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Abstract

Recently, LLMs (Large Language Models) have been adapted for
time series prediction with significant success in pattern recognition.
However, the common belief is that these models are not suitable for
predicting financial market returns, which are known to be almost
random. We aim to challenge this misconception through a coun-
terexample. Specifically, we utilized the Chronos model from Ansari
et al. (2024) and tested both pretrained configurations and fine-tuned
supervised forecasts on the largest American single stocks using data
from Guijarro-Ordonnez et al. (2022). We constructed a long/short
portfolio, and the performance simulation indicates that LLMs can in
reality handle time series that are nearly indistinguishable from noise,
demonstrating an ability to identify inefficiencies amidst randomness
and generate alpha. Finally, we compared these results with those
of specialized models and smaller deep learning models, highlighting
significant room for improvement in LLM performance to further en-
hance their predictive capabilities.
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1 Introduction

LLMs (Large Language Models) gained widespread popularity when Chat-
GPT convinced many that machines were intelligent enough to reason like
humans, even though the underlying techniques merely determine the most
likely sequences of words that could respond to a prompt. The introduction
of the transformer architecture by Vaswani et al. (2017) was a key develop-
ment, as it enabled fast training on large datasets. LLMs are composed of
many layers of transformers and have around a billion parameters. The T5
(Text-To-Text Transfer Transformer) architecture was introduced by Raffel
et al. (2023), and further advanced the field from T5-small size with 60 mil-
lion of parameters to T6-11B with 11 billion of parameters). Amatrianin
(2023) describes the catalog of LLMs models from Albert to ChatGPT and
classifies T5 among others.

Garza et al. (2023) introduce TimeGPT, the first foundation model for
time series, capable of generating accurate predictions for diverse datasets
not seen during training. They evaluate their pre-trained model against es-
tablished statistical, machine learning, and deep learning methods, demon-
strating that TimeGPT zero-shot inference excels in performance. Ansari et
al. (2024) also sought to adapt these highly efficient LLMs to time series fore-
casting. Their approach involved representing real numbers in different bins
(using a vocabulary of 4096 tokens) and training a T5 architecture on a wide
range of time series data (around 90 billion observations). They produced
several pretrained models of varying sizes, ranging from tiny (11 millions of
parameters) to large. TimesFM (Time Series Foundation Model) is another
pretrained time-series foundation model developed by Das et al. (2024). Ra-
sul et al. (2024) uses a lagged features for tokenization. Nie et al. (2023);
Ekambaram et al. (2023) are also applying LLM to multi time series. Mo-
tivated by recent advances in large language models for Natural Language
Processing, Ansari et al. (2024); Das et al. (2024) designed a time-series foun-
dation model for forecasting whose out-of-the-box zero-shot performance on
a variety of public datasets comes close to the accuracy of state-of-the-art
supervised forecasting models for each individual dataset. Their models are
based on pretraining a patched-decoder style attention model on a large time-
series corpus, and can work well across different forecasting history lengths,
prediction lengths and temporal granularities.

Brugiere and Turinici (2024) tested transformers for financial time series
and showed that the algorithm cannot predict returns, but can only predict
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squared returns. Konigstein (2024) stated that LLMs present challenges, but
also opportunities, particularly for long-term financial time series forecasting.

Deep learning has become very popular among researchers in finance,
both for asset pricing and systematic strategies: Guijarro-Ordonnez et al.
(2022) implemented transformers (with only 769 parameters) but coupled
them with convolutional layers and tested them on quantitative trading
strategies applied to single stocks. Their results, without accounting for trad-
ing costs, were encouraging. Guijarro-Ordonnez et al. (2022) applied deep
learning algorithms to residual daily returns after removing common factors
using techniques such as Principal Component Analysis (PCA), Fama-French
factors, or Instrumental Principal Component Analysis (IPCA), implement-
ing the methodology from Kelly et al. (2019), who used financial data to
constrain the eigenvectors. This approach was also developed and justi-
fied by Valeyre (2019). Transformers have also been used by Jiang et al.
(2023) to identify patterns in images for time series forecasting. Wood et
al. (2022) applied deep learning techniques with only a few parameters to
identify the most effective trend-following indicators enhancing and timing
trend-following strategies. Transformers have also been used to extract com-
mon returns, as demonstrated by Gu et al. (2021). Qyrana (2024) applied
a simple STR factor to residual returns using an autoencoder-based factor
model, subsequently generating a highly profitable trading strategy. Chen
et al. (2021) used a deep learning technique to identify anomalies in asset
pricing,

