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Abstract

In this study, we propose a new systemic risk indicator to measure the distance

to the extreme losses of a financial system. Our indicator is based on cross-sectional

concomitant VaR exceptions (Co-Exceptions) observed at a daily frequency, which are

then converted into a weekly time series with only the maximums values to apply extreme

value models. A set of 95 large U.S. financial institutions is used to run the empirical

analysis over the last 20 years to check the real-time ability of our framework to predict

significant financial crises, such as the great financial crisis of 2008, the sovereign-debt

crisis of 2010 or the COVID lockdowns of 2020. Our systemic-risk indicator identifies

accurately this surges in systemic risk and provide additional information compared to

the VIX indicator or the Value-at-Risk of the market. Finally, we show that this new

measure of financial instability is explained by macroeconomic variables, such as the

industrial production and the unemployment which have a positive impact, whereas the

Consumer Price Index, interest rate and federal funds rate have a negative impact.
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†Université Paris-Dauphine, PSL University, UMR CNRS 8007, LEDa-SDFi, 75016 Paris, France. E-mail:

sylvain.benoit@dauphine.psl.eu
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1 Introduction

Keep safe distance to financial turmoils is not an easy task and financial crises in recent years

underscore the urgent need for effective financial systemic risk measurement. These events

reveals the limitations for the traditional systemic risk models to assess the extreme events.

Beyond the necessity of developing risk measures to identify systemically important banks,

many systemic risk measures capturing risk at a global level have been proposed since 2008.

Indeed, it is necessary to track the evolution of systemic risk at an aggregate level over time

to rely on a reliable thermometer and thus trigger regulatory measures to reduce systemic risk

when necessary. Brownlees and Engle (2016) propose a bottom-up approach by aggregating

individual banks’ SRISK at a national or even supranational level. Conversely, the ECB

relies on the top-down approach introduced by Hollo, Kremer, and Lo Duca (2012) with the

Composite Indicator of Systemic Stress (CISS). The CISS builds on fundamental portfolio

theory by aggregating five market-specific sub-indices, created from a total of 15 individual

measures of financial stress.

Most of the systemic risk measures tend to focus on individual financial institutions’ risk

rather than the entire financial system’s stability (Ellis, Sharma, and Brzeszczyński, 2022).

Aiming to contribute to this literature on aggregated systemic risk, we propose introducing

the concept of a safety distance to maintain in order to ensure financial stability. For this,

we rely on the idea introduced by Caporin, Kolokolov, and Renò (2017) in seeking to quan-

tify the simultaneous occurrence of jumps (co-jumps) in several stocks. These joint jumps

can be associated with major financial news, triggering short-term predictability of stock re-

turns, and determining a persistent increase (decrease) in variances and correlations of stocks

when accompanied by bad (good) news. Thus, rare and spectacular multiple jumps can be

interpreted as systemic co-jumps in Das and Uppal (2004). Instead of working at high fre-

quency and on assets with significant trading volumes, we work at a daily frequency using

the database proposed by Brownlees and Engle (2016) but extending from 2000 to 2023. We

dynamically calculate daily VaR forecasts over the entire period for each financial asset and

compare them to realized returns. Each day, we are thus able to count the simultaneous num-

ber of VaR exceptions, and these days correspond well to significant events in the financial

markets, see Table 2. Therefore, to model extreme risks, we transform this daily series into a
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weekly series containing the maximum number of simultaneous VaR exceptions observed each

week. In line with Hoga (2023), who emphasizes the importance of forecasting systemic risk

measures predictive of financial crises and declines in real activity, our approach integrates

these forecasts into a broader financial stability analysis. An extreme value model (GEV) is

then estimated on a rolling two-year window to recover the return level and the probability of

return. Gavronski and Ziegelmann (2021) also use extreme value theory in their development

of the Financial System Dependence Index (FSDI), further validating the relevance of this

approach in systemic risk measurement.

