
On-chain optimal aggregation of Uniswap v3 clones

Vincent Danos
CNRS, ENS

Hamza El Khalloufi
University Paris 1 Panthéon-Sorbonne & Mangrove DAO

Leo Murao Watson
University of Toronto

Santiago Valencia
Giry SAS & Mangrove DAO

December 16, 2024

Abstract

In this paper we define a simple and efficient “push-and-solve” algorithm to compute the
best execution or “optimal split” of a market order given a finite set of AMMs. Each AMM
has to be decomposable into basic building blocks which we call price-parametrised AMMs.
This has a practical application to the optimal splitting of orders among Uniswap v3 clones,
as the algorithm is query-optimal (information on sources is queried on a call-by-need basis)
and therefore of low enough complexity to be implemented as a smart contract. We also find
a sufficient condition for AMMs based on price parametrisations to be aggregatable which
is of independent interest as it allows one to build novel AMMs with concentrated liquidity,
families of which can also be optimally executed on-chain.

1 Introduction

Automated market makers (AMMs) occupy a central place in decentralised finance (DeFi) as
the primary means for on-chain trading. An AMM is a two-sided platform where traders (aka
takers) consume the liquidity provided by liquidity providers (LPs) and which operates entirely
on-chain. There exists a wide variety of types of AMMs among which Uniswap v2 and v3 [3, 4]
stand out for their simplicity and their market share. Uniswap v3 improves on v2 by letting LPs
decide in which price range their liquidity is deployed.

The low costs of reproducing DeFi protocols has led to a proliferation of clones and variants
of Uniswap v2 and v3, all competing for the same liquidity. This has resulted in substantial
fragmentation of capital across multiple similar AMMs. In turn, this capital fragmentation has
prompted the emergence of aggregators who aim to consolidate the multiple offerings that takers
face, relieve them of time-consuming searches, and optimise the execution of their market orders.

To name a few: Paraswap, 1inch, Odos.
Some level of re-intermediation seems a necessary evil. However, because of the latency of

an aggregator’s execution planning algorithm and that of the blockchain on which the plan is to
be executed, there must be a discrepancy between the plan and its actual on-chain execution.
What one might call a temporal slippage (not to be confused with slippage understood as market
impact).1 Ideally, aggregation should be executed and planned on-chain. There would be no
latency, no induced slippage, so no loss of value to the intermediary (and as a bonus, a complete
transparency).

1Typically, aggregators unload negative slippage on the taker, and keep a share of the positive one.

1

https://medium.com/odosprotocol/introducing-odos-657fe966a510

This paper offers progress in this direction, with an algorithm for optimal splitting which is
simple enough for an on-chain implementation, and can be effectively used to reduce temporal
slippage.

The optimal splitting problem is as follows:

We are given a finite family F of AMMs defined on the same pair X/Y , and a market
order (say taker wants to buy X with an amount ∆y of Y), and the problem is to
split ∆y among the AMMs in F so as to maximise the total amount of X obtained.

Our algorithm assumes that the AMMs in F use price-parametrised AMMs (PPMs) as building
blocks. (Think of a PPM as a single Uniswap v3 LP position.) Every AMM in F is represented
as a concatenation of such blocks defined on disjoint price intervals.

As we show below, this is a good model of the structure of an AMM of the Uniswap v3
type. Indeed, Uniswap v3 itself can be seen as an on-chain protocol to aggregate optimally
and efficiently its LP positions. It combines cleverly LP positions and keeps a low execution
complexity (which is essentially independent of the number of LP positions).

It follows that our algorithm is suitable for the on-chain aggregation of families of AMMs of
the Uniswap v3 (and v2) type (as the title of the paper indicates). We describe other types of
AMMs with aggregatable LP positions (hitherto undescribed), to which it would apply as well,
but the Uniswap case is by far the most important case.

Efficiency questions Not only is the order splitting algorithm optimal, but it is also query-
optimal in the sense that it only queries the various components of members of F by need. This is
key to obtaining an on-chain implementation with reasonable gas costs. (Taker, by going on-chain,
no longer pays intermediation costs, but instead pays gas ie the the blockchain’s infrastructural
costs.)

Gas questions aside, is using an on-chain optimal splitter worth the bother? There is always
the decentralisation advantage, and the fact that it is all clear what the optimal splitter contract
does. But what about efficiency? We show (§5) that the gain, measured in price impact reduction
when going from a mono-source swap to a multi-source one can be substantial if liquidity is evenly
distributed among the sources.

One should also compare our on-chain optimal splitter with off-chain aggregators. It may be
that in some conditions our on-chain aggregator, despite being limited to the very special case of
optimal splits, can perform better than a general aggregator which can build complex multi-hop
execution plans (Fig. 1) and has vastly more compute power. But also, the on-chain splitter
and off-chain aggregator can work together. Indeed, in whichever market conditions, when the
execution plan computed by the off-chain aggregator contains splits between Uniswap v3 AMM
types as it often does (see Fig. 1 for examples), using the on-chain splitter at execution time will
unconditionally improve the execution of the plan. Hence an optimal splitter should be part of
the execution engine of any off-chain execution planner, at least on chains where the gas costs
are negligible compared to expected gains (such as Arbitrum).

Limitations This paper contains no empirical analysis of how well the optimality advantage
translates in concrete cases, nor does it study the resilience of the on-chain optimal splitter to
price-bending attacks on its sources, such as sandwich attacks.

The algorithm itself also has limitations. If one is serious about applications, popular types
of AMMs such as the Curve ones [19, 20] should be integrated.

Finally, in contexts where gas costs are of the same order of magnitude as potential improve-
ments (small orders with a large number of sources with un-even liquidity distributions), the
gains of optimality may not be worth the additional gas costs.

2

Figure 1: An execution plan computed by the Odos routing algorithm for an ETH-to-USDC swap of 10
ETH on Arbitrum (October 2024). One sees that the Odos aggregator computes a plan which includes
several splits between Uniswap v3 clones.

1.1 Related work

Improving execution performance is, of course, a concern in traditional finance. Ref. [5] empha-
sizes the necessity of order splitting to mitigate the impact of large orders. Refs. [23, 10] extend
this work to multi-venue routing, focusing on optimising execution cost across varied liquidity
profiles.

