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ABSTRACT

The Average Oracle, a simple and very fast covariance filtering method, is shown to yield superior
Sharpe ratios than the current state-of-the-art (and complex) methods, Dynamic Conditional Covari-
ance coupled to Non-Linear Shrinkage (DCC+NLS). We pit all the known variants of DCC+NLS
(quadratic shrinkage, gross-leverage or turnover limitations, and factor-augmented NLS) against
the Average Oracle in large-scale randomized experiments. We find generically that while some
variants of DCC+NLS sometimes yield the lowest average realized volatility, albeit with a small
improvement, their excessive gross leverage and investment concentration, and their 10-time larger
turnover contribute to smaller average portfolio returns, which mechanically result in smaller realized
Sharpe ratios than the Average Oracle. We also provide simple analytical arguments about the origin
of the advantage of the Average Oracle over NLS in a changing world.

Keywords Covariance filtering, portfolio optimization, Average Oracle, Non-linear Shrinkage, Dynamical Conditional
Covariance

1 Introduction

Portfolio optimization is a problem of fundamental importance. It rests on determining and exploiting the dependency
structure between asset price returns, some encoded in the covariance matrix in a first approximation. The main
objective of portfolio optimization is to minimize the volatility while enhancing returns, thereby improving the Sharpe
Ratio. Given the inherent difficulty in predicting returns, the emphasis is often placed on effectively minimizing
variance, highlighting the essential role of a reliable covariance matrix estimation. Focusing on reducing variance while
monitoring other metrics such as realized profit, Sharpe Ratio, turnover, portfolio concentrations, and gross leverage
is therefore crucial for mitigating the exposure to other sources of risk. In this context, a proper estimation of the
covariance matrix turns out to be quite a challenging task. Recent progresses in covariance matrix filtering are nothing
but remarkable (Bun et al., 2017), culminating in the current state-of-the-art Dynamic Conditional Covariance coupled
with Non-Linear Shrinkage (DCC+NLS) (Engle et al., 2019). While the DCC part takes care of the dynamics, NLS
proposes a target matrix that is much less noisy than a direct estimation. It rests on a series of results that show how to
replace the eigenvalues of a covariance matrix with filtered ones to minimize the distance between the NLS-estimated
matrix and the true one. Various extensions and refinements of these methods have been proposed to improve some
aspects of the original DCC+NLS method (Ledoit and Wolf, 2022a,b).

Yet, DCC+NLS rests on strong assumptions. NLS, in particular, applies if the long-term true covariance matrix is
constant, while the DCC part takes care of temporal variations. Although this seems the ideal combination, an alternative
approach consists of accounting only for the average unconditional shift in the covariances among consecutive time
periods, which is the basic idea behind the filtering method known as the Average Oracle (AO hereafter) (Bongiorno
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et al., 2022): it uses a fixed set of eigenvalues independent from the input and calibrated on an outdated dataset. Whereas
this method seems to stand little chance against the sophistication of DCC+NLS, we show here that it consistently
yields better portfolios than DCC+NLS, despite being orders of magnitude faster and simpler to implement. This
raises substantial questions about the efficiency of complex methods in real scenarios and underscores the challenge of
determining which information is relevant and preserved over time.

We compare various covariance filtering methods with randomized asset universes. A common approach consists in
building portfolios with an investment universe made of the n stocks with the largest capitalization either at the time of
writing or historically, and a single portfolio is computed at a given time, leading to a single set of performance metrics.
We believe that this approach can be improved in several respects: high-capitalization stocks at a given date have, on
average, outperformed during the past; second, having a single number for each metric does not allow us to measure
confidence intervals without introducing assumptions such as normality or time invariance, both of them known to be
false in real financial markets. To overcome these issues, we propose working with a universe composed of the top
N ≫ 1 capitalized stocks and then randomly sampling n ≪ N to build an investment universe. In addition, the universe
of N stocks must be selected at the start of the investment period, using only the information available at the time. If
the capitalization of some of the stocks changes dramatically, such stocks should be sold. Since n ≪ N , computations
can be carried out over many realizations, and the confidence intervals can be determined in a non-parametric way via
bootstraps.

