
not require explicit calculation of the posterior measures (i.e., the measure π updated by a matrix D) at
any point. Indeed, it simply involves following steps 1 and 2 of algorithm 4.1.1) to generate a set of pairs{

D(i), θ
(i)
T

}
1≤i≤n1

, and then minimizing the average losses measured by L between the θ-vectors predicted by

Θ
(
i.e. D(i)

)
and the true θ-vectors (i.e. θ(i)

T ). However, since L depends on the function M , which is not
known, we use the following proxy that replaces M withM:

L̂
(
θ

(i)
T ,Θ

(
D(i)

))
=

p∑
k=1

C
(
M
(
θ

(i)
T , δk

)
,M

(
Θ
(

D(i)
)
, δk

))
.

The idea is that after calibratingM (algorithm 2),M (θT , δ) ≈M (θT , δ) and ∇M (θT , δ) ≈ ∇M (θT , δ), and
therefore:

L̂
(
θ

(i)
T ,Θ

(
D(i)

))
≈ L

(
θ

(i)
T ,Θ

(
D(i)

))
and ∇L̂

(
θ

(i)
T ,Θ

(
D(i)

))
≈ ∇L

(
θ

(i)
T ,Θ

(
D(i)

))
.

Consequently, the quality of the approximation of the function M by M is crucial in the calibration of Θ.
Regarding the assumption of the existence of Θ? on which proposition 3.3.3 relies, its reasonableness depends
on both the encoder's ability to extract all relevant information contained in the time series D and the plasticity
of the networks NN 1 and NN 2.

7
Pπ denotes the distribution of D induced by π.
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Based on these elements, the calibration of Θ is carried out using the following algorithm.

Algorithm 3 Calibration procedure for the estimator dunction Θ

Require:
{

D(i), θ
(i)
T

}
1≤i≤n1

1. Optimize

arg min
E2, NN 1

1

n1

n1∑
i=1

∥∥∥NN 1

(
E
(

D(i)
))
− φ(i)

∥∥∥2

2
.

2. Optimize

arg min
NN 2

1

n1

n1∑
i=1

(
NN 2

(
E
(

D(i)
)
, φ(i)

)
− R

(i)
T

)2

.

3. Optimize

arg min
NN 2

1

n1

n1∑
i=1

(
M
((
φ(i),NN 2

(
D(i)

))
, 0
)
−M

(
θ(i), 0

))2

.

4. Optimize

arg min
Θ

1

n1

n1∑
i=1

p∑
k=1

C
(
M
(
θ

(i)
T , δk

)
,M

(
Θ
(

D(i)
)
, δk

))
.

return Θ̂?

The �rst three calibration steps for sub-regions of the network that constitutes Θ in practice serve only to
prepare for the fourth and �nal step, which is directly derived from proposition 3.3.3. In the �rst phase, only
the components of the network responsible for predicting the parameter vector φ, i.e., the trainable encoder
E2 and the neural network NN 1, are trained. The aim is to guide the calibration of Θ initially by minimizing
the sum of squared di�erences between predicted and actual parameter vectors, thereby obtaining parameters
consistent with the prior measure π. Next, the neural network NN 2 responsible for predicting the state
variable vector R is trained. The calibration of NN 2 uses the encoder E �tted during phase 1 and actual
parameter vectors, rather than those estimated by NN 1. This approach allows for a more focused learning
of the relationship between data and the vector of state variables to be predicted, without introducing any
bias caused by estimation errors in NN 1. The �rst three steps of the algorithm described previously are not
important in themselves, but serve only to prepare for the �nal calibration step of Θ. This �nal step aims to
achieve the objective de�ned in the introduction of section 3.2, namely that Θ returns an estimator of θT that
is close (in terms of expected loss measured by L) to its Bayesian estimator under the posterior measure. The
consistency of the optimization program solved in this step with this objective is established by the following
proposition proved in the appendix C.2.

4 Assessment of the estimation method

The purpose of this section is to evaluate the estimator function de�ned in section 3. For this purpose, we
perform various tests, starting with synthetic data and then moving on to market data.
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4.1 Evaluation of estimation method using synthetic data

In this section, the objective is to evaluate the estimation method presented in section 3 using synthetic data.
We start by assessing the accuracy of the moment estimatorM in approximating the function M . Next, we
evaluate the e�ectiveness of the estimator function Θ in providing consistent estimates of the θ-vector that
align with our forecasting objectives.

4.1.1 Test dataset and evaluation metrics

The test dataset is generated using algorithm , as introduced in section 3.3.1.2, with parameters n1 = 10000

and n2 = 1000. Hence, we have the following elements that will be used to construct the test datasets:{
D(i), θ

(i)
T ,
{
M̄

(i)
T+δk

}
1≤k≤p

}
1≤i≤10000

.

The choice of n2 = 1000 in Algorithm 1 allows us to consider M̄ (i)
T+δk

as reasonably accurate estimators of

M
(
θ

(i)
T , δ

)
. This consistency enables us to use them as targeted values for comparison with the predicted

values generated byM
(
θ

(i)
T , δ

)
andM

(
D(i), δ

)
.

The evaluation of the estimated conditional moments ŷi with the targeted conditional moment values yi will
be conducted using the following metrics:

� The root mean squared error(RMSE)

RMSE =

√∑n1

i=1

(
yi − ŷi

)2
N

.

� The mean absolute error (MAE)

MAE =

∑n1

i=1

∣∣yi − ŷi∣∣
N

.

� The mean absolute percentage error (MAPE)

MAPE =
1

n1

∑n1

i=1

∣∣yi − ŷi∣∣
yi

� The coe�cient of determination

r2 = 1−
∑n1

i=1(yi − ŷi)2∑n1

i=1

(
yi − 1

n1

∑
i=1 yi

)2 .