The structure of AMMs inherently adjust asset prices based on trade sizes. In that respect
it is analogous to some traditional models of price impact, such as those incorporating marginal
supply-demand curves [11, 22, 1]. Because of this response of price to order size, optimised
executions need to split orders across multiple AMMs. Ref. [7] analyses specific class of constant
function AMMs from this point of view. Further, Ref. [14] frames optimal routing and arbitrage as
global convex optimisation problems on arbitrary networks of AMMs. Later, Ref. [8] formulates
optimal routing for trades across multiple AMMs, incorporating multiple tokens as inputs within
a single optimisation framework.

More recently, Ref. [18] presents an efficient algorithm for optimal routing through constant
function market makers using a dual decomposition approach. This comes close to the algorithm
which we propose in this paper. However, our algorithm introduces two important innovations.
First, we generalise beyond CFMMs and handle a broader class of AMMs defined piece-wise
by price parametrisations. This allows us to address more complex and more realistic exchange
mechanisms of the Uniswap v3 type (which we generalise introducing the notion of convenient
price parametrisations). Second, our “push-and-solve” method only queries the parameters of its
sources when it needs them which is crucial for an on-chain implementation.

1.2 Outline

The first part of the paper is dedicated to the notion of price-parameterised AMM (PPM) and
various attached constructions. Notably we define the notion of convenient PPMs which will be
the basis for the model of AMMs which our algorithm targets.

Once this is in place, we turn to a general formulation of the optimal splitting of an order

3

among a family of source AMMs as a best execution problem (Def. 5). When this problem is
convex (which we assume) it falls in the category of so-called resource allocation problems for
which well-known algorithms exist. We then exploit the specific fact that PPMs are parameterised
by price to build an equivalent formulation (Def. 7). This second form suggests a simple “push-
and-solve” algorithm similar to an ascending auction between the various sources which we
present in §4. Finally, §5 discusses the significance of the gains of using an optimal splitter.

2 Price parametrised AMMs

We start with the definition of our main building block the notion of price-parametrised AMM,
PPM for short.

We write R+ for the non-negative reals, and C1([a, b]) for the set of functions f that are
continuously differentiable on (a, b) and such that f and f ′ are continuous on [a, b].

Definition 1 A price-parametrised AMM (PPM for short) is a pair of real-valued functions
(x, y) defined on a closed interval [a, b] with 0 < a < b positive real numbers, such that:

1. x, y are C1([a, b])

2. x is decreasing

3. y is increasing

4. for p ∈ [a, b]:

y′(p) = −px′(p) (1)

The above implies that x > 0 on [a, b) and y > 0 on (a, b].
The functions x and y are called the components of the PPM.
Once says a PPM is normalised if y(a) = x(b) = 0.
See Fig. 2 for a graphical illustration.
The intuition (made precise in §2.2), is that a PPM describes a continuous automated market

maker (AMM) that is to say a deterministic trading rule defined on a pair of assets X/Y where
X is the base asset, and Y is the quote asset. The domain of x and y, namely [a, b], is the price
range within which the AMM is ready to trade. The component functions x and y determine the
size of the AMM’s reserves in X and Y as (bijective) functions of the AMM’s current (marginal)
price p.

The monotonicity conditions amounts to saying that the AMM sells (buys) when the price
goes up (down), as expected from a market-making algorithm. Specifically, in a trade, the
amounts ∆x and ∆y by which the reserves in X and Y change are such that ∆x ≤ 0 iff ∆y ≥ 0
iff ∆p ≥ 0.

The differential condition (1) expresses the fact that for an infinitesimal trade where ∆y, ∆x
are very small, the execution price ∆y/∆x is p (up to sign), which is exactly saying that p is the
marginal price of the asset X counted in units of Y (and therefore of dimension Y/X).

Condition (1) distinguishes (uniquely) the price parametrisation among all possible ones with
the same image in R2

+.
As x is continuous decreasing, and y is continuous increasing it must be that x, y are bijections

with inverse functions (which retrieve the current price from the reserves in X or Y):

x−1 : [x(b), x(a)]→ [a, b]
y−1 : [y(a), y(b)]→ [a, b]

4

Therefore the price is sufficient to describe the state of a PPM.2

Any PPM (xf , yf) has a natural implicit equation for its image (as a subset of R2
+) namely:

Ψ(x, y) = y−1f (y)− x−1f (x) which is increasing in both arguments. The AMM’s trading rule will
be constrained to stay on that invariant. This is a common approach to defining and reasoning
about AMMs invariants [3, 4, 24, 16].

The notion of PPM is asymmetric in that the price is defined as −y′/x′ (and not the inverse).
This means that we think of X as the base asset which one buys (sells), and of Y as the quote
asset which one spends (receives as payment).

There is a symmetry operating on PPMs. Namely, one can precompose f by g(x) = 1/x to
generate another dual PP. Specifically, if (x, y) is a PPM on [a, b], it is easy to see that so is the
pair (y ◦ g, x ◦ g) defined on [1/b, 1/a]. This dual PPM describes the same AMM under the dual
convention that Y is base, X is quote, and accordingly the price is now 1/p of dimension X/Y .

2.1 Examples

Let’s consider two simple examples of normalised PPMs to illustrate the above definition.

2.1.1 The linear case

Define the X-component of fL(a, b, C) as a linear schedule for selling X:

xL(p) = C · (b− p)

Parameters a, b, C can be interpreted as follows:
- a is the minimum price at which one is willing to sell
- b > a is the price at which one wishes to have sold the entire initial inventory xL(a) = C(b−a)
- C has dimension X2Y −1 and is the amount of inventory sold per unit of price

The expression for yL(p) can be derive uniquely from (1) seen as an ODE defining y, namely:
y′(p) = pC. Equation (1) is then true by construction. We get:

yL(p) = C · (p2 − a2)/2

where the integration constant is chosen so that the normalisation condition y(a) = 0 holds.
Fig. 2 plots both components of fL(a, b, x0) with a = 50, b = 150.
This PPM is normalised. As xL(a) = C(b− a), we have yL(b)/xL(a) = (a+ b)/2. This means

that the execution price for buying the entire AMM’s inventory is (a+ b)/2.
A representation equivalent to x(p) is that of a supply curve Sx(p) = x(a) − x(p) with the

supply curve defined on the same domain as x(p) and representing the point of view of a buyer.
There are closed forms for the inverses of the component functions:

x−1L (x) = b− x/C
y−1L (y) =

√
2y/C + a2

It follows than an associated invariant can be defined as:

ψL(x, y) = x/C +
√

2y/C + a2 − b

Note that fL is a natural way for a liquidity provider to express its buying/selling intentions.
Empirical studies of the shape of order books in traditional finance have shown that linear supply
maps are a powerful pattern to study the statistical properties of order books [9], as well as for
the formulation of efficient market-making strategies [12].