Our goal, in this study, is to evaluate deep learning algorithms with more
than 11 million parameters for forecasting financial returns. In contrast,
studies such as Chen et al. (2021), Jiang et al. (2023), Wood et al. (2022),
Guijarro-Ordonnez et al. (2022), and Brugiere and Turinici (2024) utilized
models with at most a few hundred parameters so their models were not
really ”deep learning” models. This limitation was due to their inability
to pre-train models with millions of parameters using large datasets from
outside the financial industry.

So we first conducted a zero-shot evaluation of the predictions from pre-
trained and fine-tuned supervised time series foundation LLMs Chronos by
Ansari et al. (2024), which were pretrained on 13 datasets that do not include
single stock data or stock indices, using the datasets of the residual returns
of American single stocks published by Guijarro-Ordonnez et al. (2022). The
interest in using only zero-shot evaluation is that it provides more convincing
results, as overfitting is less likely in this case. Indeed overfitting is a ma-
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jor concern in machine learning when applied to trading, which often makes
honest results appear suspect. Another interesting aspect is demonstrating
how the algorithm can adapt and display ’intelligence’ in trading without
being specifically trained for that purpose. We aim to simulate a portfolio
that goes long on positive predictions and short on negative predictions.

Secondly, we seek to compare these results with well-known standard
Short Term Reversal (STR) or trend-following approaches, as described in
Jegadeesh (1990); Jegadeesh and Titman (1993).

2 The methodology of our empirical backtest

2.1 Chronos as the LLM model

The model used was ”amazon/chronos-t5-tiny” version of the chronos with
11 million of parameters which was pretrained by Ansari et al. (2024) on
14 datasets (Brazilian cities temperatures, Mexico city bikes, Solar, Spanish
energy and weather, Taxi, USHCN, weatherbench, wiki daily, wind farms)
but not on financial time series. The model has 11 millions of parameters.

We used a ’context’ period of 100 days so that Chronos guess the next day,
knowing only the previous 100 days. We focused only on the next day return
forecast. We used 100 days as a compromise to avoid running out of memory
while giving Chronos a chance to capture some patterns. Additionally, we
decided to limit the study to predicting the next daily returns. Although
we could have considered predicting the next weekly or monthly returns,
we believed it would be easier for Chronos to capture patterns over a very
short-term horizon.

We adjusted the 11 million weights of the ”amazon/chronos-t5-tiny” model
through training (fine-tuning) using our datasets, setting τ , the maximum
training steps, to 5, 15, or 40. Training was conducted daily during the back-
test, using the data available on each respective date and starting from the
weights of the previous day.

The details of the parameters for both the pretrained case and the fine
tuning are described in the appendix B.1 and B.2.
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2.2 Financial market time series as data

We used 3 different datasets of the residual daily returns released by Guijarro-
Ordonnez et al. (2022), derived from their analysis of securities in the CRSP
dataset from January 1978 to end 2016. Their focus was on the most liquid
stocks to mitigate trading and friction issues. Specifically, they considered
stocks whose market capitalization in the prior month exceeded 0.01% of
the total market capitalization of that month, resulting in a selection of
approximately the largest 550 stocks on average. Guijarro-Ordonnez et al.
(2022) released their datasets of residual returns on GitHub. We utilized
their three datasets, each corresponding to their standard parameters with
K = 5 (i.e. with 5 factors):

• IPCA factors with a rolling windows of 240 months with the details
described in Kelly et al. (2019)

• PCA factors with a rolling windows of 252 days

• FF factors (Fama-French 3 factor model+ investment and profitability
factors) with a rolling windows of 60 days

K = 5 appears to be the optimal according to Guijarro-Ordonnez et al.
(2022) when applying their convolution and transformer process with a gross
sharpe ratio of 3.21 for Fama-French, 3.36 for the PCA and 4.16 for the
IPCA. Nevertheless the sharpe in net appears to be significant only before
2006.