Our final contribution is to propose a simple covariance evolution framework that assumes that the true covariance
matrix may change only at the end of each calibration period. This makes it easy to compare AO with NLS in a
changing world and highlighs the fact that what matters are not only the eigenvalues but also the fact that they are
weighted by the average eigenvector overlap between two successive covariance matrices. When the typical rotation
between two such matrices is larger than the random rotation due to estimation noise, and provided that the eigenvalues
do not change too much, AO beats NLS.

2 Methods

2.1 Universe construction

To carry out our analysis, we outline here our data selection approach which is carefully crafted to mirror, as closely as
possible, the actual way in which data selection is executed in real life, thus minimizing all possible selection biases.

Consider day t an in-sample window [t − ∆tin, t] and an out-of-sample window ]t, t + ∆tout]. The selection of
available assets will be the top N most capitalized stocks of the US market on the day t such that all the stocks are
listed in [t−∆tin, t+∆tout]; using the fact that the chosen assets are listed in the future involves a limited amount of
foresightedness. In addition, we ask that the selected assets have less than 20% zero or missing returns in [t−∆tin, t],
and that any pair of assets should have a Pearson correlation coefficient smaller than 0.95 De Nard et al. (2021).

2.2 Covariance filtering methods

The following list enumerates all the covariance estimation methods tested in this paper.

1. NotFilt1200 Sample covariance with ∆tin = 1200.
2. NotFilt240 Sample covariance with ∆tin = 240.
3. DCC-QIS with quadratic shrinkage (Ledoit and Wolf, 2022a).
4. DCC-QuEST DCC with the nonlinear shrinkage based on the QuEST function (Engle et al., 2019).
5. 1AFM-DCC-QuEST DCC with the nonlinear shrinkage based on the QuEST function with a factor taken

from the Fama and French (De Nard et al., 2021).
6. 1AFM-DCC-QIS DCC with quadratic shrinkage with a factor taken from the Fama and French (De Nard

et al., 2021).
7. NLS1200 nonlinear shrinkage based on the QuEST function with ∆tin = 1200 (Ledoit and Wolf, 2017).
8. QIS1200 quadratic shrinkage with ∆tin = 1200 Ledoit and Wolf (2022b).
9. QuEST240 nonlinear shrinkage based on the QuEST function with ∆tin = 240 (Ledoit and Wolf, 2017).

10. QIS240 quadratic shrinkage with ∆tin = 240 Ledoit and Wolf (2022b).
11. AO1200 Average Oracle eigenvalues computed in the 1900-2000 period with ∆tin = 1200 (Bongiorno et al.,

2022).
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12. AO240 Average Oracle eigenvalues calibrated in the 1900-2000 period with ∆tin = 240 (Bongiorno et al.,
2022).

DCC, NLS, and QIS were run with the original MatLab implementation available (Ledoit, 2022).

3 Empirical Analysis

3.1 Randomized experiments

According to Engle et al. (2019), DCC performs better for ∆tin = 1200 days; therefore, we use this calibration window.
In this experiment, we fixed n = 100 assets randomly sampled from the top N = 500 stocks per capitalization at time t
as described in Sec. 2.1. We tested both ∆tout = 5 and 20. We performed a near yearly rebalancing of 240 days, which
consists of 48 rebalancing for the ∆tout = 5 and 12 rebalancing for ∆tout = 20. At each rebalancing, if some stocks
of the portfolio exit the universe N of the top 500 capitalized stocks, such stocks will be sold and substituted with a
random selection from the universe N defined on the current day. The initial day t is selected randomly in the range
[2000-01-03,2021-01-20], which includes the 2008-2009 and 2020 COVID crises.

To measure the respective performance of all the above methods, we set the transaction cost to 5 bps, which is considered
a low transaction cost (Ledoit and Wolf, 2022a); larger transactions would increase the advantage of AO over DCCs.
Transaction costs are paid only at each rebalancing and also account for the stock price drift in the portfolio.