2The PPM formalism is not suitable for AMMs which are piecewise price constant.

5

Figure 2: Plot of fL(50, 150, 100) with minimum price a = 50, maximum price, b = 150, and starting
inventory x0 = 100; xL(p) (in red) decreases linearly from x0 = 100 to 0, while yL(p) (in green) increases
from 0 to x0(a + b)/2. (NB: y(p) is rescaled by 1/100 to get both plots on the same scale.)

2.1.2 The Uniswap v3 case

The Uniswap v3 [4] PPM fU (a, b, L) is:

xU (p) = L(1/
√
p− 1/

√
b)

yU (p) = L(
√
p−
√
a)

Note that yU (a) = xU (b) = 0 so this PPM is normalised.
It is also a bona fide PPM since x′U (p) = −1/2Lp−3/2, y′U (p) = 1/2Lp−1/2, hence (1) is

satisfied.
Fig. 3 plots both components of fU (a, b, L) with a = 50, b = 150 (same range as Fig. 2).

Figure 3: Plot of the Uniswap v3 price parametrisation fU (50, 150, L) with minimum price a = 50,
maximum price, b = 150, and L ∼ 1673 chosen so that xU (a) = 100 as in Fig. 2; xU (p) (in red)
decreases non-linearly from xU (a) = 100 to 0, while yU (p) (in green) increases from 0 to ∼ 86. As in
Fig. 2, y(p) is rescaled by 1/100 to get both plots on the same scale.

One can compare visually the fU and fL parametrisations. To do so, in Fig. 2, and Fig. 3,
we pick the same range [a, b] and set the C and L constants to align the max inventories, ie
C(b − a) = xL(a) = xU (a) = L(1/

√
a − 1/

√
b). One can also compare the respective execution

price for consuming the entire inventory: as said yL(b)/xL(a) = (a + b)/2 the arithmetic mean,
while yU (b)/xU (a) =

√
ab the smaller geometric one. This reflects the fact that the selling

schedule is more aggressive (ie xU ≤ xL).

6

Our two examples offer different selling schedules: fL is a linear selling schedule, while fU is
another novel way to shape one’s intentions to buy and sell. Note that ψU (x, y) := (x+L/

√
b)(y+

L
√
a) = L2 holds. This is the usual constant product invariant of a Uniswap v3 LP position [4].
We can specialise fU by letting a, b go to 0 and +∞ respectively and obtain a PPM corre-

sponding to the plain constant product invariant xy = L2 from Uniswap v2 [3].
We can also generalise fU to a “concentrated” form of the Balancer PPM [24], fB(a, b, L, cX , cY),

with component maps:

xB(p) = L(cY /cX)−cY (p−cY − b−cY)
yB(p) = L(cY /cX)cX (pcX − acX)

where the weights cX , cY and positive and such that cX + cY = 1. As in the non-concentrated
case, we find fU as the special case where cX = cY = 1/2.3

2.2 PPMs as AMMs

We build now a precise definition of the AMM, or the trading rule, associated to a PPM.
Recall that x measure the current amount of base X in the AMM’s reserves, while y measures

the amount of quote Y .
Given a PPM f = (xf , yf) defined on [a, b], we define a trading function δf : [a, b]×R→ [a, b]

which takes as input 1) the current price p, and 2) either a ∆x or a ∆y. The inputs ∆x or a
∆y can be positive (received by the AMM) or negative (paid out by the AMM). In all cases δf
returns the new current price q, which determines uniquely the new reserves.

An input ∆x ≥ 0 corresponds to a sell market order where: (i) taker gives ∆x and (ii)
q = δf (p,∆x) ≤ p decreases. Likewise, an input ∆y ≥ 0 corresponds to a buy market order buy
where: (i) taker gives ∆y and (ii) q = δf (p,∆y) ≥ p increases.

Definition 2 (buy order) Consider first a market order with input ∆y. There are three cases
depending on the position of ∆y + y(p) relative to f ’s domain [a, b]:

δf (p,∆y) :=

a if yf (p) + ∆y < yf (a) underflow
y−1f (yf (p) + ∆y) if yf (a) ≤ yf (p) + ∆y ≤ yf (b) in range

b if yf (b) < yf (p) + ∆y overflow

Let us write q = δf (p,∆y) for the post-transition price.
Formally, the definition applies whether the input ∆y is positive or not.
In general, a positive input is similar to a forward request for quote: “If I pay you ∆x (∆y),

how much Y (X) do I receive from you?”, while a negative input is like a backward request for
quote: “If I want to receive ∆x (∆y) from you, how much Y (X) do I have to pay you?”.

In all cases the next price q is higher if ∆y ≥ 0 (forward buy order) lower if ∆y ≤ 0 (backward
sell order), because yf and therefore y−1f is increasing.

In the middle clause, we require that yf (p) + ∆y falls within the image of [a, b] under yf ,
hence yf (q) = yf (p) + ∆y for some q, and this q is given by y−1f (yf (p) + ∆y). This also means
that the input ∆y is received fully (if positive) or paid out fully (if negative) by the AMM.

In the underflow clause, it must be that ∆y ≤ 0. In addition q = a, hence the the effective
amount (∆y)e = y(a) − y(p) ≤ 0 of Y paid out by the AMM is smaller in absolute value than
the original ∆y. The AMM gave all its Y s down to the minimum allowed y(a) (which is 0 if f is
normalised).

3Balancer’s AMMs allow for more than two assets, which brings the interesting question of whether price
parametrisations can be generalised. One would need a price vector of size n−1 to parametrise an n-asset market,
and a PPM would therefore become a particular type of parametrised hypersurface.

7

Dually, in the overflow clause, it must be that ∆y ≤ 0. In addition q = b, and the effective
amount of Y (∆y)e = y(b)− y(p) =:≥ 0 received by the PPM is smaller than ∆y. The gave all
its Xs, down to the minimum allowed x(b) (again 0 if f is normalised).

The case of a market order with (possibly negative) input ∆x is entirely similar.

Definition 3 (sell order)

δf (p,∆x) :=

b if xf (p) + ∆x < xf (b) underflow
x−1f (xf (p) + ∆x) if xf (b) ≤ xf (p) + ∆x ≤ xf (a) in range

a if xf (a) < xf (p) + ∆x overflow

When the current price is at one end of the range, ie when p = a or p = b, the AMM trades
only in one direction. If p = b (p = a) taker can only sell (buy): ∆y ≤ 0 (≥ 0), ∆x ≥ 0 (≤ 0).