The use of these di�erent metrics allows for evaluating, from di�erent angles, the moment estimators. RMSE is
a classic metric that measures the di�erence between predicted and actual values, while taking into account the
variance of errors. MAE, on the other hand, measures the average of absolute errors, providing an indication
of the overall accuracy of the estimation. MAPE has the advantage of comparing the performance of the
estimation, taking into account the heterogeneity of the magnitudes of the moments. Finally, the coe�cient
of determination r2 measures the overall adequacy of the model by providing an indication of the proportion
of variance explained by the model.
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4.1.2 Evaluation of the ability of M to approximate M

We aim to evaluate how closelyM approximates M . To do so, we compare the estimators

M
(
θT , δ

)
1

= Ê
[
σT+δ|θT

]
and M

(
θT , δ

)
2

= Ŝtd
[
σT+δ|θT

]
,

with the corresponding empirical estimators calculated from a sample of volatility trajectories using θT . This
comparison is performed using the test dataset{{

θ
(i)
T , M̄

(i)
T+δk

}
1≤i≤10000

}
1≤k≤5

,

which is extracted from the synthetic data de�ned in section 4.1.1. The results obtained are reported in tables
1 and 2.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0055 0.0069 0.0095 0.0090 0.0100
MAE 0.0029 0.0035 0.0043 0.0045 0.0049
MAPE 0.0270 0.0325 0.0391 0.0421 0.0453

R-Squared 0.9958 0.9920 0.9832 0.9842 0.9800

Table 1: Evaluation metrics for the estimation of E[σT+δ|θT ] byM.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0258 0.0279 0.0297 0.0310 0.0353
MAE 0.0107 0.0105 0.0122 0.0131 0.0141
MAPE 0.1081 0.0965 0.1046 0.1102 0.1143

R-Squared 0.9010 0.8887 0.8742 0.8675 0.8359

Table 2: Evaluation metrics for the estimation of Std[σT+δ|θT ] byM.

The obtained results demonstrate that M provides a reliable approximation of M across di�erent time
horizons. When estimating E[σT+δ|θT ], the evaluation metrics indicate a signi�cant agreement with the
empirical estimators in terms of both absolute and relative deviation. For example, the MAE falls within
the range of 0.0029 to 0.0049 for various time horizons δ, indicating that, on average, the estimated values of
E[σT+δ|θT ] provided by M deviate from the empirical estimator by less than 0.005 units. Additionally, the
MAPE metric reveals that the average absolute deviation between these two estimators ranges from 2.7% to
4.5% in relative terms, which is notably low. Furthermore, the consistently high R-squared values exceeding
98% con�rm the excellent quality of approximation for the conditional expectation byM.

The same observation applies to the estimation of the conditional standard deviations Std[σT+δ|θT ], albeit
with some nuances. The evaluation metrics demonstrate a signi�cant agreement betweenM and the empirical
estimators, indicating a reliable approximation of Std[σT+δ|θT ] for the di�erent time horizons. However, it is
worth noting that the deviation between these estimators is signi�cantly larger compared to the estimation
of E[σT+δt|θT ]. Speci�cally, we observe that the MAE ranges from 0.0107 to 0.0141 for di�erent values of δ,
suggesting that, on average, the estimated values provided byM deviate from the empirical estimator by less
than 0.015 units. In terms of the MAPE, the average absolute deviation between the estimators ranges from
9.65% to 11.43% in relative terms. Moreover, the R-squared values for Std[σT+δ|θT ] range from 83.59% to
90.10%, indicating a relatively high concordance betweenM and the empirical estimators, but lower compared
to the estimation of E[σT+δ|θT ].
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Figure 8: Example of estimated conditional means and standard deviations by M compared to sample
conditional estimators.

However, this discrepancy does not necessarily imply a lower quality of estimation for Std[σT+δt|θT ]. In fact,
it can be mainly attributed to the higher variance of the empirical estimator used for estimating the standard
deviations. This higher variance is illustrated by the example exhibited in Figure 8, where the absolute
percentage error for the 51 trading days horizon is greater than 50%. However, by replicating the experiment
with 20 000 simulations, this absolute error decreases signi�cantly to less than 2%. This suggests that the
observed residuals are primarily due to the higher variance of the empirical estimators used rather than a
misestimation ofM.

4.1.3 Assessment of the estimator function Θ

4.1.3.1 Evaluation based on conditional moments

To evaluate the performance of the estimator function Θ, we compare in this section the following estimators:

M
(
Θ
(
D(i)

)
, δ
)

1
= Ê

[
σt+δ|D(i)

]
and M

(
Θ
(
D(i)

)
, δ
)

2
= Ŝtd

[
σt+δ|D(i)

]
,

using two types of moment estimators: the empirical estimators already used in section 4.1.2, and the
estimators computed fromM using the actual θ-vectors.

To begin the evaluation, we use the following test dataset, where the targeted values are the sample moments:{{
D(i), M̄

(i)
T+δk

}
1≤i≤10000

}
1≤k≤5

.

The results obtained from this evaluation are presented in tables 3 and 4.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0147 0.0129 0.0128 0.0122 0.0129
MAE 0.0083 0.0076 0.0074 0.0075 0.0077
MAPE 0.0904 0.0799 0.0753 0.0747 0.0761

R-Squared 0.9705 0.9725 0.9696 0.9705 0.9662

Table 3: Evaluation metrics comparingM
(
Θ
(
D
)
, δ
)

1
and

(
M̄T+δk

)
1
.
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δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0355 0.0368 0.0373 0.0400 0.0476
MAE 0.0156 0.0155 0.0165 0.0175 0.0185
MAPE 0.1857 0.1655 0.1610 0.1634 0.1655

R-Squared 0.8007 0.7944 0.7891 0.7688 0.7048

Table 4: Evaluation metrics comparingM
(
Θ
(
D
)
, δ
)

2
and

(
M̄T+δk

)
2
.