Using residual returns allows for a less correlated dataset, which is crucial
for deep learning. We can note that Gu et al. (2021) for example also used
the same three different datasets to test their model.

2.3 Description of the different simulated strategies

Our experiment was organized in three parts.

2.3.1 Strategy based on the forecast of the zero-shot version of
Chronos

First, we implemented a ”zero-shot evaluation”, which means without any
fine-tuning (or training). The weights of Chronos were not trained on fi-
nancial data. Our experiment consists of, for each day, from 2001-12-26 to
2016-12-30, and for each dataset (IPCA, PCA, FF):

5



• Computing χ̂d,i , the Chronos average prediction of the next daily re-
turn, derived in the Eq 2 conditioned to a rolling window of the last 100
days. In Eq 2 we used the average of different ”equiweight” scenarii χ
computed by Chronos of r̂d+1 knowing only rd,i...rd−99,i. We used two
possible inputs for Chronos:

– Either the last 100 residual daily returns rd,i...rd−99,i of the single
stock i, when α = 0 in Eq 1.

– or the last r̂d,i...r̂d−99,i the exponential moving average of the last
100 residual daily returns derived in Eq 1 with α > 0. We tested
α values of 0.1, 0.2, 0.3, 0.4, 0.5, and 0.8, all different from zero.
This option allows the model to account for the well-known weak
negative autocorrelation of daily returns, potentially improving its
forecasting ability. However, in this case, the model must outper-
form the Short-Term Reversal strategy described in Eq. 10.

• Predicting of the next returns with χ̃d,i which is derived in Eq 3.

• Calculating the weights of the portfolio ω̂ derived in Eq 6 which ranks
through ℜ = ArgSort every day d the different χ̃d,i. In this method
the median rank is withdrawn through N

2
where N is the number of

stocks. A normalization of the weights is derived in Eq 6 to target
a gross investment of 1. This process ensures that the portfolio is
50% long and 50% short every day, with weights proportional to the
distance in ranking from the median stock according to χ̃. Valeyre
(2019) proved that this approach is the mathematically optimal method
and better than just buying the top quintile and short the bottom
quintile. A ’resized’ version is also tested when the weights are also
inversely proportional to the volatility as derived in Eq 5 where σ are
the standard deviation of the daily returns on the previous 100 days
and M is the median.

• Simulating, Pd+1, the performance of the portfolio for the next day
through Eq 8. We then reconstructed the cumulative returns and cal-
culated the gross Sharpe ratio, excluding any trading costs. We also
simulate [Pd+1] for the resized version through Eq 9.
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r̂d+1,i = αr̂d,i + rd+1,i (1)

χ̂d,i = E [χ (r̂d+1,i|r̂d,i...r̂d−99,i)] (2)

χ̃d,i = χ̂d,i − αr̂d,i (3)

ωχ
d = ℜ [ℜ (χ̃d)]−

N

2
(4)

[ωχ
d ]

r =

(
ℜ [ℜ (χ̃d)]−

N

2

)
M (σ0...σN)

max(σ,M (σ0...σN)
(5)

ω̂χ
d,i =

ωχ
d,i∑

i |ωχ
d,i|

(6)

[
ω̂χ
d,i

]r
=

[ωχ
d,i]

r∑
i |[ωχ

d,i]
r|

(7)

Pd+1 =
∑
i

ω̂χ
d,i × rd+1,i (8)

[Pd+1] =
∑
i

[
ω̂χ
d,i

]
× rd+1,i (9)

.