2.2.1 Remarks

Suppose PPMs f and g differ only by a constant C = (Cx, Cy), ie g(p) = f(p) + C. By the
definition above, δg = δf . This is obvious in the under- and overflow clauses, and in the ‘in range’
one, one has y−1g (yf (p)+Cy+∆y) = y−1f (yf (p)+∆y) since by definition y−1g (Y +Cy) = y−1f (Y).
Thus PPMs are only defined up to a translation. Hence, one can always normalise a PPM so
that y(a) = x(b) = 0.

For clarity, we can make the trading rule fully explicit. Consider for instance the case ∆y ≥ 0,
ie taker is buying some X. and its ∆y is in range, the full state change is as follows:

old amount of Y : yf (p)
old current price: p
old amount of X: xf (p)

−→
new amount of Y : yf (p) + ∆y
new current price: q = y−1f (y(p) + ∆y)

new amount of X: (xf ◦ y−1f)(y(p) + ∆y)

We see that, computationally, a determinant of the complexity of a transition is the complexity
of computing xf or yf and their inverses.

It does not matter for the definition of δf that f satisfies (1). That the parameter can be
interpreted as a price becomes important later (in the proof of Prop. 3).

2.2.2 Volume-volume maps are concave

We return to our examples fU , fL and illustrate the definition above by computing their volume-
volume maps and verify that they are concave (which becomes important next Section). That is
to say the maps that given a current price p, takes as input an amount δy or δx (given to the
PPM), and returns the amount δx or δy paid by the PPM.

We only derive the Y -to-X volume-volume function, that is to say the case of a ∆y ≥ 0
injection, ie a buy market order. A similar calculation would give the X-to-Y one.

Consider the case of fU (a, b, L) with current price p.
Suppose we add δy ≥ 0, with no overflow (ie yU (p) + δy ≤ yU (b)).
Let q ≥ p be the new current price.
By definition yU (p) + δy = yU (q), and xU (p) + δx = xU (q). Hence:

δy/L =
√
q −√p√

q = δy/L+
√
p

δx/L = 1/
√
q − 1/

√
p

= 1/(δy/L+
√
p))− 1/

√
p

= −1/
√
p (δy/L)/(δy/L+

√
p) ≤ 0

8

So δx as a function of δy (L, p are constants here) is an expression of the form −δy/b(aδy + b)
with a, b > 0. The payout received by taker −δx ≥ 0 is 0 for δy = 0, increases with δy (the
more the AMM receives, the more it has to pay out), and is concave (decreasingly increasing so
to speak).

Consider the case of fL(a, b, L) with current price p and an in-range addition of δy > 0:

δy/C = 1/2(q2 − p2)
q2 = 2δy/C + p2

δx/C = p− q
= p−

√
2δy/C + p2 ≤ 0

Here also the payout received by taker −δx ≥ 0 is positive, 0 for δy = 0, increasing and concave.

2.3 Splits and Sums of PPMs

We define below a split and a sum operation. The idea is that the split operation allows one to
decompose PPMs horizontally, while the sum one allows one to compose them vertically.

Summation of a finite family of PPMs F = (fi(a, b)) assumes the fis are defined on the same
domain [a, b]. It is defined point-wise:

(
∑
i xi)(p) =

∑
i xi(p)

(
∑
i yi)(p) =

∑
i yi(p)

Clearly
∑
fi is also a PPM, defined on [a, b], normalised if all fis are. More generally, the set of

PPMs defined on [a, b] is closed under linear combinations with positive coefficients.
What if we have a more general family F = (fi) where the domains of definition of the fis

are possibly distinct? This is where the splitting operation becomes useful.
Given a PPM f(a, b) defined on [a, b] with components (xf , yf), and an interior price point

p0 ∈ (a, b), one defines PPMs f1(a, p0) and f2(p0, b) with respective domains [a, p0] and [p0, b]
and component maps:

x1(p) = xf (p)− xf (p0)
y1(p) = yf (p)

x2(p) = xf (p)
y2(p) = yf (p)− yf (p0)

We will write f = f1 ⊕ f2. It is easy to see that the splits f1, f2 are still PPMs, which are
normalised if (x, y) is. Splitting generalises evidently to finite sets of interior price points.

Suppose given a general family F = (fi(ai, bi); i ∈ I) where [ai, bi] is the domain of fi.
Consider a minimal increasing sequence s = (sk; 1 ≤ k ≤ N) which contains all (and only)

the ais and bis.
Every fi uniquely splits on the set Si of split points interior to its domain [ai, bi].
This gives a decomposition:

fi = ⊕ai≤sk<bifik(sk, sk+1)

where fik has domain [sk, sk+1].
We can now sum this doubly indexed family separately on each split interval [sk, sk+1] and

obtain a new family G = (gk(sk, sk+1) :=
∑
i fik; 1 ≤ k < N), where gk is defined on [sk, sk+1]

by construction. We call this new family G the split-sum decomposition of F . It is piecewise
defined on each split interval, and describes the exact same offer of liquidity as F .

9

2.3.1 An example

As an illustration, we can detail the case where the initial family F consists of fU (a, b, L),
fU (a′, b′, L′) with four distinct end points. Up to re-labeling we can assume that a < a′.

If b < a′, the domains do not overlap and F is already decomposed.
If a′ < b domains do overlap and there are two cases.
(1) Either b < b′, and the increasing split sequence is s = (a, a′, b, b′). First we split each PPM

along s:
fU (a, b, L) = fU (a, a′, L)⊕ fU (a′, b, L)
fU (a′, b′, L′) = fU (a′, b, L′)⊕ fU (b, b′, L′)

Then we build G by summing vertically on each split interval:

g1 = fU (a, a′, L)
g2 = fU (a′, b, L) + fU (a′, b, L′) = fU (a′, b, L+ L′)
g3 = fU (b, b′, L′)

where we have used additivity of the fU format, and we obtain the split-sum decomposition
fU (a, a′, L)⊕ fU (a′, b, L+ L′)⊕ fU (b, b′, L′).

(2) Or b′ < b, in which case s = (a, a′, b′, b) and the decomposition is fU (a, a′, L)⊕fU (a′, b′, L+
L′)⊕ fU (b′, b, L).

While the formal decomposition of F into G is always well-defined, because the fU format is
stable under splits and sums, in this special case the number of components of G grows as |s| the
size of the price sequence s, and not as |F||s|.