A �rst observation is that, consistently, the cost metrics are higher and the R-squared values are lower
compared to the case studied in section 4.1.2, where the θ-vectors are known. However, the observed di�erence,
although signi�cant, remains relatively moderate, which suggests the quality of the estimation of the θ-vectors
produced by Θ. However, to better interpret these results, it is important to note that this di�erence tends
to decrease relative to the temporal horizon. Thus, while the MAPE between M

(
θT , δ

)
1
and

(
M̄T+δ

)
1

increases from 2.7% for a 1-day trading horizon to 4.5% for a 3-month horizon (63 trading days), the MAPE
betweenM

(
Θ
(
D(i)

)
, δ
)

1
and

(
M̄T+δ

)
1
decreases for the same periods from 9% to 7.6%. Similarly, the MAPE

between M
(
θT , δ

)
2
and

(
M̄T+δ

)
2
decreases from 10.8% for a 1-day trading horizon to 11.4% for a 3-month

horizon, compared to a decrease from 18.6% to 16.5% for the same horizons when comparing M
(
θT , δ

)
2

and
(
M̄T+δ

)
2
. A �rst explanation for this phenomenon could be the decreasing signi�cance of short-term

information contained in the state variables associated with higher discount factors, as it has a diminishing
impact on the conditional moments. However, these state variables are particularly challenging to estimate
due to the daily observation frequency, which explains the reduction in the cost gaps between M

(
Θ
(
D
)
, δ
)

and M
(
θT , δ

)
as δ increases. This phenomenon may also be partly caused by the variance of the empirical

estimator M̄T+δ. To isolate the impact of estimating the θ-vectors using Θ, it is valuable to directly compare
the estimator M

(
Θ
(
D
)
, δ
)
with the estimator M

(
θT , δ

)
. To investigate this further, we employ the same

evaluation procedure for Θ as discussed previously, but on the following test dataset:{{
D(i),M

(
θ

(i)
T , δk

)}
1≤i≤10,000

}
1≤k≤5

.

The resulting outcomes from this evaluation are presented in the following tables.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0128 0.0114 0.0113 0.0115 0.0118
MAE 0.0078 0.0072 0.0072 0.0074 0.0077
MAPE 0.0851 0.0763 0.0757 0.0797 0.0840

R-Squared 0.9744 0.9767 0.9750 0.9729 0.9711

Table 5: Evaluation metrics comparingM
(
Θ
(
D
)
, δ
)

1
andM

(
θT , δ

)
1
.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

RMSE 0.0209 0.0214 0.0222 0.0229 0.0235
MAE 0.0108 0.0111 0.0116 0.0121 0.0125
MAPE 0.1603 0.1492 0.1431 0.1421 0.1423

R-Squared 0.9031 0.9034 0.9029 0.9014 0.8997

Table 6: Evaluation metrics comparingM
(
Θ
(
D
)
, δ
)

2
andM

(
θT , δ

)
2
.

In a consistent manner, the majority of cost metrics demonstrate lower values, and the R-squared value
consistently shows higher values when usingM

(
θT , δ

)
as targeted values instead of empirical moment estimators.
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Although the di�erence is relatively small for conditional expectation estimators, it becomes more signi�cant
for conditional standard deviation estimators. Speci�cally, the R-squared is 10 to 20 points lower when using
M
(
θT , δ

)
2
as the targeted value compared to the sample standard deviation. This suggests that a signi�cant

portion of the discrepancy between the estimator M
(
θT , δ

)
2
and the empirical estimator of the conditional

standard deviation can be attributed to the variance of the latter. In practical terms, this �nding further
strengthens the notion that the future volatility distributions associated with the θ-vectors estimated by Θ

closely align with the actual future volatility distributions, not only in terms of the mean but also in terms of
the standard deviation.

4.1.3.2 Evaluation based on conditional distributions using the Kolmogorov-Smirnov test

In addition to evaluating the estimator function through conditional moments, it is important to examine
the consistency between the estimated θ-vectors and the true θ-vectors in terms of the associated conditional
distributions. To address this aspect, we conduct a statistical experiment to assess the adequacy of the
estimated θ-vectors by Θ.

The �rst step of this experiment involves estimating each θ-vector associated with each matrix D(i) using the
Θ method. Subsequently, we generate 100 simulations for each estimated vector, consideringhe the p time
horizons of interest to us: 1, 5, 21, 42, and 63 trading days. For each combination of

(
θ

(i)
T , θ̂

(i)
T

)
and for each

time horizon, we employ the Kolmogorov-Smirnov (KS) test to calculate the p-value between the simulated
volatility sample generated from the estimated θ-vector by Θ and the sample generated from the true θ-vector.
The p-value indicates the likelihood of observing a discrepancy as large as or larger than the one observed,
assuming both samples are drawn from the same distribution. By computing the proportion of non-rejection
of the null hypothesis of the KS test at di�erent signi�cance levels, we can evaluate the agreement between the
estimated and true θ-vectors regarding the underlying conditional distributions. The results of this analysis
are presented in the following table, providing valuable insights into the robustness and reliability of the
estimation procedure conducted by Θ.

δ = 1 δ = 5 δ = 21 δ = 42 δ = 63

Proportion (%) at a signi�cance level of 0.1% 93.0 94.8 96.4 97.1 97.2
Proportion (%) at a signi�cance level of 1% 84.7 88.4 90.2 91.9 91.9
Proportion (%) at a signi�cance level of 5% 76.1 80.9 83.5 84.9 85.2
Proportion (%) at a signi�cance level of 10% 68.5 73.2 76.4 77.8 77.5

Table 7: Proportion of non-rejection of the null hypothesis of the KS test.

The results obtained demonstrate a high level of consistency between the conditional distributions generated
from the estimated θ-vectors by Θ and those generated from the true θ-vectors. This consistency is evident
through signi�cant proportions of non-rejection observed across di�erent signi�cance levels for the various time
horizons examined. Notably, even with a relatively high signi�cance level of 10%, a substantial portion of
the sample (ranging from 68.5% to 77.5% depending on the time horizon) does not reject the null hypothesis,
indicating a strong agreement between the estimated and true θ-vectors concerning the associated conditional
distributions. These �ndings emphasize the robustness and reliability of the estimation procedure performed
by Θ in capturing the underlying future volatility distributions accurately.

Furthermore, it is interesting to note that the proportion of non-rejection of the null hypothesis increases with
the time horizon. This phenomenon can be explained by two main factors already discussed in section 4.1.2.
Firstly, as the time horizon increases, the data variability also increases, leading to conditional distributions
with a larger standard deviation and, consequently, a greater acceptance of the null hypothesis. Secondly, as
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the time horizon grows, the signi�cance of short-term information contained in the state variables associated
with higher discount factors diminishes in its impact on the conditional distributions. However, these state
variables are particularly challenging to estimate due to the daily observation frequency.

