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ABSTRACT

Reinforcement learning works best when the impact of the agent’s actions on its environment can be
perfectly simulated or fully appraised from available data. Some systems are however both hard to
simulate and very sensitive to small perturbations. An additional difficulty arises when an RL agent
must learn to be part of a multi-agent system using only anonymous data, which makes it impossible
to infer the state of each agent, thus to use data directly. Typical examples are competitive systems
without agent-resolved data such as financial markets. We introduce consistent data time travel for
offline RL as a remedy for these problems: instead of using historical data in a sequential way, we
argue that one needs to perform time travel in historical data, i.e., to adjust the time index so that both
the past state and the influence of the RL agent’s action on the state coincide with real data. This both
alleviates the need to resort to imperfect models and consistently accounts for both the immediate
and long-term reactions of the system when using anonymous historical data. We apply this idea to
market making in limit order books, a notoriously difficult task for RL; it turns out that the gain of
the agent is significantly higher with data time travel than with naive sequential data, which suggests
that the difficulty of this task for RL may have been overestimated.

1 Introduction

Training an agent with Reinforcement Learning (RL) requires a faithful description of the interaction of the agent with
its environment. This makes it possible to account for the long and short term impact of the agent’s actions, and thus to
compute realistic rewards. Some systems are more amenable to RL than others: video games, and by extension artificial
worlds, offer a perfect environment simulator (Mnih et al., 2015; Schrittwieser et al., 2020). Most world simulators
account for the agent’s impact imperfectly, which may not matter much if the agent’s impact is likely to be small and
short-lived. Historical data offers another way to perform offline training (see Levine et al. (2020) for a review).

RL is least effective when used in systems that are very sensitive to every single event with only partial information,
because they are hard to simulate and publicly available data is incomplete. In other words, RL training may be so
imperfect as to lead the agent to learn erroneous wisdom from wrong rewards or obtaining systematically biased
rewards, leading to overly optimistic or pessimistic outcomes.

Here, we tackle the offline training of a RL agent with only anonymous data for competitive, asynchronous, hyper-
reactive multi-agent systems with long memory, action latency, and for which no good model exists. Specifically, we
are interesting in high-frequency trading where the agents send orders or update them very frequently, but our approach
generalises to other such multi-agent systems.

High-frequency traders exchange assets via so-called order-driver markets, where a matching engine aggregates a
sequence of orders to buy or to sell a given asset at prices chosen by traders. Buy and sell orders that can be matched
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result in transactions, while sell orders whose price is larger than that of buy orders are kept in a register called a limit
order book (LOB) until they are matched or cancelled by their owner. The order flow is treated asynchronously, each
new event giving rise either to a new order in the LOB, a new transaction, or a cancellation.

A subspecies of high-frequency traders are market makers who propose buy and sell orders simultaneously. They make
money by selling at higher prices than buying; since they have no guarantee to buy and sell the same quantity at about
the same times, they also must learn how to fix prices so as to control their inventory and avoid situations where prices
move in an adverse way given their inventory. Because traders, and thus market makers, are competing against each
other and because the environment is very sensitive to each event, successfully training and deploying a RL agent is
hard.

Let us explain the consequences of the specific difficulties that we face here.

Competitive asynchronous multi-agent systems Learning in competitive systems may lead to unstable dynamics
when learning is too fast with respect to the quantity of available information, as seen in numerous agent-based models
which undergo a signal-to-noise driven transition between stable and unstable dynamics (see e.g. Chiarella (1992);
Marsili et al. (2000)). Unstable behaviour includes herding whereby a finite fraction of the population ends up taking
the same action repeatedly, which leads to large fluctuations. Asynchronicity encourages imitation, hence herding.

Latency and actions with indirect impact on the environment Latency causes additional headaches for RL: indeed,
as there is a delay between the communication of the environment state and the implementation of the action of an
agent, the connection between state, action, and reward becomes much looser. Even if the data have a nano-second time
resolution, in practice market makers suffer significant latencies when acquiring the data, computing their actions, and
transmitting them to the market. Latency matters to the type of agents we wish to train: market makers try to minimize
their latency by renting computer racks as close as possible to the matching engines of the LOBs and buying access to
the fastest networks between two exchanges.