The crucial outputs of the GEV are the return level and the return probability, the return

level refers to the magnitude of extreme loss that should be observed in the financial market

and that should occur once over a given period. This allows for measuring the intensity of

extreme events in the market. The return probability is the probability that an event of

a certain magnitude will occur over a given period. The return level could be seen as the

expected number of simultaneous exceptions that should be observed over a six-week time

horizon. When the return level increases, it means that financial instability is increasing, thus

reducing the safety distance to the potential occurrence of a systemic event. This predicted

return level effectively anticipates the occurrence of major financial events, such as the 2008

financial crisis, the 2010 European sovereign debt crisis, and the COVID period. We observe

a peak in mid-2016 in our indicator but not in the VIX nor the VaR of the market caused by

the crisis with the Deutsche Bank, this finding aligns with the work of Moratis and Sakellaris

(2021), also in the 2016 Financial Stability Report of the International Monetary Fund, pointed

out that Deutsche Bank was the largest net contributor to global systemic risk, with its ISR

score reaching a peak in July 2016.

Finally, we explain (via regression) the return level with macroeconomic variables like in-

terest rate, unemployment rate, consumer price index, and so on. For the variables particularly

those reflecting monetary policy, inflation, and systemic stress, are paramount in determining

the financial system’s risk level as captured by our indicator. This helps us understand how

macroeconomic variables influence the extreme loss risk of financial institutions. It provides

an additional tool for the regulator to locate the origin of the risk.

Our work provides several contributions to the literature. Firstly, by integrating Value at

Risk (VaR) with Extreme Value Theory (EVT), our systemic risk indicator presents a novel
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and comprehensive approach for measuring risk across the entire financial system, rather than

focusing solely on individual institutions. This global perspective is crucial for understanding

systemic vulnerabilities that single-entity analyses might overlook. Secondly, our method’s

ability to capture both systemic and non-systemic risks provides a more nuanced understand-

ing of market dynamics, as evidenced by its successful identification of major financial crises

and events that traditional models like the VIX and market VaR failed to detect comprehen-

sively. Thirdly, the application of our indicator in analyzing the relationship between extreme

losses and macroeconomic variables offers a groundbreaking tool for policymakers and financial

institutions. It not only enhances the understanding of how economic policies and conditions

impact financial stability but also aids in proactive risk management and policy formulation.

The paper proceeds as follows, section 2 is the literature review of the existing systemic

risk measures and models, section 3 presents our data and methodology used in the paper,

section 4 shows the empirical results of our indicator, section 5 is the robustness analysis using

GPD, section 6 concludes the paper. An Appendix is shown at the end containing the detailed

model calculation, figures, and tables that are not shown in the main text.

2 Literature review

After the 2008 financial crisis, researchers paid more attention to systemic risk, the challenge

of accurately modeling and predicting extreme financial events has led to the development

and evolution of various quantitative methods. Many researchers tend to meet this goal by

developing systemic risk indicators, they are critical for regulators, policymakers and financial

institutions in monitoring and mitigating systemic risks, for instance, Patro, Qi, and Sun

(2013) make a point that daily stock return correlation is a simple, robust, forward-looking,

and timely systemic risk indicator, and extreme dependence, and co-dependence can also reflect

the downturns in the US financial industry (Balla, Ergen, and Migueis, 2014), the Composite

Indicators of Systemic Stress (CISS) that has been developed for the Euro Area with a focus on

systemic risk, which is considered to have the ability to measure systemic risk, focusing on the

systemic dimension of financial stress (Altınkeski, Cevik, Dibooglu, and Kutan, 2022). These

systemic risk indicators have limited predictive power and do not emphasize the significance of

extreme loss, the aftermath of extreme losses can be prolonged, leading to long-term economic
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downturns, changes in market structures, and shifts in regulatory policies. Hence we propose a

new systemic risk indicator by combining the Value-at-Risk (VaR) and Extreme Value Theory

(EVT) to model the extreme events in the financial market.