4.2 Evaluation of estimation procedure using market data

The objective of the estimation procedure presented in this article is to make the RPDV model a robust model
for volatility prediction. The purpose of this section is therefore to evaluate the performance of the RPDV
model on real data according to this objective.

4.2.1 Market data sets

To evaluate the performance of Θ on real data, the tests conducted in this section utilize historical data
from 2000 to 2022 for �ve stock indices: S&P500, Nasdaq, FTSE, DAX, and Euro Stoxx 50. These historical
datasets consist of daily observations for each index, including its corresponding value and the realized volatility
over the day, annualized. To create the input matrices D for the estimator Θ, a rolling window approach is
employed. Speci�cally, a window of size 1260×2 is slid with a step of 1 trading day over the 22-year historical
period. This process generates the matrices D of dimension 1260× 2 that are used as inputs for the estimator
Θ. Furthermore, the prediction horizons considered are 1, 5, 21, 42, and 63 trading days. Therefore, from a
historical period of 5544 trading days (approximately 22 years), a total of 4222 (5544 - 1260 + 1 - 63) test

pairs are obtained:
{

D(i),
{
σ̃i+δk

}5

k=1

}4222

i=1
.

Figure 9: Example of joint evolution of the S&P500 and its realized volatility: the �rst 5 years are real data
used to estimate θT from Θ, followed by 10 simulated years using this θ-vector.

4.2.2 Comparison of model forecasts with benchmark volatility models

The objective of this section is to assess the performance of the RPDV model on market data presented in
section 4.2.1. For this purpose, we use as volatility forecaster, the estimator of E

[
σT+δ|D

]
:

σ̂T+δ =M
(
Θ(D), δ

))
1
,
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which we then compare with the following benchmark models from academic literature (Gatheral et al. 2019,
Rosenbaum and Zhang 2022):

� The autoregressive (AR) models of order 5 and 21 (with trading days frequency), which take the following
form for an order p model:

σt = a+

p∑
k=1

bk · σt−k.

� The heterogeneous autoregressive (HAR) models introduced by Corsi (2002) HAR

σ̂t = a+ b1σt−1 + b2

5∑
k=1

σt−k + b3

21∑
k=1

σt−k.

� The rough fractional stochastic volatility (RFSV) model introduced by Gatheral et al. (2019)

σ̂t = exp

(
cos(Hπ)

π

∫ t−1

−∞

σs
(t− s+ 1)(t− s)H+0.5

ds+
G(1.5−H)ν2

2G(H + 0.5)G(2− 2H)

)
.

where G(.) denotes the gamma function. In practice, we truncate the integral to 1260 trading days and
approximate it using a Riemann sum.

Each of these models is estimated using the data contained in the �rst column of the matrices D, which
represents the historical realized volatility over the past 1260 trading days (approximately 5 years). The
parameters of the AR and HAR models are estimated using the ordinary least squares method, while the
FSVM is estimated using the method proposed by Gatheral. The accuracy of these di�erent forecasters is
evaluated by calculating the MSE between their respective forecasts and realized volatility, using the market
data considered in section 4.2.1.

The results presented in table 8 demonstrate that, in most of the cases examined, the RPDV predictions
outperform alternative models in terms of forecast accuracy. However, it is important to note that the
predictive ability of RPDV heavily relies on the speci�c time horizon being considered. Speci�cally, for all
1-day horizon forecasts, the MSE-based performance of RPDV is inferior to that of the AR models or RFSV.
Nevertheless, its relative performance signi�cantly improves for the 5 trading days horizon, where it becomes
the most accurate model in 3 out of 5 cases. Moreover, for longer time horizons such as 1, 2, and 3 months,
RPDV consistently outperforms other volatility forecasters. In general, as the time horizon increases, RFSV
forecasts tend to outperform those of other models.

The di�erential performance based on the considered time horizons can be attributed to the choice of estimation
method employed to �t the RPDV model. Indeed, unlike the other models considered, Θ is trained only using
synthetic data with a constant observation time step of 1

252 of a year, whereas the real data has an uneven
observation frequency due to factors such as the presence of weekends. Thus, the empirical observation gap
between two consecutive weekdays is 1

365 of a year, and 3
365 of a year between Friday and the following Monday.

This bias can have a relatively strong impact on the estimation of volatility at a short time horizon and tends
to be smoothed out as the time horizon increases. Nevertheless, this is currently a limitation of the proposed
estimation method that is worth highlighting.
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AR(5) AR(21) HAR RFSV RPDV
SPX δ = 1 0.0030 0.0031 0.0036 0.0031 0.0033
SPX δ = 5 0.0052 0.0052 0.0052 0.0051 0.0050
SPX δ = 21 0.0087 0.0083 0.0081 0.0080 0.0076
SPX δ = 42 0.0106 0.0100 0.0098 0.0094 0.0087
SPX δ = 63 0.0111 0.0103 0.0103 0.0099 0.0089
Nasdaq δ = 1 0.0021 0.0022 0.0027 0.0022 0.0028
Nasdaq δ = 5 0.0039 0.0040 0.0039 0.0038 0.0040
Nasdaq δ = 21 0.0064 0.0063 0.0059 0.0057 0.0058
Nasdaq δ = 42 0.0076 0.0072 0.0069 0.0066 0.0064
Nasdaq δ = 63 0.0080 0.0075 0.0073 0.0069 0.0065
FTSE δ = 1 0.0038 0.0039 0.0042 0.0038 0.0040
FTSE δ = 5 0.0055 0.0053 0.0053 0.0052 0.0053
FTSE δ = 21 0.0086 0.0077 0.0076 0.0073 0.0074
FTSE δ = 42 0.0101 0.0090 0.0088 0.0083 0.0083
FTSE δ = 63 0.0107 0.0094 0.0093 0.0088 0.0086
DAX δ = 1 0.0026 0.0026 0.0031 0.0026 0.0029
DAX δ = 5 0.0045 0.0044 0.0042 0.0042 0.0041
DAX δ = 21 0.0075 0.0067 0.0064 0.0062 0.0060
DAX δ = 42 0.0090 0.0082 0.0076 0.0073 0.0068
DAX δ = 63 0.0096 0.0086 0.0081 0.0078 0.0072
Stox50 δ = 1 0.0039 0.0040 0.0046 0.0039 0.0042
Stox50 δ = 5 0.0062 0.0061 0.0061 0.0060 0.0058
Stox50 δ = 21 0.0099 0.0091 0.0088 0.0084 0.0081
Stox50 δ = 42 0.0110 0.0105 0.0101 0.0095 0.0090
Stox50 δ = 63 0.0114 0.0106 0.0105 0.0099 0.0092

Table 8: MSE for the AR, HAR, RFSV and RPDV predictors.