We performed 10, 000 simulations by randomly sampling t and the initial set of stocks n available at time t. Tables 1
and 2 report performance metrics of long-short portfolios, for weekly (∆t = 5 days) and monthly ( ∆t =20 days)
rebalancing. First, there is no significant difference between QIS and QuEST-based methods for any performance
measure; for this reason, we refer to them as DCC-QIS/QuEST. DCC-QIS/QuEST and AO240 achieve the smallest
realized volatility, which is not statistically different even after 10,000 simulations. We note that 240 timesteps
correspond to the timescale fitted by the DCC process. In other words, the complex machinery of DCC+NLS models
the covariance matrix at a similar timescale as AO240. What is still remarkable is that AO240, despite its simplicity,
leads to the same result. We also note that AO1200 has only marginally higher volatility (approximately 7%).

There are large differences, however, in three key portfolio metrics. First, the Sharpe ratio of A01200 is 14%
(∆tout = 20) and 37% (∆tout = 5) larger than that of DCC-QIS/QuEST, which is a large and significant difference.
Interestingly, QIS/QuEST1200 has a systematically higher SR than their respective DCC versions (yet smaller than
those of AO). In passing, even an unfiltered covariance matrix with 1200 days of calibration yields a larger Sharpe
ratio, which is consistent with the well-known fact that when the number of ∆tin is larger than about 10n, covariance
filtering is not needed.

Even more, the largest difference between AO and DCC-QIS/QuEST resides in the turnover. We report two kinds of
turnover metrics: one defined by the change of weights between two rebalancing times prescribed by a given method,
and one which includes, in addition, the change of asset prices, hence, weights, during the holding periods (denoted by
Turnover+drift in all the tables). , which is 12-19 times larger for the latter. This comes from two main differences.
First, the gross leverage is approximately 45% larger for DCC-QIS/QuEST than AO1200. Second, the diversification of
the portfolio from AO is almost twice that of DCC-QIS/QuEST.

The 1AFM improves a little bit the performance of DCC-QIS/QuEST because it gives more stable portfolios, but at the
cost of even larger gross leverage.

In summary, from the observations above, it seems that the DCC methods fail to give reliable (stable enough) estimates
of the future covariance matrix and thus overbet on very concentrated portfolios that, unfortunately, change very
quickly without capturing the relevant information, leading to poorer Sharpe ratios, higher gross-leverage, and low
diversification.

3.2 Large Portfolios

Engle et al. (2019) suggest that the DCC+NLS method performs better for large n. However, randomized experiments
with n = 1000 would require a much larger stock universe (say, N = 10, 000). But this is problematic for two
additional reasons: first, DCC and NLS are very slow when n is large; second, assets with a small capitalization are not
traded every day, which sometimes prevents a proper calibration of GARCH models.

Therefore, we test a more standard approach. We performed two simulations with ∆tout = 5 using only the top
n = 1000 most capitalized stocks at each rebalancing time. Likewise, in the previous case, if a stock exits the top
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SR MEAN VOL Turnover Turnover+drift GrossLev Neff

NotFilt1200 1.101 0.098 0.113 0.174 0.250 2.765 6.368
NotFilt240 0.745 0.071 0.125 0.974 1.050 4.151 3.290
AO1200 1.229* 0.112* 0.114 0.068* 0.119* 1.702* 13.981*
AO240 1.167 0.095 0.105* 0.181 0.22 1.729 13.213
DCC-QIS 0.894 0.069 0.105* 1.308 1.335 2.543 5.856
DCC-QuEST 0.895 0.069 0.105* 1.307 1.333 2.542 5.852
QIS1200 1.123 0.098 0.112 0.150 0.221 2.536 7.931
QIS240 1.022 0.083 0.108 0.427 0.480 2.538 9.675
QuEST1200 1.122 0.098 0.112 0.156 0.226 2.531 7.992
QuEST240 1.027 0.084 0.108 0.402 0.456 2.512 10.011
DCC-QIS-1F 1.071 0.089 0.108 0.807 0.846 2.615 6.089
DCC-QuEST-1F 1.073 0.089 0.108 0.803 0.843 2.612 6.096

Table 1: ∆tout = 5, n = 100, average of 10, 000 simulations. GMV with long and short positions. All the values not
statistically distinct from the best value according to a bootstrap confidence interval at 95% are marked in bold.