We now introduce formats which generalise fU and fL and ensure that G has a compact
representation if F obeys the format.

2.3.2 Convenient PPMs

Definition 4 A PPM (x, y) defined on [a, b] is said to be convenient if it can be written:

x(p) = C · (φ(b)− φ(p))
y(p) = D · (ψ(p)− ψ(a))

for some positive constants C, D, and some maps φ, ψ defined on R+.

From the definition one sees that pCφ′(p) = Dψ′(p), and that both φ and ψ are increasing, and
bijections.

The ‘liquidity’ constants C,D > 0 somehow measure initial inventory or capital.
Our examples fU , fB and fL are convenient PPMs: for fL, φ(p) = p, ψ(p) = p2/2; for fU ,

φ(p) = −1/
√
p, ψ(p) =

√
p.

These formats are closed under summations and splits.
That is to say, given a family of convenient PPMs with same φ, ψ we have:∑

i fφ,ψ,Ci,Di = fφ,ψ,
∑

i Ci,
∑

iDi

And given a convenient PPM f , we have:

f(a, b, C,D, φ, ψ) ' f(a, p0, C,D, φ, ψ)⊕ f(p0, b, C,D, φ, ψ)

The latter can be readily verified ((φ, ψ) not shown for lighter notations):

x1a,b,C(p) = C · (φ(b)− φ(p))− C(φ(b)− φ(p0)) = C · (φ(p0)− φ(p)) = xa,p0,C(p)

y1a,b,D(p) = D · (ψ(p)− ψ(a)) = ya,p0,C(p)

x2a,b,C(p) = C · (φ(b)− φ(p)) = xp0,b,C(p)

y2a,b,C(p) = D · (ψ(p)− ψ(a))−D · (ψ(p0)− ψ(a)) = D · (ψ(p)− ψ(p0)) = yp0,b,C(p)

10

We have proved that:

Proposition 1 Suppose all the fis in F = (fi(ai, bi); i ∈ I) obey the same (φ, ψ) format, so do
the gks in the split-sum decomposition G.

Split-and-sum decompositions of families of PPMs obeying a given convenient format will be
our model of compact representations of AMMs in the next sections.

Such representations are suitable for a decentralised implementation (as a smart contract)
because: during the execution of a market order every gk is visited in turn until the order is filled,
and because of the trivial summability of the format, each gk can be represented as one aggregated
PPM. On the other hand, when an LP mints a new position, it can be readily split-and-summed
and added to the current representation G.

In the case of Uniswap v3, ie a family following the fU format, G is a pretty accurate descrip-
tion of the Uniswap internal data structure used to represent a collection of LP positions [4].

3 Best execution of a family of PPMs

Now we have all in place to state and solve our problem.
First, we define the optimisation programme which captures the notion of best execution of a

family of PPMs. This is well defined but leaves one with no specific way to solve the said problem.
Leaning on the specific properties of price parametrisations, we reformulate the problem into an
equivalent problem which has a pleasingly simple solution. We conclude with a description of the
query-minimal algorithm that naturally follows.

Throughout this section, F denotes a finite family of PPMs with price, that is to say F =
(fi : [ai, bi], pi; 1 ≤ i ≤ n) where each fi has current price pi.

Definition 5 (best execution) Fix a budget ∆y ≥ 0 (buy market order).
Consider a split of ∆y, that is to say a non-negative input family ∆yi ≥ 0 with ∆yi ≤

y(bi)− y(pi) (no overflow).
Write ∆xi := xi(δfi(pi,∆yi))− xi(pi) ≤ 0 for the output generated by fi given ∆yi.

4

The sequence (∆yi; 1 ≤ i ≤ n) is said to be a best split of ∆y over F if it maximises the total
output:

−
∑
i ∆xi ≤

∑
i x(pi)− x(bi)

under the budget constraint
∑
i ∆yi ≤ ∆y.

Each output −∆xi is bounded above by the reserve available namely x(pi)−x(bi). This justifies
the inequality in the definition.

We cannot ask that the budget is entirely spent, ie
∑
i ∆yi = ∆y, because F may not have

enough X to consume entirely ∆y. Indeed the maximum possible input is KY =
∑
i(yi(bi) −

yi(pi)), regardless of the price taker is willing to pay.
If we were to lift the condition ∆yi ≥ 0 the best split actually could sell on some of the AMMs

and hence include some form of arbitrage. This would make the problem far more complex. The
constraint seems reasonable in practice (see also discussion in our optimal routing paper [15]).

There is a symmetric ∆x version in the case of a sell market order which we omit.

Proposition 2 Using the notations of Def. 5, assume ∆xi is a convex function of ∆yi, there
exists a unique best split ∆y?i .

4∆xi is non-positive because it is paid out by the AMM.

11

The problem belongs to the class of nonlinear resource allocation problem (with linear con-
straints) as defined in the convex optimisation literature [25], [21, p. 23]. It is known to have
a unique solution as soon as the feasible set is bounded, which is indeed the case here as
0 ≤ ∆yi ≤ ∆y. (This problem is also a particular case of optimal routing with concave volume-
volume functions [15].)

Henceforth we assume that each fi in F has convex (or concave if we take the absolute value
of the output) volume-volume maps. The explicit calculations of §2.2.2 have shown that this is
indeed the case for our lead examples fU , fL.

Definition 6 Let a price q be given.
It induces a partition of F into three classes:

‘spent’ bi ≤ q
‘on’ q ∈ (ai, bi)
‘idle’ q ≤ ai

The price q determines the inputs ∆yi(q) ≥ 0 and outputs ∆xi(q) ≤ 0 of each member of F :

if fi is ‘on’ ∆yi(q) = yi(q)− yi(pi) ∆xi(q) = xi(q)− xi(pi)
if fi is ‘spent’ ∆yi(q) = yi(bi)− yi(pi) ∆xi(q) = xi(bi)− xi(pi)
if fi is ‘idle’ ∆yi(q) = 0 ∆xi(q) = 0

The key insight is:

Proposition 3 The best split ∆y?i of ∆y over F is characterised by a unique q? (and associated
partition) such ∆y?i = ∆yi(q

?).