4.2.3 Evaluation by density

The evaluation of standard deviations for conditional volatility distributions is not directly possible from
historical data since, by de�nition, we only have a single realization for each date. Therefore, we proceed
indirectly by using the approximation of volatility distributions with the log-normal distribution introduced
in section 2.3. In this framework, our estimator for the volatility distribution at horizon T + δ at time T is
the log-normal distribution LN

(
m̃T+δ, (s̃T+δ)

2
)
, where:

m̃T+δ = log
(
M
(
Θ(D), δ

)
1

)
− 0.5

(
s̃T+δ

)2
and

(
s̃T+δ

)2
= log

(M(Θ(D), δ
)

2

M
(
Θ(D), δ

)
1

)2

+ 1

 .

Using the properties of the log-normal distribution, we de�ne the estimator of the cumulative distribution
function (CDF) of σT+δ at time T as follows:

F̂T+δ(σ) = 0.5 + 0.5 · erf

(
log(σ)− m̃T+δ

s̃T+δ

√
2

)
. (21)

We then proceed to calculate the proportion of observed realized volatility values that fall within di�erent
con�dence intervals constructed based on this estimated CDF. Speci�cally, we compute the included proportion
of the sample that falls within:
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� the bilateral con�dence interval [α/2 : 1− α/2]:

p1−α =

∑N
k=1 1

{
α
2 ≤ F̂Tk+δ

(
σTk+δ

)
≤ 1− α

2

}
N

,

� the upper unilateral con�dence interval [α : 1]:

p
(+)
1−α =

∑N
k=1 1

{
α ≤ F̂Tk+δ

(
σTk+δ

)}
N

,

� the lower unilateral con�dence interval [0 : 1− α]:

p
(−)
1−α =

∑N
k=1 1

{
F̂Tk+δ

(
σTk+δ

)
≤ 1− α

}
N

.

These calculations are performed for the following values of α: 0.05, 0.1, 0.25, 0.5. The idea is then to
compare the theoretical proportion, which should be 1− α, with the calculated proportions p1−α, p

(+)
1−α, and

p
(−)
1−α. Indeed, the closer the calculated proportions p1−α, p

(+)
1−α, and p

(−)
1−α are to 1 − α, the stronger the

indication that F̂Tk+δ is a reliable estimator of the conditional distributions of volatility at horizon δ.

The �gures reported in the table 9 demonstrate that our estimator of conditional volatility distributions
generally provides a good approximation of the actual conditional distributions. The proportions of realized
volatility included in the estimated con�dence intervals are typically close to the theoretical proportions (i.e.,
1 − α), indicating that the estimator e�ectively captures the characteristics of the conditional distributions.
This, in turn, suggests that M

(
Θ
(
D
)
, δ
)

2
produces a good estimation of conditional standard deviations.

However, it should be noted that, as already mentioned in section 4.2.2, the quality of the model estimations
is quite sensitive to the considered time horizon. Thus, while the di�erence between the theoretical proportion
and the observed proportion inside the con�dence intervals is around 10 points in most cases for a 1-day
horizon, this di�erence is almost always less than 5 points for horizons equal to or greater than 1 month.

Another interesting point is that the narrower the con�dence interval, the more accurate the model estimation,
in the sense that the empirical proportions approach the theoretical proportions. Moreover, the empirical
proportions are generally lower than the theoretical proportions, especially when considering wider con�dence
intervals. This phenomenon can be explained by several factors. The �rst, which is certainly the most
important, is that observations outside the con�dence intervals are simply the result of a poor model prediction
for a part of the sample. This hypothesis is supported by the fact that these discrepancies are strongly
correlated with the model's relative performance reported in table 8. Another factor explaining this discrepancy
is an underestimation by the model of the conditional standard deviations. In fact, even if the model
perfectly predicted the conditional means, such an underestimation of the standard deviations would lead
to p1−α < 1 − α. Finally, part of this di�erence could be also explained by the use of the log-normal
approximation. Indeed, with constant mean and standard deviation, the kurtosis of the volatility distributions
directly generated from RPDV model tends to be slightly higher than their log-normal approximations (it can
be seen in �gure 1).
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p0.95 p
(+)
0.95 p