SR MEAN VOL Turnover Turnover+drift GrossLev Neff

NotFilt1200 1.111 0.101 0.116 0.414 0.639 2.763 6.376
NotFilt240 0.811 0.079 0.13 2.008 2.197 4.158 3.305
AO1200 1.230* 0.113* 0.117 0.173* 0.326* 1.705* 13.921*
AO240 1.156 0.095 0.109* 0.422 0.540 1.733 13.218
DCC-QIS 1.07 0.088 0.110* 2.082 2.117 2.544 5.962
DCC-QuEST 1.07 0.088 0.110* 2.080 2.115 2.543 5.958
QIS1200 1.132 0.101 0.115 0.358 0.569 2.535 7.938
QIS240 1.039 0.086 0.112 0.891 1.040 2.545 9.718
QuEST1200 1.132 0.101 0.115 0.358 0.568 2.531 8.000
QuEST240 1.043 0.086 0.112 0.833 0.985 2.519 10.058
DCC-QIS-1F 1.152 0.099 0.112 1.279 1.389 2.624 6.085
DCC-QuEST-1F 1.153 0.100 0.112 1.275 1.385 2.622 6.091

Table 2: ∆tout = 20, n = 100, randomized asset universe, average of 10, 000 simulations. GMV with long and short
positions. All the values not statistically distinct from the best value according to a bootstrap confidence interval at 95%
are marked in bold.

SR MEAN VOL Turnover Turnover+drift Neff

NotFilt1200 1.134 0.108 0.124 0.044 0.07 10.362
NotFilt240 1.072 0.092 0.116 0.149 0.169 9.294
AO1200 1.187* 0.114* 0.125 0.037* 0.064* 16.676*
AO240 1.122 0.098 0.116 0.106 0.127 15.528
DCC-QIS 1.041 0.084 0.110* 0.597 0.605 8.029
DCC-QuEST 1.040 0.084 0.110 0.597 0.606 7.995
QIS1200 1.133 0.107 0.124 0.043 0.069 11.694
QuEST1200 1.133 0.107 0.124 0.044 0.07 11.728
QIS240 1.079 0.093 0.116 0.126 0.146 14.719
QuEST240 1.076 0.093 0.116 0.127 0.148 14.588
DCC-QIS-1F 1.094 0.100 0.121 0.306 0.32 8.570
DCC-QuEST-1F 1.094 0.100 0.121 0.306 0.321 8.566
EQ 0.802 0.092 0.182 0.008 0.054 100.

Table 3: ∆tout = 5, n = 100, randomized asset universe, average of 10, 000 simulations. GMV with long-only
positions.
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SR MEAN VOL Turnover Turnover+drift Neff

NotFilt1200 1.124 0.108 0.127 0.115 0.197 10.346
NotFilt240 1.038 0.09 0.12 0.344 0.399 9.322
AO1200 1.177* 0.114* 0.127 0.097* 0.182* 16.611*
AO240 1.095 0.096 0.12 0.253 0.317 15.535
DCC-QIS 1.074 0.091 0.116* 0.926 0.931 8.130
DCC-QuEST 1.073 0.091 0.116* 0.927 0.932 8.096
QIS1200 1.122 0.107 0.126 0.111 0.194 11.679
QuEST1200 1.122 0.107 0.126 0.112 0.194 11.714
QIS240 1.049 0.090 0.120 0.289 0.350 14.773
QuEST240 1.046 0.090 0.120 0.288 0.349 14.646
DCC-QIS-1F 1.103 0.102 0.124 0.469 0.513 8.582
DCC-QuEST-1F 1.102 0.102 0.124 0.469 0.513 8.577
EQ 0.793 0.089 0.183 0.0288 0.156 100

Table 4: ∆tout = 20, n = 100, randomized asset universe, average of 10, 000 simulations. GMV with long-only
positions.
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Figure 1: Large portfolio case: n = 1000. Left plot: long-short portfolios, right plot: long-only portfolios. Portfolio
rebalancing every week.

n = 1000 most capitalized universe, it is replaced by a new suitable asset. The simulations start on 2000-01-03 and end
on 2021-12-30.