In addition, the choices open to market makers are essentially where to place their limit orders with respect to reference
prices. If the latter change, even if the agent keeps the same choice (i.e., action in his point of view), he has to adjust the
price of his orders, i.e., have an impact on the market even if his action has not changed. This is what we call actions
with indirect impact.

Very sensitive systems with long memory Some systems, and especially multi-agent competitive systems with
adaptive agents, may be very sensitive to a single event, for example because there is not much information left and
each event may reveal new information, and remember it for a long time.

In financial markets, each order has a long-term impact on future events (Lillo and Farmer, 2004; Eisler et al., 2012),
which leads to very complex but highly non-random dynamics (see Abergel et al. (2016); Bouchaud et al. (2018);
Lehalle and Laruelle (2018) for recent reviews).

Anonymous data for multi-agent systems When there is a single agent interacting with its environment, RL is
usually formalized by defining the state of the system (environment and agent) st at time t, the (re-)action of the agent,
at, and its reward Rt. If the data (or the model) is trustworthy enough, then learning the associations between states,
actions, and future rewards, is within reach of various RL algorithms.

Consider now the case of multi-agent systems. If the data is agent-resolved, i.e., if one knows which agent took which
action, the state of each agent can be tracked easily and thus the payoff corresponding to each action can be inferred at
least partially. In short, off-line learning is not much different from the single-agent case.

When the multi-agent data are anonymous, the consequences are far reaching: not only one does not know how
may agents there are, but one can infer neither their state nor their reward, even with inverse RL. Some degree of
approximation is inevitable.

In order-driven markets, the best publicly available data only reports the orders identification number, not their owners,
and is therefore anonymous. Brokers and some academics do have trader-resolved data.

Hard-to-simulate systems The usual way to alleviate data anonymity is to use simulators. Unfortunately, and
unsurprisingly, asynchronous, competitive, very reactive multi-agent systems with long memory and latency are hard to
simulate. In that case, there may be no model good enough that guarantees that a RL agent will not simply learn to
exploit an idiosyncratic weakness of the model and thus have a poor performance when deployed live.

Leveraging RL is very natural in a financial context, as market participants have a clearly defined objective function and
the average reaction of the LOB to a single event has systematic part. For a generic review on the use RL in finance,
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see Hambly et al. (2023). We note however that previous attempts to use RL for a market making agent either used
data while neglecting the event-by-event influence of the action of the RL agent on the future stream of events (see e.g.
Spooner et al. (2018)), or used LOB simulators, however sophisticated, that only imperfectly mimic real markets (e.g.
(Frey et al., 2023; Kumar, 2020)).

Here we propose a generic way to use data in a consistent way for hyper-sensitive hard-to-simulate multi-agent systems
with anonymous data, taking market making as an example. In essence, we advocate consistent data time travel,
whereby after the RL agent takes an action, the time index is incremented so that the effect of the action of the RL agent
onto the system is consistent with historical data, which may require to jump to another time chosen so as to have both
the same state before the time of agent’s action and reflecting the influence of the agent action consistently.

2 Interacting with anonymous multi-agent asynchronous data

Imagine a system (e.g. a limit order book, excluding the traders) whose state is described by a set of variables Xt,
where the discrete variable t indexes the events. For the sake of simplicity, assume that Xt can only be modified by an
elementary action αt ∈ A, the set of possible elementary actions for that particular system (e.g., add or cancel an order).

It is important to differentiate between the elementary actions (at the system level) and the actions of the agents,
because the latter may involve several elementary actions and the mapping between the two types of actions may be
context-dependent, as will be made clear in the following.

We write the dynamics of the system as an update equation for X:

Xt+1 = F (Xt,αt).

In multi-agent systems with agent-resolved data, the elementary action at time t can be attributed to agent it ∈
{1, · · · , N}.

Imagine that one wishes to train a RL agent, j, who receives state sj,t and decides to take an action aj,t which results in
an effective action αj,t. There seems to be two possibilities:

1. one inserts the RL agent elementary action in the historical sequence, i.e, one adds αi,t just before the historical
action αt

2. one replaces the historical elementary action αt by the agent’s action αj,t.