(−)
0.95 p0.90 p

(+)
0.90 p

(−)
0.90 p0.75 p

(+)
0.75 p

(−)
0.75 p0.50 p

(+)
0.50 p

(−)
0.50

SPX δ = 1 0.86 0.90 0.91 0.80 0.85 0.85 0.65 0.72 0.72 0.44 0.50 0.50
SPX δ = 5 0.89 0.92 0.91 0.83 0.88 0.85 0.67 0.74 0.69 0.44 0.53 0.47
SPX δ = 21 0.90 0.92 0.93 0.85 0.88 0.88 0.70 0.74 0.71 0.46 0.52 0.48
SPX δ = 42 0.90 0.92 0.94 0.86 0.87 0.89 0.71 0.75 0.73 0.48 0.52 0.48
SPX δ = 63 0.91 0.92 0.94 0.86 0.88 0.89 0.73 0.75 0.74 0.49 0.52 0.49
Nasdaq δ = 1 0.87 0.90 0.91 0.81 0.85 0.86 0.65 0.70 0.73 0.43 0.47 0.53
Nasdaq δ = 5 0.89 0.93 0.89 0.82 0.88 0.83 0.68 0.75 0.70 0.45 0.51 0.49
Nasdaq δ = 21 0.89 0.93 0.92 0.84 0.88 0.86 0.69 0.75 0.72 0.46 0.50 0.50
Nasdaq δ = 42 0.90 0.92 0.94 0.85 0.88 0.88 0.71 0.75 0.73 0.48 0.52 0.48
Nasdaq δ = 63 0.90 0.92 0.94 0.86 0.88 0.88 0.72 0.75 0.74 0.49 0.51 0.49
FTSE δ = 1 0.86 0.88 0.89 0.79 0.82 0.82 0.63 0.68 0.68 0.42 0.47 0.52
FTSE δ = 5 0.88 0.89 0.92 0.82 0.83 0.87 0.65 0.71 0.73 0.43 0.49 0.51
FTSE δ = 21 0.90 0.91 0.93 0.84 0.86 0.86 0.68 0.72 0.74 0.46 0.49 0.51
FTSE δ = 42 0.90 0.92 0.94 0.85 0.86 0.88 0.69 0.72 0.75 0.47 0.50 0.50
FTSE δ = 63 0.91 0.91 0.94 0.85 0.86 0.88 0.70 0.72 0.76 0.48 0.50 0.50
DAX δ = 1 0.88 0.89 0.91 0.83 0.83 0.87 0.66 0.71 0.73 0.45 0.50 0.50
DAX δ = 5 0.89 0.90 0.94 0.84 0.85 0.89 0.68 0.73 0.75 0.47 0.51 0.49
DAX δ = 21 0.90 0.91 0.94 0.86 0.86 0.90 0.69 0.73 0.76 0.49 0.50 0.50
DAX δ = 42 0.91 0.91 0.94 0.86 0.87 0.91 0.70 0.73 0.77 0.49 0.50 0.50
DAX δ = 63 0.91 0.91 0.94 0.87 0.87 0.92 0.71 0.73 0.78 0.50 0.50 0.50
Stox δ = 1 0.87 0.89 0.91 0.82 0.84 0.83 0.65 0.70 0.70 0.43 0.49 0.51
Stox δ = 5 0.89 0.91 0.92 0.84 0.86 0.85 0.67 0.71 0.71 0.45 0.50 0.50
Stox δ = 21 0.90 0.92 0.92 0.85 0.87 0.87 0.69 0.73 0.72 0.48 0.51 0.49
Stox δ = 42 0.91 0.92 0.94 0.86 0.88 0.88 0.70 0.73 0.73 0.49 0.51 0.49
Stox δ = 63 0.91 0.92 0.94 0.87 0.87 0.88 0.71 0.73 0.74 0.50 0.50 0.50

Table 9: Proportions of realized volatility samples included in estimated con�dence intervals.

5 Conclusion

This work introduces a method for constructing an estimator function for the RPDV model, speci�cally
designed for volatility forecasting within the theoretical framework of Bayesian decision theory. The estimator
function, denoted as Θ, is implemented as a neural network that takes a historical matrix of price and realized
volatility data as input. It then returns a θ-vector containing the parameters and state variables de�ning a
Markovian approximation of the RPDV model at a speci�c time instant. Notably, it has been demonstrated
that under certain conditions, Θ behaves asymptotically as a Bayesian estimator aligned with the volatility
prediction objective outlined in section 2. Consequently, the outputs of Θ o�er estimations of the optimal
θ-vectors tailored to the speci�ed forecasting goal.

Section 4 presents a comprehensive evaluation of the practical e�ectiveness of the estimator function Θ

using both synthetic and market data. The evaluation on synthetic data demonstrates that the estimated
θ-vectors by Θ yield volatility distribution estimates that closely align with the real distributions at di�erent
time horizons. These results highlight the e�cacy of the proposed estimation method within the analytical
framework, where the estimation data are noise-free and generated from the model being estimated. The
evaluation using market data, spanning 22 years of data from 5 stock indices, provided insights under less
favorable conditions. The results showed a generally positive outcome, although with more mixed �ndings
compared to the tests conducted on synthetic data. Notably, the model's performance as a volatility forecaster
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varied depending on the chosen time horizon. For the 1 trading day volatility forecast, the model exhibited
lower performance compared to benchmark forecasters such as AR and RSFV. However, for a 1-week horizon
(5 trading days), the model's performance became comparable to, or even slightly better than, the benchmark
models. Moreover, the model consistently outperformed other models for longer horizons of 1 month or more,
including the HAR and RSFV models that are known for their e�ectiveness in volatility prediction over longer
timeframes.

The hypothesis put forward to explain the di�erential performance based on the considered time horizon is that
Θ is trained solely on synthetic data with a constant observation time step, while the observation frequency
varies for empirical data. This discrepancy could introduce a bias in the prediction of state variables, which
diminishes as the prediction time horizon decreases. To address this limitation, one potential approach is to
incorporate a combination of synthetic and real data in the training of Θ. By including real data with varying
observation frequencies, the model can better adapt to the characteristics of empirical data. Additionally,
introducing noise or biases in the training data can enhance the robustness of the θ-vector estimation and help
reduce potential biases. These alternative approaches provide potential avenues for improving the estimation
framework presented in this article, which already demonstrates promising results, particularly in utilizing
RPDV as a volatility predictor for medium to long horizons.
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Appendix A Approximation of the RPDV model

A.1 Stochastic di�erential equations for Markovian approximation of the RPDV

model

We aim to solve the following SDE:

dR1,i,t = γi

(
dPt
Pt
− (κ1R1,t + R1,i,t) dt

)
,

To consider the dynamics of R1,i,t, we set g (R1,i,t, t) = eγitR1,i,t and apply the Itô lemma:

de−γitR1,i,t = γie
γitR1,i,tdt+ eγitdR1,i,t = γie

γit

(
dPt
Pt
− κ1R1,tdt

)
.

Consequently:

R1,i,t = R1,i,0e
−γit + γi

∫ t

0

e−γi(t−u)

(
dPu
Pu
− κ1R1,udu

)
.

Thus:

n∑
i=1

w1,iR1,i,t = R1,t =

n∑
i=1

γiw1,ie
−γ1,itR1,i,0 +

∫ t

0

n∑
i=1

γiw1,ie
−γ1,i(t−u)

︸ ︷︷ ︸
K̃1(t−u)

(
dPu
Pu
− κ1R1,udu

)
,

If follows that

lim
t→+∞

R1,t =

∫ t

0

K̂(t− u)

(
dPu
Pu
− κ1R1,udu

)
.