2.3.2 Strategy based on the forecast of the fine tuned version of
Chronos

Secondly, we used a very naive solution for fine tuning from the pretrained
weights which could be a nightmare in practice (Goodfellow et al. (2013)).
We trained Chronos which was initiated at the beginning of the backtest with
the pretrained weights. The training was realized on a daily basis during the
backtest using the available financial market data starting on every day with
the weights of the previous day. On every day d, we provided as input to
Chronos the updated time series available at day d using the the previous
100 days. We test different parameters for τ the maximal number of steps
for the daily training. We also used different values of the parameter α in
Eq 1 so that Chronos receives the EMA. Thanks to that feed, Chronos can
adapt its weights according to the properties of the financial time series.

The continuous training led to Chronos model to update its weights for
each day of the backtest. We then determined the portfolio weights based on
the predictions using the fine-tuned weights instead of the pretrained ones.
Finnaly we use exactly the same evaluation’s receipe than the one described
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in section 2.3.1 with the only difference that the pretrained weights were
replaced every day by the fine tuned weights determined at that day.

We do not claim that our methodology for fine tuning is optimal, as there
are likely better methods to empirically determine an improved approach
by controling overfitting and the loss of the pretrained weights through the
analyze of the statistics of the eigenvalues derived from the millions of weights
(Martin (2019, 2024)). However, this falls outside the scope of our current
study. For instance, the drawback of our methodology is that the pretraining
weights are gradually forgotten over time, which is not an ideal solution.

2.3.3 Evaluation of other strategies for comparaison

Third, we compare the results of Chronos to those obtained by replicating the
CNN Transformers model of Guijarro-Ordonnez et al. (2022) whose number
of parameters is only 169 which appears quite small compared with the 11
million of the Chronos one. We also include the results achieved using au-
toARIMA from the statsforecast package ( https://pypi.org/project/statsforecast/)
as it is a standard benchmark in Machine Learning, as well as the short term
reversal STR described in Jegadeesh (1990); Jegadeesh and Titman (1993)
which is a well-documented market anomaly that was first noted by Fama
(1965).

The short term reversal (STR) strategy was derived in Eq 10 with both
β = 1 − 1

5
and β = 1 − 1

20
using a simple exponential moving average on

residual returns rd+1,i at day d+1 and single stock i when extracting common
factors from the IPCA, PCA or FF. The portfolio of the STR is then derived
in Eq 11 with ωζ

d using the same methodology as above where N is the
number of single stocks.

The AutoARIMA was also fit in a continuous way every day during
the backtest using the previous 100 days × N observations and yielded to
forecasts Ad and the portfolio weights ωA

d were also derived with the same
methodology Eq 12.

r̃d+1,i = β × r̃d,i + rd+1,i (10)

ωζ
d = ℜ [ℜ (−r̃d)]−

N

2
(11)

ωA
d = ℜ (ℜ (Ad))−

N

2
(12)
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3 Our empirical results

We observe that the pre-trained Chronos model with α = 0.3 effectively iden-
tifies opportunities in the financial market, achieving a Sharpe ratio above
3.17 for PCA over a 15-year period, which corresponds to a t-statistic of
3.17

√
15 = 12.27. However, trading costs are prohibitive, as including a 3

basis point slippage cost per trade results in negative net Sharpe ratios (see
Table 1).

α 0 0.1 0.2 0.3 0.4 0.5 0.8

FF 0.07 1.27 1.80 1.84 1.39 1.39 -0.24

PCA 0.04 2.08 2.75 3.17 3.25 2.71 0.07

IPCA -0.47 0.68 1.19 1.34 1.42 1.18 -0.81

Table 1: Simulation of the Gross sharpe ratio of the strategy based on the
zero-shot pretrained prediction of Chronos when using as input the exponen-
tial moving average of daily residual returns through using either the IPCA,
the PCA or FF. α is the parameter of the EMA from Eq 1. The period is
2002-2016.