To see this, consider two members f1, f2 of the family with respective allocations ∆y1, ∆y2.
Write q1 and q2 for their post-trade current prices (see Def. 2):

q1 = δf1(p1,∆y1)
q2 = δf2(p2,∆y2)

Suppose without loss of generality p1 ≤ p2.
In general, the output for input δy at price p (aka the volume-volume map) for a PPM (x, y)

is given by:
δx(δy) = (x ◦ y−1)(y(p) + δy)− x(p)

If p < b and ε > 0 small enough so that input δy+ ε stays in range, the difference in outputs for
inputs δy, δy + ε is given by:

δδx := ((x ◦ y−1)(y(p) + δy + ε)− x(p))− ((x ◦ y−1)(y(p) + δy)− x(p))
= (x ◦ y−1)(y(p) + δy + ε)− (x ◦ y−1)(y(p) + δy)
= (x ◦ y−1)′(y(p) + δy)ε+ o(ε)
= (x′(q)/y′(q))ε+ o(ε)

where q = y(y(p) + δy).
By condition (1) we have:

δδx = −ε/q + o(ε) (2)

Suppose f1 is not spent, and f2 is not idle. This means q1 < b1, q2 > a2.

12

By (2), The modified inputs lead to a change in outputs which at first order is given by:

δδx1 = −ε/q1
δδx2 = +ε/q2

Suppose q1 < q2, we have |δδx1| > |δδx2|. (We get more more output from f1, than we get less
from f2, so to speak.) And as the changes in inputs is done at constant budget, it cannot be that
∆yi is the optimal split.

Hence either q1 = q2 and both f1, f2 are ‘on’, or p1 < p2. In the latter case, either f1 is spent
(there is no higher price at which it is ready to sell X) or f2 is idle (there is no lower price at
which it is ready buy X), or both, which is what we wanted to prove. �

By the earlier Proposition, the best split ∆y?i of F is unique, by the one right above, this
unique best split is determined by a unique optimal price q?.

We can combine both propositions to obtain a dual equivalent problem.5

Definition 7 (sweepline) For q ∈ R+ we define the function:

Y (q) =
∑
i ∆yi(q)

It is easy to see that:

Lemma 1 Y (q) is well-defined, increasing, continuous, bijective, Y (q) = 0 iff q ≤ inf pi, and
(∆yi(q); 1 ≤ i ≤ n) is the best split of its sum

∑
∆yi(q) over F .

From which we can deduce:

Proposition 4 (sweepline execution) As in Def. 5, pick a family F , and fix a budget ∆y ≥ 0
for F . The optimal price q? associated to the best split of ∆y over F is the unique solution to
Y (q?) = min(∆y,KY), with KY =

∑
i(yi(bi)− yi(pi)) the maximal input of F .

Hence, our two optimisation problems are equivalent. The price-based form of Prop. 4 suggests an
algorithm that drives a sweepline in price space, starting from inf pi (the best buying price) and
finishing at sup bi (the worst buying price) or earlier if the order is filled. As Y (q) is continuous
increasing, there is either a unique price q at which our budget is spent, and there we stop, or
else, q = sup bi, at which point we also stop, but all members of F are ‘spent’, and the market
order is only partially filled.

The intuition of the algorithm below proceeds directly from Prop. 4. Instead of asking for
quotes, it queries the set of current active sources by asking: “if I want to push your marginal
price p to a new value q, how much ∆y do I need to give you?”6

In the next Section, we fully define the algorithm and show that it is well suited to our model
of families of convenient PPMs (defined in §2.3).

4 Push and Solve algorithm

The algorithm assumes the following initial data:
- a family F = (fi(ai, bi), pi; 1 ≤ i ≤ n) where fi is defined on [ai, bi] and pi is fi’s current price
- p = (pi; 1 ≤ i ≤ n) is assumed wlog to be sorted in non-decreasing order

5This characteristic price can be seen as the optimal value of the Lagrange multiplier for the budget constraint.
6Precisely the type of question that a price bending attacker would ask!

13

- s = (sk; 1 ≤ k ≤ N) is the minimal increasing sequence which contains the ais, and bis
7

- each fi is split over s, ie is of the form:

fi = ⊕ai≤sk<bifik(sk, sk+1)

The fis are called the sources.
The sequence s is called the price grid, its members are called the price points.
We sometimes write |F| = n for the family ‘height’ n (number of PPMs), and |s| for its

‘width’ (number of price points).
To simplify notations we assume that p is increasing (no ties), and that p and s are disjoint.8

The algorithm takes as an input F as above and a budget ∆y0; it returns the best split of
∆y0 over F .

Throughout its execution of a buy order, the algorithm maintains the following data:
- a current price level p (represented as a thick line in Fig. 4)
- a vector of splits (∆yi; 1 ≤ i ≤ n) which represents the current allocation
- a current remaining budget ∆y > 0
- a list of the current parameters of the active sources (fi is active if the current price p is in
[ai, bi)).

As the name suggests it has two distinct phases:
- push: a search phase where we ‘push’ iteratively prices as in an ascending auction, and activate
sources successively.
- solve: which is done (at most) once.

Fig. 4 illustrates the various steps with a family of three PPMs.
Caveat: We only describe the algorithm in the case of a buy market order with budget ∆y ≥ 0.

The case of a sell market order with budget ∆x ≥ 0 is similar.

Initialisation At the start:
- the current price p is set to p1 = min p (this is the smallest price at which there is something
to buy; recall that we suppose p is increasing)
- the vector of splits is set to 0 (nothing has been allocated yet)
- the remaining budget is set to its initial value ∆y0
- the list of active sources is set to f1 with its parameters C1

Push A push step is as follows:
1. Determination of next price q:
Let pi be the smallest current price such that p < pi, and let sk be the smallest price point

such that p < sk; the next price is min(pi, sk) if defined.
If there is no such next price, p ≥ bi for all i, hence the fis are ‘spent’, and the initial market

order cannot be fully filled. The algorithm terminates (and returns the vector of splits).
If there is a next price, we call it q.
2. Determination of cost of pushing to next price q:
The total push cost is given by ∆(q) :=

∑
i(yi(q) − yi(p)) where the summation is over the

currently active sources. There are two possible outcomes.
2.1 If ∆y < ∆(q)
the remaining budget cannot pay for the push up to q, and the algorithm enters the solve

phase (see below).
2.2 If ∆y ≥ ∆(q)

7In practice, a most refined price grid will be defined once and for all.
8There are ties in p in the very unlikely case where several fis have the same current price.

14

the remaining budget can pay for the push up to q:
- (i) the current price is set to q
- (ii) the vector of splits is incremented: ∆yi+= (yi(q)− yi(p))
- (iii) the remaining budget is decremented: ∆y−= ∆(q)
- (iv) if q is a price point sk, the list of active sources and their parameters is updated

If at step (iii) the remaining budget reaches zero, the algorithm stops, returns the vector of
splits which can fill the order.