Analogously, with

dR2,i,t =
(
(σt)

2 − κ2R2,t − γiR2,i,t

)
dt,

by applying same steps, we obtain:

n∑
i=1

w2,iR2,i,t = R2,t =

n∑
i=1

γiw2,ie
−γ2,itR2,i,0 +

∫ t

0

n∑
i=1

w2,ie
−γ2,i(t−u)

(
(σu)2 − κ2R2,t

)
du.

and therefore

lim
t→+∞

R2,t =

∫ t

0

K̂(t− u)
(

(σu)2 − κ2R2,t

)
du.

A.2 Approximation of the power law kernel

In the original article (Parent 2022), it is shown that vectors Wj and Λj can be determined using the work of
Abi Jaber (2019) based on the expression of the kernel Kj(τj) = τ−αj as the Laplace transform of a positive
measure. However, this method has several drawbacks. The �rst is that the convergence between Kj and K̂j
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is relatively slow with respect to n, the number of exponential kernels that make up K̂j . Consequently, when
n is small (n ≤ 10), there exists kernels of the same form (and with the same n) that better approximate the
power kernel in the L2 sense . Furthermore, the discount coe�cients obtained through this method depend
on α. While this is not inherently a problem, it complexify the estimation problem in practice. For these
reasons, an alternative approximation of Kj is used here, in which the discount coe�cients are constant (they
do not depend on αj) and only the weight vector Wj vary.

In order to �x Λj , we start to remark that the inverse of the discount coe�cients γj,i corresponds to the
duration of (Rj,t)i. Based on that, we start by de�ning the shortest and longest durations as τ− = γ−1

j,1 and
τ+ = γ−1

j,n, respectively. In this case, we set τ− = 1
10000 and τ+ = 1000 expressed in years. Subsequently,

we perform a uniform logarithmic discretization between these two bounds to determine the values of the
remaining n− 2 discounting coe�cients (γj,i)2≤i≤n−1, as follows:

γj,i = exp

(
log(τ−) +

log(τ+)− log(t−)

n− 1
(i− 1)

)−1

.

The idea is to have a set of exponential kernels with durations distributed in such a way as to be able to well
approximate any power law kernel K(τ) = τ−α with α ∈]0 : 1[. With the value of Λj �xed, we then solve the
following least-square problem:

arg min
Wj≥0n

∥∥yj −AjWj

∥∥2

with 0n a n-dimensional vector of zeros,

Aj =


γj,1e

−γj,1τ1 ... γne
−γj,nτ1

...
. . .

...
γj,1e

−γj,1NτN ... γne
−γj,nτN

 , yj =

 τ1−α...
τN
−α

 .
In order to evaluate the quality of the approximation obtained by this method, we will compare it with the
method proposed by Abi Jaber (2019), using n = 10 in both cases. Accordingly, we compute the L1 and
L2 norms of the di�erence over the time interval [ 1

10000 : 10] between power-law kernels and their associated
approximations using each of these 2 methods. Table 10 reports the results obtained.

α 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1∥∥K̂1 −K
∥∥
L1(T )

2.443 1.475 0.873 0.586 0.518 0.489 0.563 0.844 1.604∥∥K̂2 −K
∥∥
L1(T )

0.016 0.026 0.041 0.065 0.107 0.188 0.355 0.449 0.970∥∥K̂1 −K
∥∥
L2(T )

0.618 0.22 0.105 0.218 1.391 9.51 65.5 436.14 2809.4∥∥K̂2 −K
∥∥
L2(T )

0.0004 0.004 0.033 0.228 1.412 8.11 43.8 66.51 470.8

Table 10: Comparison of two power-law kernel approximation methods based on L1 and L2 norms evaluated
over the time interval [ 1

10000 : 10]. K̂1 is the approximation method introduced by Abi Jaber, while K̂2 uses
the method proposed in this section.

Based on the metrics considered, the method proposed here generally provides a better approximation of the
power-law kernel than Abi Jaber's method for most of the considered α values. If we focus on the L1 norm
criterion, this method produces systematically a better approximation for all the considered α values. When
we consider the L2 norm criterion, Abi Jaber's approximation outperforms the method introduced in the
present section for the cases where α is equal to 0.5 and 0.6. However, even in these two cases, the di�erence
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in performance is very small.

Figure 10: Examples of approximations of two power-law kernels using 2 di�erent approximation methods.
Kernel K̂1 is obtained using the Abi Jaber approximation, while kernel K̂2 is obtained using the approximation
described in this section.

Appendix B Parameters of the log-normal approximation

to the conditional volatility distribution

We want to express m and s in terms of E
[
σT+δ|θT

]
and Var

[
σT+δ|θT

]
given:

E
[
σT+δ|θT

]
= em+ s2

2 , Var
[
σT+δ|θT

]
=
(
es2 − 1

)
e2m+s2 .

It is clear that the �rst equation can be rewrite as

m = log
(
E
[
σT+δ|θT

])
− s2

2
.

Injecting this result in the second equation, we obtain:

Var
[
σT+δ|θT

]
=
(
es2 − 1

)
e2log(E[σT+δ|θT ])

Var
[
σT+δ|θT

]
=
(
es2 − 1

)
E
[
σT+δ|θT

]2
s2 = log

(
Var [σT+δ | θT ]

E [σT+δ | θT ]
2 + 1

)

Therefore,

m = log
(
E
[
σT+δ|θT

])
− 0.5 log

(
Var [σT+δ | θT ]

E [σT+δ | θT ]
2 + 1

)
.
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Appendix C Proofs of convergence results

C.1 Convergence of the calibration procedure of the function M

Proposition 1 Let be θ
(1)
T , ..., θ

(n1)
T a sequence of i.i.d. random variable following π, and

{
M̄

(1)
T+δk

}
1≤j≤p

, ...,{
M̄

(n1)
T+δk

}
1≤j≤p

a sequence of sets such as ∀ i, k, M̄ (i)
T+δk

is an unbiased estimator of M
(
θ

(i)
T , δk

)
calculated

from a sample of size n2. If it exists M?, such as M? (θT , δk) = M (θT , δk) , ∀ θT : π (θT ) 6= 0 and

δk ∈ {δ1, ..., δp}, thus ∀ M̂? solution to

arg min
M

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ

(i)
T , δk

)
− M̄ (i)

T+δk

∥∥∥2

2
,

M̂? (θ, δk) = M (θT , δk) ,∀ θT : π (θT ) 6= 0 and δk ∈ {δ1, ..., δp}.