Additionally, we note a decline in profitability over time, suggesting that
markets may be becoming more efficient or that opportunities are increas-
ingly challenging to capture or that returns used to be more negatively au-
tocorrelated before 2008 (see Figure 1). However, at least until 2007, it was
easier for AI to capture inefficiencies.

It is particularly interesting to observe that the pre-trained version with
α = 0 is ineffective until 2007 but seems to work after 2008 (see Figure 1).
In our interpretation, Chronos is pre-trained on data where ’trend’ serves
as an efficient indicator, whereas in our dataset, residual returns tend to
be negatively autocorrelated in the short term. We believe that α = 0.3 is
optimal, as it offsets this effect, helping Chronos to overcome biases from its
trend-oriented training dataset.

Setting α = 0.3 artificially aids Chronos; however, it ultimately gets very
correlated to the Short-Term Reverseal (STR) strategy with β = 0.3 but
fails to outperform it . In other words, when Chronos is provided with the
Exponential Moving Average (EMA), its performance does not exceed that
of a zero forecast. Nevertheless, it avoids being affected by detrimental noise,
which is already a positive outcome.
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FF PCA IPCA

pretrained Chronos α = 0.2 1.80 2.75 1.19

trained Chronos α = 0 τ = 15 0.24

trained Chronos α = 0.3 τ = 5 2.12 3.90 2.29

trained Chronos α = 0.3 τ = 15 3.97

resized trained Chronos α = 0.3 τ = 15 4.21

trained Chronos α = 0.3 τ = 40 3.80

CNN Transformer 3.15 5.01 4.29

STR β = 0.2 2.23 4.16 2.31

STR β = 0.3 2.16 4.03 2.31

resized STR β = 0.3 2.31 4.27 2.32

STR β = 0.8 1.24 2.42 1.76

STR β = 0.95 0.98 1.38 1.20

autoARIMA 1.43 2.10 1.22

Table 2: Simulation of the Gross sharpe ratio of the strategy α is the param-
eter of the EMA in Eq 1. β is the parameter of the EMA in Eq 10. τ is ’max
steps’ input in the fine-tuned version of Chronos. The period is 2002-2016.

Table 2 presents the Sharpe ratios for the fine-tuning case as well as for
the benchmarks.

When setting α = 0, Chronos requires fine-tuning with τ = 15 to achieve
a Sharpe ratio of 0.24, which corresponds to a t-statistic of 0.24

√
15 = 0.92. It

appears to work well until 2008 (see Figure 1), but after that, the pre-trained
configuration may have been completely forgotten due to the numerous fine-
tuning processes performed since 2002. It might be interesting to test a
version where there is a regular reinforcement of the pre-trained configuration
to ensure it remains in memory.

Additionally, the correlation with the STR strategy is not significant when
α = 0 and τ = 15. In contrast, the CNN-Transformer appears to be primarily
a linear combination of STR strategies at different time scales. This suggests
that the opportunities captured by Chronos may be more complex than those
driven by basic mean reversion. We also observe that the autoARIMA model,
which is a classical benchmark in Machine Learning underperforms the STR
model, demonstrating that fitting a model is particularly challenging when
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Figure 1: Simulation of the strategy. α is the parameter of the EMA in Eq
1. β is the parameter of the EMA in Eq 10. τ is ’max steps’ input in the
fine-tuned version of Chronos.

the data are nearly random and contain significant noise. This results in
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underperformance compared to more rigid models like STR.
We can also see that resizing the weights inversely proportional to the

volatility improves the Sharpe ratio for Chronos, as well as for the bench-
marks.

Finally, it is interesting to note that the optimal τ for training appears
to be 15. When τ = 40, the Sharpe ratio decreases, suggesting that Chronos
may lose some of its pre-trained intelligence.