The first possibility has the advantage of simplicity: it assumes that the insertion of another event does not change the
future sequence of orders, hence that the impact of the new event is effectively zero. It is a good scheme for systems
which are weakly sensitive to a single elementary action. While it is the usual approach taken by RL papers on market
making (e.g. Spooner et al. (2018)), which have to assume that the order size is negligible, limit order books are known
to be very sensitive to every single change and do remember them for a long time (see e.g. Eisler et al. (2012)). The
biases induced by this assumption are certainly important but hard to quantify. The second possibility also assumes that
the system is only weakly sensitive to the change of a single elementary action. It however offers a perfect simulation
of the reaction of the system if the effective action of the agent is the same one as the historical one, i.e., if α(i)

t = αt.
Using historical data naively is therefore only recommended for weakly reactive systems with a short memory. When
no good model exist, it is still tempting to use historical data, accounting in some way for the impact of the additional
RL agent.

This is why we propose here a third possibility: data time travel. Its aim is to maximise the consistency of the influence
of the new RL agent’s actions with what happened next in the system, i.e., with the next effective actions. To achieve
this aim, instead of using historical sequentially, the time index may jump if needed to another point in time that shares
both the same system state and the same effective actions resulting from actions of the RL agent: consistency is defined
at the level of the system with which the agent interacts. In the context of learning to trade or to be market makers,
this may sound rather worrying as it breaks causality in a strict sense. However, provided that the state of the market
sufficiently encodes the relevant part of history, it is a better way to use historical data than to completely neglect any
influence of the RL agent on the dynamics of the system.

Formally, assume that the state of the system (LOB) is Xt and that the historical effective action was αt. RL
agent chooses to play at which results in elementary (effective) action α̃t. The next system state is thus given by
Xt+1 = F (Xt, αt) in historical data and X̃t+1 = F (Xt, α̃t). There are two cases:

1. X̃t+1 = Xt+1: in this case, the next state of the system given by historical data corresponds to the state
induced by the action of the RL agent: the use of historical data is clearly consistent;
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2. X̃t+1 ̸= Xt+1: there may be a large discrepancy between X̃t+1 and Xt+1 and by extension at later times, i.e.,
between X̃t+τ and Xt+τ with τ ≥ 1.

The latter case is the source all the problems when using historical data naively. Data time travel instead proposes
to jump in these cases to another time which is more consistent with the influence of the RL agent onto the system.
Imagine that t′ is such that

Xt′ = Xt (1)

Xt′+1 = X̃t+1. (2)

Equations (1) and (2) define a consistency criterion between the states at time index t′ and t′ + 1 and those induced by
the RL agent at time t. Accordingly, one should jump to time t′ and continue the training of the RL agent from t′ + 1.

There are two potential complications:

1. there are more than one time index that are consistent with the influence of the RL agent. In this case, one can
choose uniformly from this set, or impose additional constraints (proximity-based, causal, etc.).

2. there is no consistent time index, which is the norm if the state is a continuous variable (or a vector that
includes continuous variables). The solution is instead to define a distance between two states and to find the
indices that minimize it.

In practice, minimizing a distance is costly as there are O(N2) comparisons to perform (and possibly to store), and N
may be too large. In the following, we define discrete states which ensures that the distance may be zero.

3 The case of limit order books

In order-driven markets, traders send wishes to buy or sell preset prices. For example, a buy order i has a price pi and
volume vi; when it is sent to the market, it either finds a pre-existing sell order with a compatible price (lower or equal
to pi), or it is stored in the so-called limit order book (LOB).

Let us introduce some useful notations. At time index t, the best buy orders in the LOB have a price b1,t, the best sell
orders have a price c1,t (shortened to bt and ct), while the second buy (sell) prices are denoted by b2,t (c2,t). In addition,
the total volume of all the orders at bk,t (ck,t) is V B

k,t (V S
k,t).

Let now introduce the actions of the RL agent and their influence on the state of the LOB. While a typical trader
sometimes advertises an order of a single type (buy or sell), market makers usually display both a buy limit order and a
sell limit order at all times, which ensures that the LOB may be useful both for buyers and sellers at any given time by
containing enough available volume on both sides.