Figure 1 reports the results of these experiments. While the superiority of AO in this setting is visually obvious,
particularly regarding long-short portfolios, Tables 2 and 6 give a more detailed breakdown: for long-short portfolios,
AO has a much better Sharpe ratio than QIS, DCC-QIS and AFM1-DCC-QIS (107%, 121.9%, and respectively). This
comes both from larger average returns and smaller realized volatility. In addition, as in the random universe experiment,
the turnover of AO is approximately smaller by a factor of at least 10 than all the other methods, while having about
half the gross leverage. Finally, the effective number of assets of AO is more than 20 times larger than those of the other
methods.

SR MEAN VOL Turnover Turnover+drift GrossLev Neff

NotFilt1200 -0.6 -0.097 0.162 7.235 7.282 17.562 2.013
AO1200 1.009* 0.093* 0.093 0.210 0.242 2.961* 46.147
QIS 0.689 0.063 0.092 0.729 0.761 4.859 29.179
DCC-QIS 0.484 0.041 0.084* 2.238 2.243 3.823 12.957
AFM1-DCC-QIS 0.37 0.032 0.088 2.558 2.572 6.375 11.452
AFM1-DCC-QIS-turn 0.812 0.072 0.089 0.433 0.279 6.408 11.704
DCC-QIS-turn 0.972 0.078 0.080 0.405 0.296 4.800 10.851
QIS-turn 0.804 0.074 0.092 0.354 0.294 4.809 29.575
DCC-QIS-gross 0.528 0.044 0.083 1.929 1.933 2.862 13.494
AFM1-DCC-QIS-gross 0.556 0.048 0.087 1.585 1.591 2.961 14.199
QIS-gross 0.752 0.07 0.092 0.416 0.438 2.961 37.43

Table 5: Large long-short portfolio case (n = 1000), single realization [2000-2021], the asterisk marks the best
unconstrained method.
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Figure 2: Large portfolio case (n = 1000). Upper plots: long-short portfolios, lower plots: long-only portfolios.
Portfolio rebalancing every week

SR MEAN VOL Turnover Turnover+drift Neff

NotFilt1200 0.772 0.095 0.124 0.117 0.122 18.142
AO1200 0.897* 0.112 0.125 0.083 0.089* 45.559
QIS 0.832 0.103 0.124 0.1 0.105 34.838
DCC-QIS 0.869 0.072 0.083 0.635 0.636 6.765
AFM1-DCC-QIS 0.801 0.093 0.116 0.473 0.474 12.402
AFM1-DCC-QIS-turn 0.777 0.092 0.119 0.1 0.089 14.816
DCC-QIS-turn 0.980 0.094 0.096 0.134 0.123 14.47
QIS-turn 0.826 0.102 0.124 0.087 0.088 34.651

Table 6: Large long-only portfolio case (n = 1000), single realization [2000-2021], the asterisk marks the best
unconstrained method.

The advantage of AO for long-only portfolios (Table 6) is less impressive but still outperforms the other three methods in
all metrics: its Sharpe ratio is significantly larger, once again because of both better average returns and realized volatility
(except for DCC-QIS). AO has the same realized volatility as QIS and not filtered sample covariance (NotFilt1200).
The turnover is also much smaller for AO, and the effective number of assets is much larger than all the other methods.

3.3 Reducing Gross Leverage and Turnover for DCCs

One of the major problems we observed with DCCs is their very large turnover and gross leverage. In the presence of
transaction costs, this problem mechanically reduces the average return. To give all possible chances to DCC+NLS, we
now constrain the DCC methods to have a turnover or gross leverage bounded by those of AO1200 (we can only control
the turnover in the case of long-only portfolios). We accounted for the fact that sometimes stocks exit the top 1000 and
must be sold; accordingly, we only constrain the rebalancing that concerns stocks still in the top 1000 at the time of the
rebalancing.