4 Conclusion

Our results show that AI, specifically LLMs, can be trained on large datasets
that exclude financial time series and still exhibit enough intelligence to iden-
tify opportunities in the financial market, previously considered too challeng-
ing for AI, without the risk of overfitting. Currently, AI lacks the “intelli-
gence” to find opportunities that remain profitable when factoring in trading
costs, but we can anticipate that advancements in AI may eventually make
this feasible.

Nevertheless, we believe that specialized models, such as those by Valeyre
(2024), which theoretically capture well-established opportunities in an opti-
mal way (like trends), will always prove more efficient, while AI could serve
as a valuable tool for identifying more complex opportunities.

That belief is justified by the case of the strong outperformance of the
STR compared to AutoARIMA, which can capture more complexity but
whose noisy fit makes it suboptimal and overly erratic.
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A Data

The datasets provided by Guijarro-Ordonnez et al. (2022) are released at
https://github.com/gregzanotti/dlsa-public/tree/main/residuals

B Parameters of Chronos

We downloaded the python package:

1 !pip install git+https :// github.com/amazon -science/

chronos -forecasting.git

B.1 Parameters of pretrained version of Chronos

We used the version ”amazon/chronos-t5-tiny” with the following parameters
in python:

1 ChronosPipeline.from_pretrained( "amazon/chronos -t5-tiny

",device_map="cuda", torch_dtype=torch.bfloat16)

1 load_model(

2 model_id="google/t5-efficient -tiny",

3 model_type="seq2seq",

4 vocab_size =4096 ,

5 random_init=False ,

6 tie_embeddings=False ,
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7 pad_token_id =0,

8 eos_token_id =1)

1 forecast = pipeline.predict(batch_context , 1)

1 predictions = np.mean(forecast.numpy (),axis =1)-

alpha_chronos*np.reshape(data_train_t[-1,group*

size_goup_chronos :(group +1)*size_goup_chronos ],(np.

shape(data_train_t[-1,group*size_goup_chronos :(group

+1)*size_goup_chronos ])[0],1)) #-all_timeseries

[-1,:]#np.quantile(forecast.numpy (), 0.5, axis =1)

2 eline.predict(batch_context , 1)

B.2 Parameters of Fine tuned version of Chronos

From the inital version set from the pretrained case at the begining of the
period of the backtest, we update the weights of the chronos model at every
day of the backtest from the weights obtained at the previous day by exe-
cuting every day 10 times on 10 subgroups of the universe τ ”steps” inside
”trainer.train()” (τ successive corrections of the weights using the ”adamw
torch fused” gradient algo) per day in the backtest using the past 100 days.
τ was tested to 5, 15 and 40. τ is the maximum training steps, i.e. the
”max steps” parameter in the ”TrainingArguments” method. We used the
following parameters in python:

1 chronos.ChronosConfig(

2 tokenizer_class=’MeanScaleUniformBins ’,

3 tokenizer_kwargs ={’low_limit ’: -15.0, ’high_limit ’:

15.0},

4 n_tokens =4096 ,

5 n_special_tokens =2,

6 pad_token_id =0,

7 eos_token_id =1,

8 use_eos_token=True ,

9 model_type="seq2seq",

10 context_length=length_training_chronos -1,

11 prediction_length =1,

12 num_samples =20,

13 temperature =1,
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14 top_k=50,

15 top_p=1,

16 )

1 TrainingArguments(

2 output_dir=str("./ output/"),

3 per_device_train_batch_size =32,

4 learning_rate =1e-3,

5 lr_scheduler_type="linear",

6 warmup_ratio =0,

7 optim="adamw_torch_fused",

8 logging_dir=str("./ output/logs"),

9 logging_strategy="steps",

10 logging_steps =500,

11 save_strategy="steps",

12 save_steps =500,

13 report_to =["tensorboard"],

14 max_steps =5,#200000 ,

15 gradient_accumulation_steps =2,

16 dataloader_num_workers =0,#len(loaded_data),

17 tf32=True , # remove this if not using Ampere GPUs (e.g

., A100)

18 torch_compile=True ,

19 ddp_find_unused_parameters=False ,

20 remove_unused_columns=False ,)