A market maker’s role is to have a buy and a sell order at the same time in order to provide liquidity on both sides. The
whole question for a market maker is thus where to place her orders. The simplest idea is to place them at the best
prices. If bt and ct are constant, the market maker earns the spread σt = ct − bt each time some buys one share and
someone else sells one share. Both cumulative amount sold vSMM,t and amount bought vBMM,t up to time t are not
likely to be equal, thus she accumulates a net inventory Jt = vBMM,t − vSMM,t of shares bought and sold, which is risky
if the prices move in the wrong direction.

If she places her orders symmetrically with respect to the mid price mt = (bt + ct)/2, Jt follows on average an
unbiased random walk. However, by posting limit orders asymmetrically, e.g. the sell order at bt and the buy order at
the second best price b2,t, the MM may control the respective execution probabilities of her orders, hence indirectly
(stochastically) controlling the evolution of her inventory. This is called skewing one’s quotes. One order may be placed
much beyond the second best price in practice in order to minimize the risk of having an inventory increasing in the
wrong direction. When price skewing fails to limit the absolute value of Jt and thus the inventory reaches a maximum
preset value, the MM is assumed to liquidate her whole inventory (Guéant, 2017; Bergault et al., 2021; Barzykin et al.,
2023).

We assume that each order may be placed either at the best price (denoted by 1) or the second best price (2), which
gives two symmetric order placement choices, two asymmetric ones, and a liquidation action (∅): the market maker
here has five actions to choose from: at ∈ A = {1, 2}× {1, 2} ∪ {∅, ∅}, where the first coordinate denotes the buy side
and the second one the sell side and × is the set outer product.

These are the actions of the RL agent, not to be confused with the effective elementary actions on the system which
describe what actually happens in the LOB: one can describe an event in the LOB, restricted in the first two ticks and
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the spread, by α ∈ A = {δk,ξ}k=0,1,2;ξ∈{B,S}, where δ is the size (signed) of the event, k is the index of the price
queue, 1 denoting the best price queue on the ξ side, 2 the second best, and 0 the spread. Note that removing liquidity
can be caused either by a trade or by a cancellation. The point is that a single event in the LOB corresponds to a single
effective action.

The mapping between the RL agent actions and the effective elementary actions is not unique: the RL agent’s actions
correspond to a strategy of order placement relative to current best prices. As as consequence, if the agent action
changes, or if at least one current best price changes, the RL agent may need to update her orders in the LOB, which
results in a series of order cancellation and placement, i.e., a set of elementary actions.

Another complication originates from the fact a trader cannot be as fast as the matching engine, hence, cannot react
instantaneously to each tick t → t + 1. We need therefore to introduce the update index of the RL agent, u, with a
mapping to the event index t(u) for all u. Imagine that the RL agent actions are the same for update indices u and
u+ 1, e.g. au = au+1 = {1, 1}. Let us focus on the buy side:

1. if the best prices did not change at all between two updates, i.e., bt′ = bt(u) and ct′ = ct(u) for all t′ ∈
{t(u), · · · , t(u+ 1)}, then the MM has nothing to do;

2. if bt(u+1) > bt(u), the MM has to cancel her buy order at price bt(u) and add a new one at price bt(u+1) so as
to keep her buy order at the best buy price. This results in the two effective actions +1,B and −2,B if bt(u)
equals the second best price at time t(u+ 1) (and only +1,B otherwise).

3. if the buy order of the MM has been fully executed by transactions between two updates, she needs to send a
new buy order at bt(u+1), which corresponds to one effective action +1,B .

The set of effective elementary actions thus must be determined at each t(u) and may be different for all possible
actions and market moves.

There are several ways to account for latency while training the RL agent. The simplest one is to assume that the RL
agent can update its action at most every l seconds (l can be much smaller than 1). This is realistic if the exchange
disseminates information with a latency much larger than the total agent latency (communication from the exchange,
processing, communication to the exchange), or in the limit of much larger processing time than both communication
latencies. A more realistic setting would consider the inbound latency lin, the processing time lproc, and the outbound
latency lout: the RL agent would be active every lproc seconds and receive the LOB state with a delay of lin, and its
effective actions would therefore be valid with an additional delay of lout. In the following, we use the first setting.