While the unconstrained AO still beats all the DCC+NLS and NLS methods for long-short portfolios for all metrics
except realized volatility, DCC-QIS, once constrained by AO1200, does bring the best Sharpe ratio, owing to its smaller
realized volatility.

4 Average Oracle vs NLS in a simple dynamical model

The results above raise the question of why the Average Oracle performs better than non-linear shrinkage when the true
covariance matrix is time-dependent. This section is devoted to capture the essence of the difference between what the
Average Oracle computes and the assumptions of the non-linear shrinkage estimator.
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Let us assume that one needs to estimate covariance matrix C between N time series a time window of length T . The
problem with many real-life systems is that the true covariance matrix C evolves as a function of time. Thus, over the
calibration window of length T , the true covariance matrix may not be constant, which complexifies both its estimation
and mathematical computations.

Instead of assuming that C evolves slowly as a function of time as DCC+NLS does, we assume that it changes at fixed
times kT , k ∈ 1, 2, · · ·, which also are opportunistically assumed to correspond to the end of successive estimation
windows. Equivalently, time is split into slices indexed by k and of length T : slice k = [kT, (k + 1)T [. In other words,
we assume that the true correlation matrix C is constant during a time slice and may only switch between S several
possible values at the end of each time slice, possibly in a probabilistic way. This is a great simplification that makes it
possible to derive simple bounds. The S > 1 different covariance matrices are denoted by Cs, s = 1, · · · , S. During
time slice k, the true covariance matrix index is s(k), the former being denoted by Cs(k).

Assume that the current covariance matrix is i = s(k). The spectral decomposition theorem states that Ci = ViΛiVi
†,

where the † symbol denotes the transpose operation, Vi is the eigenvector matrix of Ci, and Λi is the diagonal matrix of
the eigenvalues of matrix i. We will also denote by λi the vector of eigenvalues of Ci.

At end of the current period, the probability transition from true covariance matrix with index i = s(k) to the one with
index j = s(k + 1) is denoted by Wi→j and the stationary frequency of state i Pi =

1
N

∑S
j=1 W

∞
j→i. The eigenvectors

of Cj are given by a rotation of those of Ci: the rotation matrix Rij is defined as Ri→j = VjVi
†, so that Vj = Ri→jVi

and Vi = R−1
i→jVj .

Estimating Ci yields V̂i and Λ̂i, noisy estimates of Vi and Λi. Computing the joint distribution of V̂i and Λ̂i is in general
a hard problem (that can be tackled by sophisticated mathematical methods Bun et al. (2017)).

By definition, the AO eigenvalues will be the average of Oracle eigenvalues computed from the estimated eigenvalues
of Cs(k+1) with the estimated eigenvectors of Cs(k) over all possible pairs of correlation matrices, weighted by the
transition probability, i.e.,

E(ΛAO) =

S∑
ij

E[P̂iŴi→jdiag(V̂ †
i Ĉj V̂i)]. (1)

A welcome simplification comes from the relationship

diag(V̂ †
i Ĉj V̂i) = [(V̂ †

i V̂j)
◦2λ̂j ] = (R̂i→j)

◦2λ̂j

where X ◦ Y is the element-by-element Hadamar product. Bongiorno et al. (2022) finds empirically that

E[(R̂i→j)
◦2λ̂j)] ≃ E[(R̂i→j)

◦2] E[λ̂j ]

to a very high accurancy, that is, that the eigenvector overlap and the eigenvalue estimates are independent. Finally, Eq.
(1) becomes

E(ΛAO) ≃
S∑
ij

E[P̂iŴi→j ]E[(R̂i→j)
◦2] E[λ̂j ], (2)

as the transition process between the true covariance matrices is independent from estimation noises.

AO eigenvalues must be computed over a long calibration interval which should include as many transitions as needed
to have reliable estimates at least of the eigenvalues λj . When this calibration interval is infinitely long,

E(ΛAO) →
S∑
ij

PiWi→jE[(Ri→j)
◦2] λj . (3)

Eqs (2) and (3) make it clear that some cases simplify much the discussion: for example, when all the covariance matrix
have the same eigenvalues, or if the overlap term does not depend on i and j.