1 shuffled_train_dataset = tch.ChronosDataset(

2 datasets =(tch.create_gluonts_dataset(all_timeseries ,

daily_dates[length_training_chronos+t:

length_training_chronos+t+1])), #list(tch.

create_gluonts_dataset2(loaded_data))

3 probabilities =[1.0 / len(all_timeseries)] * len(

all_timeseries),

4 tokenizer=chronos_config.create_tokenizer (),

5 context_length=length_training_chronos -1,

6 prediction_length =1,

7 min_past =50,

8 model_type="seq2seq",

9 imputation_method= None ,

10 mode="training",
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11 ).shuffle(shuffle_buffer_length =100)

1 trainer = Trainer(

2 model=model ,

3 args=training_args ,

4 train_dataset=shuffled_train_dataset ,)

1 trainer.train()

C Parameters of the CNN Transformers strat-

egy

We used the following major parameters provided by Guijarro-Ordonnez
et al. (2022) we did not change from https://github.com/gregzanotti/

dlsa-public/tree/main/config

1 # Major parameters

2 mode: "test" # can be ’test’ or ’estimate ’

3 results_tag: "" # optional; try not to use

underscores in this tag , use dashes instead

4 debug: False # set to True to turn on debug

logging and file naming

5 # Model parameters

6 model_name: "CNNTransformer" # name of a class

defined in models folder and initialized in

model folder ’s __init__.py

7 model: { # contains parameter settings for

__init__ () function of class with name ‘

model_name ‘

8 lookback: 30, # number of days of

preprocessed residual time series to

feed into model

9 dropout: 0.25,

10 filter_numbers: [1,8],

11 filter_size: 2,

12 attention_heads: 4,

13 hidden_units_factor: 2, # multiplicand

of last item in ‘filter_numbers ‘;
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determines number of hidden units (e.

g. 2*8 = 16)

14 # hidden_units: 16, # use either

hidden_units or hidden_units_factor ,

but not both

15 normalization_conv: True , # normalize

convolutions or not

16 use_transformer: True ,

17 use_convolution: True ,

18 }

19 # Data parameters

20 preprocess_func: "preprocess_cumsum" # name of

a function defined in preprocess.py

21 use_residual_weights: False # use residual

composition matrix to compute turnover , short

proportion , etc.

22 cap_proportion: 0.01 # defines asset universe:

0.01 corresponds to a residual data set

23 factor_models: { # number of factors per

residual time series to test , for each factor

model

24 "IPCA": [5],

25 "PCA": [5],

26 "FamaFrench": [5],

27 }

28 perturbation: { # perturbation of residual time

series by noise is optional , leave empty or

comment out entirely to disable

29 # "noise_type" : "gaussian",

30 # "noise_mean" : 0.0,

31 # "noise_std_pct" : 2,

32 # "noise_only" : False ,

33 # "per_residual" : True ,

34 }

35 # Training parameters

36 num_epochs: 100

37 optimizer_name: "Adam" # see PyTorch docs for

potential optimizers

38 optimizer_opts: { # see PyTorch docs for

optimizer options
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39 lr: 0.001

40 }

41 batch_size: 125

42 retrain_freq: 125 # if mode==’estimate ’, this

is the number of obs used to form a test set

(chronologically after the training set)

43 rolling_retrain: True # set to False for no

rolling retraining (i.e. train once , test for

all data past training set)

44 force_retrain: True # force the model to be

trained , even if existing weights for the

model are saved on disk

45 length_training: 1000 # size of rolling

training window in trading days

46 early_stopping: False # employ early stopping

or not

47 objective: "sharpe" # objective function: ’

sharpe ’ or ’meanvar ’ or ’sqrtMeanSharpe ’

48 # Market frictions parameters

49 market_frictions: False # enable or disable

50 trans_cost: 0 # cost in bps per txn side per

equity , e.g. 0.0005

51 hold_cost: 0 # cost in bps for short positions

per equity per day , e.g. 0.0001
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