3.1 Market and agent states

When active at time t(u), the RL agent receives state st which describes both her internal state it and the state of the
LOB Xt, st = (it, Xt)

The state of the LOB Xt should describe the quantities that are relevant to predict the next LOB state. This a tall order,
as the influence of every single event has a long lasting effect. Instead, for the sake of simplicity, we focus on the most
salient features of LOB that can be encoded in a simple way. What most matter to a market maker is the side (buy/sell)
where the next execution takes place, as this information is closely related to how she should skew her quotes in order
to adjust their execution probabilities. It is known to depend much on average on the imbalance of the total order size
on the best prices

It =
V

(B)
1,t − V

(S)
1,t

V
(B)
1,t + V

(S)
1,t

.

This strongly suggests to use the sign of It (including 0) as a crude yet meaningful encoding of the expected execution
side. Hence, we approximate It ∼ Xt.

The state of the agent it consists in the sign of its inventory, including 0. The idea is that the agent should learn how
to skew her quotes according to her inventory. Thus both the states of the market and of the agents are as simple as
possible in order to simplify learning.

3.2 Data time jumps

3.2.1 Consistency states

Ensuring that data time travel is consistent requires however a more precise description of the market state and of the
influence of the RL agent on the market. Jumping between time indices t and t′ will be deemed consistent if they first
share
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1. the same quoted volume imbalance sign It = It′ ;
2. the same spread σt = σt′ ;

thus, one has µt = (It, σt) = µt′ = ((It′ , σt′)).

In addition, and crucially, the effective action set caused by the RL agent at, denoted by {αt,at
} must also correspond

to what happened after time t′ in historical data. This makes the minute dynamics of the LOB after at follow precisely
what would have happened and is the main reason why data time jump improves on the current naive methods. Finding
effective events with exactly the same sizes δ is unlikely, thus we only consider the signs of the effective actions. In
some cases, historical data is fully compatible with the actions taken by the RL agent. Most of the time, though, one has
to jump.

Note that the effective actions may occur in any order in the historical data; in addition, it may be interspersed with the
effective actions due to other traders because of the asynchronous nature of LOBs. As a consequence, we ask for the set
of effective actions to be found, in any order, within Tset time indices of t′.

Finally, it may well be that there is no t′ within the same day that has the same µt and {αt,at}. This most often happens
because of the spread, which can take many values. We therefore allow some leeway when needed: t′ is admissible if

|σt − σt′ | < ∆σmax. (3)

In practice, we check for compatible jump times with the smallest spread difference in absolute value that still satisfy
condition (3). We take ∆σmax =0.3C.

One usually finds more than one candidate jump time. Several restrictions on the jump times can be implemented. For
example, one may only allow to jump in the future, in which case the historical data are rapidly exhausted. One also
can only allow to jump in a restrict time interval around current time. The risk is to be stuck for a while in a periodic
state. We chose to jump to a time chosen at random in the set of candidate times after removing times too close to the
current one (10 ticks here). If we do not find any suitable jump time, we simply carry on and jump to t+ |{αt,at

}|, i.e.
the time index incremented by the number of effective actions.

3.3 Computational speed

We pre-compute separate dictionaries of indices with the a given I , µ, or A. The set of candidate jump times for a
given tuple (I, µ,A) is then simply the intersection between candidates from each dictionary, to which one applies the
condition on the spread (3). This makes the the distance computation loose its O(N2) complexity if N is the number of
data points (N ∼ 105 here).

The occurrence of a given type of elementary event in a given time interval [t, t+ Tnext] can encoded by a binary vector
(1 if at least one occurs, 0 otherwise). We therefore pre-compute these vectors for all t′ within Tnext = 20 events from t.

4 Methods

4.1 Data

This study uses data from BEDOFIH, a high quality data base for academics from Eurofidai. It contains all the needed
information to recreate the tick-by-tick history of all the orders sent to several European exchanges. Here we focus
on Paris Stock Exchange, more specifically on the most traded asset, Total Energies. We select four arbitrary days
D =(2016-01-05 to 2016-01-08). For each day, we keep the full information (order by order) on the two best prices on
each side of the LOB, which yields about 200,000 events per day on average.

4.2 RL setup

The RL market makers use Q-learning: at activation time t(u), the agent receives state su and decides where to place
her limit orders. For the sake of simplicity, we restrict the choices to the first two best current limit prices on either side,
which yields four action, and the choice to liquidate the inventory, which is denoted by au = ∅.