The simplest case (and the worst one for NLS) is a world in which Cs(k+1) ̸= Cs(k). For S = 2, s(k) = 1 + k MOD 2,
the world is cyclic and the AO eigenvalues are given by

E(ΛAO) = E

[
(R̂)◦2

λ̂1 + λ̂2

2

]
→ E[(R)◦2] · λ1 + λ2

2
.

7
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On the contrary, NLS only uses information from the last time slice: when the true covariance matrix is Ci during time
slice k, its eigenvalues are given by

Λ̂NLS
i → (V̂ †

i Vi)
◦2λ̂i (4)

in the limit of large n and T at fixed n/T ratio. These eigenvalues minimize the Frobenius distance (average element-
wise squares) ||V̂iΛ

NLS
i V̂ †

i − Ci||2. The magic of NLS is that it gives a closed formula for the eigenvalues that does
not depend on the true matrix. It should be noted that (V̂ †

i Vi)
◦2 corresponds to the overlap matrix between the real

eigenvectors and its estimates. Note as well that λi is a noisier estimate for NLS than for AO in this context because it
is performed over a single time slice.

The point is that the realized covariance matrix is different from Ci in a non-constant world and thus AO incorporates
both the average eigenvalues and the average overlap of the eigenvectors between the calibration and test time windows.
In the simple cyclic word defined above, half of the terms of the AO eigenvalues do account for the future transition:
one has

||V̂1Λ
AOV̂ †

1 − C2||2 = ||V̂1E[(R)◦2]
λ1

2
V̂ †
1 + V1E[(R)◦2]

λ2

2
V̂ †
1 − C2||2 (5)

Now, E[(R)◦2]λ2 are the Oracle eigenvalues when the true covariance matrix is C1 in the estimation time slice and C2

in the test time slice, hence are Frobenius optimal. Rearranging the terms, one has

||V̂1Λ
AOV̂ †

1 − C2||2 = ||1
2

(
V̂1E[(R)◦2]λ1V̂

†
1 − C2

)
+

1

2

(
V̂1E[(R)◦2]λ2V̂

†
1 − C2

)
||2 (6)

≤ ||V̂1E[(R)◦2]λ1V̂
†
1 − C2||2 (7)

Finally

||V̂1E[(R)◦2]λ1V̂
†
1 − C2||2 ≤ ||V̂1E[(V̂ †

i Vi)
◦2]λ1V̂

†
1 − C2||2

as E[(V̂ †
i Vi)

◦2] is a random rotation δ̂R due to eigenvector estimation noise, and does not bring V1 closer to V2 while
E[(R̂)◦2] is the composition of the true rotation from V1 to V2 followed by a random rotation δ̂R′ of the same order of
magnitude as δ̂R. As a consequence

||CAO
1 − C2||2 ≤ ||CNLS

1 − C2||2 (8)

||CAO
2 − C1||2 ≤ ||CNLS

2 − C1||2. (9)

The above result only holds when the true covariance matrix systematically changes at the end of each time slice.
It is easy to generalize it to a cyclic world with S states. When there is a finite probability that the true covariance
matrix stays constant, there are cases when NLS performs better than AO, even in this simplifying context. Finally, the
more generic case where the true covariance matrix may change slightly at each time step is currently out of reach of
analytical methods.

5 Conclusion

Large-scale randomized experiments for mid-size portfolios (100 assets) allowed us to clarify the merits of a whole
range of covariance filtering methods. Whereas the Average Oracle is a somewhat naive and very fast method not derived
from an econometric framework, it still outperforms all the econometric methods tested here on four key portfolio
metrics: Sharpe ratio, turnover, gross leverage, and diversification. DCC-QIS/QuEST yields a small improvement in
realized volatility in a few cases.

The contrast between the simplicity of the Average Oracle and the sophistication of DCC-QIS/QuEST begs to incorporate
ingredients from econometric methods, i.e., to leverage the qualities of both approaches in order to yield even better
covariance filtering tools. This is left for future work.
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