Solve In this phase, the next price q is such that ∆y < ∆(q). Hence q? the optimal price is in
(p, q) and is the unique solution to:

∆y =
∑
i(yi(q

?)− yi(p))

where the summation is over the currently active sources. The algorithm computes q?, increments
accordingly the vector of splits ∆yi+= (yi(q

?)− yi(p)), and terminates by returning it.

Figure 4: Illustration of the push-and-solve procedure with three sources f1, f2, f3 with respective
marginal prices (at the start) p1 < p2 < p3 with interleaving price points s1 < s2. There are three
successive pushes respectively to s1 (updating f1’s parameters), p2 (activating f2), and p3 (activating
f3). The last step is a solve step (in green) which splits optimally the remaining budget between f1, f2,
and f3 all at a current price of p3, to reach the final price q?.

At each step (push or solve), the budget decreases (down to 0 if the order is fully filled), the
vector of splits increases,

∑
i ∆yi = ∆y0−∆y stays invariant, and the vector of splits ∆yi is the

best split for what of the original budget is already committed namely ∆y0 −∆y.
To see that the algorithm is query-minimal as claimed in the Introduction, we can track the

number of queries made during a run. At initialisation, the algorithm queries the marginal prices
of all members of F (n queries). During the run itself, fi in F is queried at each new visited price
point sk in order to update the list of active sources and their parameters (Push, step 2.2.(iv)).
Importantly, these queries are on a call-by-need basis. An upper bound is |F| × |s| = n×N (the
height of the family times its width), but the query cost of a typical run will be far lower.

Many algorithms can solve the problem of Prop. 4. For instance, one could proceed to a search
of q? by dichotomy. However: 1) our algorithm is query-minimal which is key if the algorithm is
to be implemented on-chain where reading storage is typically costly (especially so as the family
width |s| can be very large); 2) because of arbitrage we expect the marginal prices of the sources
p to cluster near some driving price, and, on liquid markets at least, we expect q? to not jump
over multiple price points. Both considerations will tend to drive down the average number of
queries to a much lower number than the worst case, namely n×N , and reinforce the advantages
of query-minimality.

15

4.1 Application to optimal splitting of convenient families of PPMs

The push-and-solve algorithm can be seen as a multi-source generalisation of the Uniswap v3
execution algorithm (modulo internal manipulations of state) which is essentially the case of one
source of the convenient fU format.

The multiple sources stack up as new active sources are activated when the current price
up-crosses their marginal price (Push, step 2.2.(iv)). In the mono-source case, there is only ever
one active source and one current price to track.

Interestingly, our algorithm is agnostic to the format used by the various sources. Ie one can
mix sources following different formats, eg fL and fU . So it is both multi-source and multi-format.

However, if we suppose suppose that all sources in F obey the same convenient format with
functions φ, ψ, the equation in the solve step takes the following simpler form:

∆y =
∑
i(yi(q

?)− yi(p)) = (
∑
iDik)(ψ(q?)− ψ(p))

where the Dik are the parameters of the current vertical stack of active sources (fik; 1 ≤ i ≤ |F|).
Thus the solution can be written explicitly as:

q? = ψ−1(∆y/(
∑
iDik) + ψ(p))

In addition, in the case the format is fU , or fL, the corresponding φ, ψ functions have a simple
closed form, eg ψ−1U (z) = z2, and ψ−1L (z) =

√
2z, and can be readily computed.

From the application point of view this means that the optimal splitting problem for sources
of the Uniswap v3 type can be solved in a query-minimal fashion (so soberly memory-wise), and
completely symbolically (so soberly math-wise).

The same applies for the linear format fL, but this is of lesser immediate importance as this
type of AMM, although very simple, is not implemented yet (to our knowledge), and certainly
not as wide-spread as the Uniswap v3 type of which there are many clones competing for liquidity
(as said in the Introduction).

4.2 Comments

Note that a run is not actually executing the order, it is a simulation (which queries information
from the sources on a need-to-know basis). Instead, it builds the best split to be executed once
fully computed. One could execute the partial splits on-the-fly on their respective sources, since
the algorithm never backtracks. But this would not be efficient in practice, because each partial
execution would trigger repeated internal updates in the sources, which are best shared in a
global order.

In concrete applications, taker can send a buy order with a maximal price (or maximal
splippage). This just is another stopping condition for the algorithm which one can add when
computing the next price (Push, step 2).

As explained in the split-and-sum subsection (§2.3), not only is every source split along s, but
we also think of its components fiks has implicitly summed. (This plays no role in the algorithm.)

5 Slippage calculations

Because our push-and-solve algorithm has low computational cost (especially in the mono-format
case) it is realistic. Because it is optimal it improves execution in principle. In this section we
would like get some idea of the benefit we can expect in practice.

16

To do so we compute the price impact or slippage induced by a swap on a single source
fU (a, b, p). Then we compute the same in the multi-source mono-format case, with the much
simplifying, but not unrealistic assumption that all marginal prices of our sources are equal. In
this special case, we can easily measure the improvement (or slippage reduction) brought about
by our algorithm.

So, suppose we swap in ∆y. Write p, q for the marginal prices before and after swap.
We have seen (§2.1.2) that the execution price is the geometric mean of p and q:

pex := −∆y/∆x =
√
qp

Define slippage as the relative change of price S := pex/p− 1:

S =
√
qp/p− 1

= (
√
q −√p)/√p

= (L
√
p)−1 ·∆y

We see that the slippage of market orders that do not traverse a (possibly L-changing) price
point is linear in the swap input ∆y. The term L

√
p can be construed as the inertia or depth of

the market.
Now consider a family (fU (a, b, Li); 1 ≤ i ≤ n) of n sources of the fU type with the same

domain. If we assume they have the same current price, they behave as one source fU (a, b,
∑
i Li).

Hence the ratio of the multi-source slippage to the mono-source one is

Sn/S1 = max(Li)/
∑
i

Li (3)

where we have picked the best mono source. This ratio is independent of the common marginal
price p and input ∆y (conditioned on the fact that ∆y does not overflow).

There are two extreme cases:
(i) if there is one dominant pool Sn ∼ S1 the optimal splitting will not be substantially better

than choosing the best source (which is easy to do right after initialisation)
(ii) if all pools are equally liquid Sn ∼ S1/n the slippage improvement is measured by 1/n

where n is the number of sources.
In other words, unsurprisingly, the improvement brought about by the optimal splitting algo-

rithm is all the more interesting when the liquidity around the current price is more fragmented
(more sources) and more evenly so (near equal liquidities).