The key here is that the payoff is determined by the relevant events that occur between t(u) and t(u + 1) − 1. We
accumulate the tick-by-tick rewards between two successive RL agent activation times. The payoff functional forms
follow Spooner et al. (2018).

At time t, an inventory Jt yields a payoff

R
(J)
t = Jt × (mt −mt−1) (4)
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and the total payoff between two activation times is the sum of R(J)
t . The inventory changes when the orders of the

agents are executed, hence the cumulative payoff is not simply the inventory at t(u) times the change in mid price.

Between two activation times, the MM cannot update the price of her orders, which may be therefore partly or fully
filled, by a single transaction or by many of them. To simplify the discussion, let us focus on the buy order of the MM
placed at price bMM

u . There are three events that trigger partial or full execution:

1. a transaction of volume V trans
t took place in historical data at time t and price bMM

u ; denoting the remaining
volume of the buy MM order just before the transaction by vBMM,t and the volume at that price in historical
data by vBt , we assume that the MM order matched volume is proportional to the total volume at the best buy
price: vBMM,t+1 − vBMM,t = vBMM,tvt/(v

B
t + vMM,t)

2. a transaction took place at time t at a price smaller than bMM,u; full execution;

3. the best sell price is larger or equal to bMM,u; full execution.

Each execution of volume vMM entails a reward

RB,exec
t = vMM (mt−1 − bMM,u) (5)

When the time index reaches t(u+ 1), the total reward between two updates is computed and is made of the inventory,
buy, and sell rewards. The RL agent is trained with ϵ-greedy Q-learning, where the matrix element Qst,at is updated
according to Sutton and Barto (2018)

Q(st, at) = Q(st−1, at−1) + β
[
Rt + γmax

a′
Q(st, a

′)−Q(st, at)
]

(6)

and then the action at is taken according to argmaxa′ Q(st, at); with probability ϵt, at is instead replaced by a random
action; initially, ϵ is set to 0.2 and multiplied by a factor 0.9999 at each update. Given that there are about 20’000
updates per day, the exploration parameter ϵ ≃ 0.05 at the end of the training period. We fix β = 0.001 and γ = 0.97.
The MM posts orders of size 100. If some of her orders are executed between two activation times, she adds more
volume to her order at the next activation time. Her maximal inventory is set to 1000 shares: whenever |Jt(u)| ≥ 1000,
she liquidates all her inventory by sending a market order, which entails a half-spread penalty times the inventory size
|Jt(u)|.

5 Results

The central question is what differences data time travel makes when training an RL agent with tick-by-tick market data.
We expect that an RL agent learns something different in either dynamics (sequential data or data time travel, shortened
to jump) and that it will show in the average payoff per update. It is not easy to have an intuition regarding which time
dynamics leads to the larger payoff in real life nor in the testing periods. However, we do expect that agents train with a
given time dynamics will perform less well when tested with the other time dynamics.

For each time dynamics and each day, we train N = 48 RL agents with a different random initial Q, which amounts to
392 agents. We use Ttrain = 15, 000 agent updates u; we tried several Ttrain in the 10000− 22500 range in order to
check for overfitting, but did not find any specific pattern of the test average gain as a function of Ttrain. This may
come from the fact that the agents still explore and learn when tested.

Each agent is tested starting from the Q matrix it had at the end of the training phase for each day of testing. The
performance of agent i trained on day d with time dynamics n and tested on day d′ with time dynamics n′ is defined as
the average payoff per update at time t, from the start of the day, denoted by G

(d,x)→(d′,x′)
i,t . We first check the gain of

the agents on the same day as the training one, (d = d′), i.e., measure,

G
(n)→(n′)
t =

1

N

1

|D|
∑
d∈D

N∑
i=1

G
(d,n)→(d,n′)
i,t . (7)

then we compute gain cross-validated on the days not used for training, i.e.,

G
(n)→(n′)
cross,t =

1

N

1

|D|(|D| − 1)

∑
d∈D

∑
d′ ̸=d∈D

N∑
i=1

G
(d,n)→(d′,n′)
i,t . (8)
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jump → jump seq → jump seq → seq jump → seq

test on train (d = d′) 18.6(0.2) 12.5(0.2) 7.7(0.2) 6.2(0.2)
cross-validated test (d ̸= d′) 13.2(0.1) 11.7(0.1) 7.6(0.1) 6.1(0.1)