Proof of proposition 1. The density being by de�nition positive or zero, we have the following inequality:∫
R2n+9

(
min
M

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2

2

)
dπ(θT ) ≤ min

M

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2

2
dπ(θT ).

In addition, ∀ M ∈ R2, M is the unique solution to

arg min
M̂

∥∥M− M̂
∥∥2

2
.

It follows that if it exists M? such as M?(θT , δk) = M(θT , δk), ∀ θ : π (θT ) 6= 0, and δk ∈ {δ1, ..., δp}, thus
∀ M̂? solution to

arg min
M

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2

2
dπ(θ),

M̂?(θT , δk) = M(θT , δk), ∀ θ : π (θ) 6= 0. Moreover, because M̄ (i)
T+δk

is an unbiased estimator of M
(
θ

(i)
T , δk

)
calculated from a sample of size n2

8 :

lim
n2→+∞

M̄
(i)
T+δk

= M
(
θ

(i)
T , δk

)
.

Similarly, by the law the of large numbers

lim
n1→+∞
n2→+∞

1

n1

n1∑
i=1

p∑
k=1

∥∥∥M(
θ

(i)
T , δk

)
− M̄ (i)

T+δk

∥∥∥2

2
=

∫
R2n+9

p∑
k=1

∥∥M (θT , δk)−M (θT , δk)
∥∥2

2
dπ(θT ).

Therefore, using previous results, under the existence condition ofM?, ∀ M̂? solution to

arg min
M

lim
n1→+∞
n2→+∞

1

n1

n1∑
i=1

p∑
k=1

(
M
(
θ

(i)
T , δk

)
− M̄ (i)

T+δk

)2

,

M̂? (θT , δk) = M (θT , δk) ,∀ θT : π (θT ) 6= 0 and δk ∈ {δ1, ..., δp}. QED.

8We assume here that, ∀ θT : π (θT ) 6= 0 and [0 : δp], σT+δk has �nite variance.
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C.2 Convergence of the calibration procedure of the estimator function Θ

Proposition 2 Let θ
(1,1)
t0 , ..., θ

(n1,1)
t0 be a sequence of i.i.d. random variables following π, D(1), ...,D(n1)

a set of time-series such that D(i) is generated from the M-RPDV associated with the θ-vector θ
(i)
t0 , and

θ
(1,2)
T , ..., θ

(n1,2)
T the set of values taken by θ at time tN for each time series D(i). If there exists Θ? such that

for all D : Pπ(D) 6= 0, Θ?(D) is a Bayes estimator of θT under the posterior measure π, then for any Θ̂?

solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ

(i)
T ,Θ

(
D(i)

))
,

Θ̂?(D) is a Bayes estimator of θT under the posterior measure πD,∀ D : Pπ(D) 6= 0.

Proof of proposition 2. The expectation of the cost under the prior measure π is de�ned by:

Eπ

[
L
(
θT ,Θ (D)

)]
=

∫
R
N×2
+

EπD

[
L
(
θT ,Θ (D)

)]
dPπ(D).

Using this expression, and given density being by de�nition positive or zero, we have the following inequality:∫
R
N×2
+

(
min

Θ
EπD

[
L
(
θT ,Θ (D)

)] )
dPπ(D) ≤ min

Θ
Eπ

[
L
(
θT ,Θ (D)

)]
.

It follows that if it exists Θ? such as ∀ D : Pπ(D) 6= 0, Θ?(D) is a Bayes estimator of θT under the posterior
measure πD, if Θ̂ is solution to

min
Θ

Eπ

[
L
(
θT ,Θ

(
D
)]
,

Θ̂(D) is a Bayes estimator of θ under the posterior measure πD, ∀ D : Pπ(D) 6= 0.

In addition, if D(1), ...,D(n) is a set of i.i.d. of time-series such as D(i) ∼ Pπ, by the law of large numbers

lim
n3→+∞

1

n1

n1∑
i=1

L

(
θ

(i)
T ,Θ

(
D(i)

))
= Eπ

[
L
(
θT ,Θ (D)

)]
.

Combining the above propositions, if there exists Θ? such that for all D : Pπ(D) 6= 0, Θ?(D) is a Bayes
estimator of θT under the posterior measure π, then for any Θ̂? solution to the optimization problem

arg min
Θ

lim
n1→+∞

1

n1

n1∑
i=1

L

(
θ

(i)
T ,Θ

(
D(i)

))
,

Θ̂?(D) is a Bayes estimator of θT under the posterior measure πD, ∀ D : Pπ(D) 6= 0. QED.
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Appendix D Annex results

D.1 Value of the integral of K̂ over R+

We compute the integral of K̂ over R+:∫ ∞
0

K̂(u)du =

∫ ∞
0

n∑
i=1

wiγie
−γi(t−u)du

=

n∑
i=1

[
wie
−γi(t−u)

]∞
0

=

n∑
i=1

wi.

D.2 Standard deviation of a BSS process

The avriance of an integral of the form
∫∞

0
K̂(u)dWu can be computed as follows:

Var

(
n∑
i=1

∫ ∞
0

wiγie
−γiudWu

)
=

∫ ∞
0

(
n∑
i=1

wiγie
−γi(t−u)

)2

du

=

∫ ∞
0

n∑
i=1

n∑
j=1

wiwjγiγje
−(γi+γj)(t−u)du

=

n∑
i=1

n∑
j=1

wiwjγiγj
γi + γj

.

It follows that:

Std

(
n∑
i=1

∫ ∞
0

wiγie
−γiudWu

)
=

√√√√ n∑
i=1

n∑
j=1

wiwjγiγj
γi + γj

e−(γi+γj).

D.3 The variance of the volatility process

The variance of the volatility process is equal to:

Var (σT+δ) = Var
(
β0 + β1R1,T+δ + β2

√
R2,T+δ

)
= (β1)2Var (R1,T+δ) + (β2)2Var

(√
R2,T+δ

)
+ 2β1β2ρT+δ

√
Var (R1,T+δ) Var

(√
R2,T+δ

)
.
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