6 Conclusion

We have shown a simple algorithm to execute a swap across multiple AMMs defined on the same
pair so as the maximise the swap’s output. For the technique to apply, those AMMs have to be
built using a specific building block called a price-parametrised AMM (PPM). Importantly, the
algorithm is simple enough that one can implement it readily as a smart contract.

In that respect, it is very different from off-chain aggregating algorithms, and can be used
to unconditionally improve their on-chain execution (as explained in the Introduction), to the
extent that its gas expenses are negligible compared to the improvement it brings about.

The algorithm can also be used directly to combat the negative consequences of the fragmen-
tation of liquidity. An application which is particularly timely with the imminent introduction
of Uniswap v4 markets [2]. Indeed the novel Uniswap v4 protocol introduces yet another level
of flexibility, with the so-called “hooks”. The market engine inside stays the same (ie an AMM

17

of type Uniswap v3) but hooks allow, among other things, to source the LPs’ liquidity at the
time of execution and thus to collect additional yield LPs. The idea is very similar to Mangrove’s
“offer-is-code” approach to Decentralised Exchanges [26]. If many hooks become popular, this
will unavoidably lead to more fragmentation of markets, to the detriment of takers. There our al-
gorithm could be implemented as an on-chain front-end to any collection of Uniswap v4 markets
(on a given pair) and protect takers while letting LPs enjoy their hooks.

Another contribution of this paper is the introduction of general format which is sufficient
for developing concentrated AMMs with the same low complexity aggregability of LP positions
as Uniswap v3. Our algorithm applies equally to those, and could even combine sources with
different such formats.

References

[1] Carlo Acerbi and Giacomo Scandolo. Liquidity risk theory and coherent measures of risk.
Quantitative Finance, 8(7):681–692, 2008.

[2] Hayden Adams, Moody Salem, Noah Zinsmeister, Sara Reynolds, Austin Adams, Will Pote,
Mark Toda, Alice Henshaw, Emily Williams, and Dan Robinson. Uniswap v4 core [draft],
2023.

[3] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core, March 2020.

[4] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap
v3 core, March 2021.

[5] Rossella Agliardi and Ramazan Gençay. Optimal high-frequency trading with limit and
market orders. Quantitative Finance, 17(10):1565–1584, 2017.

[6] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions. Journal of
Risk, 3:5–40, 2001.

[7] Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market
makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 80–91, 2020.

[8] Guillermo Angeris, Alex Evans, Tarun Chitra, and Stephen Boyd. Optimal routing for
constant function market makers. In Proceedings of the 23rd ACM Conference on Economics
and Computation, pages 115–128, 2022.

[9] Marcel Blais and Philip Protter. An analysis of the supply curve for liquidity risk through
book data. International Journal of Theoretical and Applied Finance, 13(06):821–838, 2010.

[10] Nicolas Bundi and Charles-Albert Lehalle. Optimal execution across multiple venues in
limit order markets. Quantitative Finance, 23(1):105–122, 2023.

[11] Umut Çetin, Robert A Jarrow, and Philip Protter. Liquidity risk and arbitrage pricing
theory. Finance and Stochastics, 8(3):311–341, 2004.

[12] Jonathan Chávez-Casillas, José E. Figueroa-López, Chuyi Yu, and Yi Zhang. Adaptive
optimal market making strategies with inventory liquidation cost, 2024.

[13] Rama Cont and Arseniy Kukanov. Optimal order placement in limit order markets. Quan-
titative Finance, 17(1):21–39, 2017.

18

[14] Vincent Danos, Hamza El Khalloufi, and Julien Prat. Global order routing on exchange
networks. In Financial Cryptography and Data Security, pages 207–226. Springer, 2021.

[15] Vincent Danos, Hamza El Khalloufi, and Julien Prat. Global order routing on exchange
networks. In Financial Cryptography and Data Security. FC 2021 International Workshops,
pages 207–226, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[16] Vincent Danos and Weijia Wang. Consistency of Automated Market Makers. In Yackolley
Amoussou-Guenou, Aggelos Kiayias, and Marianne Verdier, editors, 4th International Con-
ference on Blockchain Economics, Security and Protocols (Tokenomics 2022), volume 110
of Open Access Series in Informatics (OASIcs), pages 4:1–4:12, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[17] Theo Diamandis and Guillermo Angeris. The convex geometry of network flows. arXiv
preprint arXiv:2408.12761, 2024.

[18] Theo Diamandis, Max Resnick, Tarun Chitra, and Guillermo Angeris. An efficient al-
gorithm for optimal routing through constant function market makers. arXiv preprint
arXiv:2302.04938, 2023.

[19] Michael Egorov. Stableswap-efficient mechanism for stablecoin liquidity. Retrieved Feb,
24:2021, 2019.

[20] Michael Egorov. Automatic market-making with dynamic peg. Retrieved Dec 2021, June
2021.

[21] Toshihide Ibaraki and Naoki Katoh. Resource allocation problems - algorithmic approaches.
MIT Press series in the foundations of computing. MIT Press, 1988.

[22] Robert A Jarrow and Philip Protter. Liquidity risk and risk measure computation. Review
of Futures Markets, 11(1):27–39, 2005.

[23] Shingo Kuno and Masamitsu Ohnishi. Optimal execution in the multi-venue market with
dark pools. Asia-Pacific Financial Markets, 24:95–116, 2017.

[24] Fernando Martinelli and Nikolai Mushegian. A non-custodial portfolio manager, liquidity
provider, and price sensor, 2020. https://balancer.finance, v2019-09-19.

[25] Michael Patriksson. A survey on the continuous nonlinear resource allocation problem.
European Journal of Operational Research, 185(1):1–46, 2008.

[26] The Mangrove project. The “offer-is-code” approach to decentralised exchanges. 2021.

19

https://balancer.finance

	Introduction
	Related work
	Outline

	Price parametrised AMMs
	Examples
	The linear case
	The Uniswap v3 case

	PPMs as AMMs
	Remarks
	Volume-volume maps are concave

	Splits and Sums of PPMs
	An example
	Convenient PPMs

	Best execution of a family of PPMs
	Push and Solve algorithm
	Application to optimal splitting of convenient families of PPMs
	Comments

	Slippage calculations
	Conclusion
	Notes
	Temporary zero liquidity halting problem
	Misc

	Fees
	push-and-solve w fees
	From the code

	Aside on the SOLVE step
	Cuts
	1st version of P&S