Table 1: Average gain between agent update for various train and test time dynamics combinations. Test on train refers
to gains measured on the same day as the training day, while cross-validated gain is computed on all the days different
from the training day, averaged over all the training day. The parenthesis refer to standard deviations of the average
gain. Same parameters as in Fig. 1.
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Figure 1: Average total gain of a market maker agent as a function of agent’s number of update for various combinations
of train / test time evolution scheme; test on the same day as the training, after training. Left plot: zoom on the start of
the testing periods; right plot: zoom over the last part of the testing periods. 48 agents were trained for each day and for
each time evolution scheme; 15,000 training iterations. Data: Total Energies 2016-01-05 to 2016-01-08.

We test each agent in two ways: using historical data sequentially (n′ = seq) or with time jumps (n′ = jump). In this
way, we are able to understand the influence of the time dynamics both in the training and testing phases. Although the
cross-validation setup is not strictly causal (as d′ < d is allowed), our aim is limited to demonstrate that time travel
leads to qualitatively different results.

The two plots in Fig. 1 and Table 1 illustrate our main result: they display G
(n)→(n′)
t(u) as a function of the number of

agent updates; the right hand side plot shows that agents trained and tested with the same type of time dynamics have a
larger gain than those tested on another time dynamics. This means that the type of data does matter and that agents
learn something else when fed with different types of time dynamics.

In addition, the agents trained and tested on data time travel (jump) have a larger average gain than agents trained and
tested on sequential data. One interpretation is that following the a more consistent historical dynamics yields larger
gains when training and testing RL agents. In other words, assuming neglecting ones impact on the actual dynamics
wrongly suggests that using RL for market making is harder than it actually is.

The cross-validated average gain per update (Fig. 2 and Table 1)tells exactly the same story, albeit with different average
gains. One notes that the gains of the agents tested on sequential data does not change much if tested on the say day
as the training phase (d = d′) or otherwise (d ̸= d′), which means that while they achieve a positive gain (at least in
the data used), they do not learn much specific to each day. On the contrary, testing the agents with time jumps yields
significantly smaller gains than with the train data, especially for the agents trained with time jumps. This is consistent
with the idea that consistent historical trajectories, i.e., using data time travel, contains more information.

Finally, we compute the signal-to-noise ratio of the reward per update (Fig. 3), which is mechanically larger when
there are more test days (right hand side plot). One first sees that using data time travel yields a better risk-adjusted
reward when train in the same way, and eventually for the agents trained with sequential data. For intermediate times,
the signal-to-noise ratio is essentially the same for this kind of agents when tested on either sequential data or with
data time travel. However, during the first ∼5000 updates, the signal-to-noise ratios of their gains are the same for
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Figure 2: Average total gain of a market maker agent as a function of agent’s number of iterations for various train / test
time evolution types. Left plot: zoom on the start of the testing periods; right plot: zoom over the last part of the testing
periods. Cross-validation over 5 days; 48 runs per day and time evolution type; 15,000 training iterations. Data: Total
Energies 2016-01-05 to 2016-01-08.
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Figure 3: Signal-to-noise ratio of the gain of a market maker agent as a function of agent’s number of update for various
combinations of train / test time evolution scheme; test on the same day as the training, after training. Left plot: testing
on the same day as training; right plot: testing on non-training days. 48 agents were trained for each day and for each
time evolution scheme; 15,000 training iterations. Data: Total Energies 2016-01-05 to 2016-01-08.

either time dynamics in the test phase; we interpret this as the time needed to learn how to exploit the new type of time
dynamics

6 Discussion

Using anonymous data for offline RL in a competitive multi-agent system is possible, provided that one cares to use
them in a consistent way, which naturally suggests to exploit data time travel in order to find consistent trajectories.
While we used limit order books as a textbook example of such systems, the validity of our approach is not restricted
to financial markets. Market making in limit order books provided indeed an ideal application of data time travel.
Compared to the usual naive zero-impact sequential way, data time travel yields a better signal-to-noise ratio and a
more consistent loss of gains between the test and the train periods. The importance of taking one’s impact, however
small, in a competitive multi-agent competitive system was investigated in simple games, which clearly shows that it
leads to qualitatively different global and individual behaviour, incidentally by also increasing the signal-to-noise ratio
of agent payoffs (Marsili et al., 2000; Challet et al., 2004).
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The clear difference of outcomes between agents trained and tested on either sequential data or with date time travel
shows that the agents learn a different dynamics. In our opinion, using data in a more consistent way takes more
consistent paths, i.e., paths closer to those that the system would have taken if the agents had been playing against it.
This is probably why the gain seems to be larger for agents trained and tested on consistently jumping data. The fact
that the payoff is larger when using data time travel suggests that wrong conclusions about the difficulty of training
market maker with RL may be inferred, for example the difficulty of achieving positive payoffs.

We have also emphasized the importance of accounting for the facts that the actions of a RL agent do not translate into
the same set of effective actions on the system, and that accounting explicitly for the influence of the different types of
latency make the whole problem of consistent dynamics more intricate.

While conceptually data time travel makes better use of the available data, its level of consistency depends on how
well the system dynamics is encoded by the chosen system state encoding and influence matching. For example, we
neglected the dynamics of the system before the current time when looking for compatible jump times, which can be
remedied in a straightforward way for example by include an encoding of the last few events in the limit order book.
More generally, we chose a fairly simplified setup here which has the advantage of speed. A more realistic approach
would require to use continuous variables and computing distances between dim indices, with partial and possibly
expanding index sampling. This is left for future work. Finally, we plan to investigate data time travel for training a RL
speculative agent acting at a high enough frequency.

References
Frédéric Abergel, Marouane Anane, Anirban Chakraborti, Aymen Jedidi, and Ioane Muni Toke. Limit order books.

Cambridge University Press, 2016.

Alexander Barzykin, Philippe Bergault, and Olivier Guéant. Algorithmic market making in dealer markets with hedging
and market impact. Mathematical Finance, 33(1):41–79, 2023.

Philippe Bergault, David Evangelista, Olivier Guéant, and Douglas Vieira. Closed-form approximations in multi-asset
market making. Applied Mathematical Finance, 28(2):101–142, 2021.

Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, quotes and prices: financial
markets under the microscope. Cambridge University Press, 2018.

Damien Challet, Matteo Marsili, and Yi-Cheng Zhang. Minority games: interacting agents in financial markets. OUP
Oxford, 2004.

Carl Chiarella. The dynamics of speculative behaviour. Annals of operations research, 37(1):101–123, 1992.

Zoltan Eisler, Jean-Philippe Bouchaud, and Julien Kockelkoren. The price impact of order book events: market orders,
limit orders and cancellations. Quantitative Finance, 12(9):1395–1419, 2012.

Sascha Yves Frey, Kang Li, Peer Nagy, Silvia Sapora, Christopher Lu, Stefan Zohren, Jakob Foerster, and Anisoara
Calinescu. JAX-LOB: A GPU-accelerated limit order book simulator to unlock large scale reinforcement learning
for trading. In Proceedings of the Fourth ACM International Conference on AI in Finance, pages 583–591, 2023.

Olivier Guéant. Optimal market making. Applied Mathematical Finance, 24(2):112–154, 2017.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance. Mathematical
Finance, 33(3):437–503, 2023.

Pankaj Kumar. Deep reinforcement learning for market making. In Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, pages 1892–1894, 2020.

Charles-Albert Lehalle and Sophie Laruelle. Market microstructure in practice. World Scientific, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Fabrizio Lillo and J Doyne Farmer. The long memory of the efficient market. Studies in Nonlinear Dynamics &
Econometrics, 8(3), 2004.

Matteo Marsili, Damien Challet, and Riccardo Zecchina. Exact solution of a modified el farol’s bar problem: Efficiency
and the role of market impact. Physica A: Statistical Mechanics and its Applications, 280(3-4):522–553, 2000.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

10



Data time travel for consistent market making: taming reinforcement learning in multi-agent systems with anonymous
data

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604–609, 2020.

Thomas Spooner, John Fearnley, Rahul Savani, and Andreas Koukorinis. Market making via reinforcement learning. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pages 434–442,
2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

11


	Introduction
	Interacting with anonymous multi-agent asynchronous data
	The case of limit order books
	Market and agent states
	Data time jumps
	Consistency states

	Computational speed

	Methods
	Data
	RL setup

	Results
	Discussion