Benoit, Colliard, Hurlin, and Pérignon (2017) provide a comprehensive survey on systemic

risk, highlighting the central role of methodologies like VaR in the assessment of systemic

risks. Duffie and Pan (1997) emphasize the ability of VaR to condense complex risk exposures

into a single, understandable metric. Manganelli and Engle (2001) further explores various

VaR models in finance, offering practical insights for real-world applications and stressing the

importance of model selection and calibration for accurate risk assessment. However, VaR

is limited to providing information about the tail of the risk distribution and cannot offer

insights into other parts of the distribution. This means that VaR might fail to capture the

risk of extreme events. This implies that VaR needs to be combined with other methods

to offer a more comprehensive measurement and monitoring of market risk (Linsmeier and

Pearson, 2000). The limitations of VaR are also critically analyzed by Danıelsson (2002),

who points out the model’s inadequacies in capturing extreme market conditions. Many

researchers have attempted to address this issue. For instance, Embrechts, Puccetti, and

Rüschendorf (2013) investigates the complexities of model uncertainty and VaR aggregation,

tackling the challenges in accurately assessing risks across diverse portfolios. Adrian and

Brunnermeier (2016) propose CoVaR, which focuses on the contribution of each institution

to overall system risk, but CoVaR may provide a realistic approximation for smaller financial

institutions and cannot capture the heteroscedasticity characteristic of financial assets, which

may underestimate systemic risk (López-Espinosa, Moreno, Rubia, and Valderrama, 2015).

EVT has increasingly become a pivotal tool in financial risk management, particularly for

modeling and predicting rare, extreme market events. Its application has been instrumental

in understanding and preparing for market behaviors that lie outside the realm of normal

fluctuations. The application of the EVT in risk management has been explored by many

(Abad, Benito, and López, 2014; Carvalhal and Mendes, 2003; Bekiros and Georgoutsos,

2005, among others), it is underscored by the effective modeling the tails of distribution,

which is crucial for accurate risk assessment in financial markets (Diebold, Schuermann, and

Stroughair, 2000; Longin, 2005; Gilli and Këllezi, 2006; Allen, Singh, and Powell, 2011). There

are some researchers who tend to combine EVT and VaR. However, most have focused on using
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EVT to compute VaR. Rocco (2014) provides a comprehensive survey of the use of EVT in

finance. He makes a comparison on using EVT to compute VaR and ES, concentrating on

extreme quantiles of distribution rather than the distribution itself but it is crucial to model

the distribution tails properly in order to predict the frequency and magnitude of extreme

stock price returns (Furió and Climent, 2013; Aslanertik, Erdem, and Kurt Gümüş, 2017).

Hence, we propose a method using EVT to model the VaR exceptions cross-sectional sum,

Pérignon and Smith (2010) discover that VaR exceptions can accurately reflect the risk level

of commercial bank transactions. Furthermore, it also forms an essential component in the

metrics evaluating the disclosure quality of VaR in commercial banks. The rise of VaR Co-

Exceptions could be seen as systemic co-jumps, Caporin, Kolokolov, and Renò (2017) find

that the simultaneous occurrence of jumps in several stocks, often triggered by major financial

news, can be indicative of short-term stock returns, correlate with sudden spikes in the variance

risk premium, and lead to persistent changes in stock variances and correlations depending on

the nature of the news. This perspective underscores the nuances that traditional univariate

jump statistics applied to stock indices might not capture.

The continuous evolution of methodologies like VaR and EVT highlights an ongoing quest

for more accurate risk modeling, especially in the face of complex market dynamics. While

these methods have significantly advanced our understanding, they also underscore the need

for broader perspectives that encompass systemic risks and their interplay with economic vari-

ables. Recent developments in systemic risk measures, such as SRISK proposed by Brownlees

and Engle (2016), mark a pivotal advancement in quantifying potential capital shortfalls dur-

ing severe market downturns. These measures, alongside studies like those by Giglio, Kelly,

and Pruitt (2016), emphasize the necessity of integrating economic perspectives into finan-

cial risk analysis. The recent insights into financial uncertainty and its impact on the real

economy, as explored by Dew-Becker and Giglio (2023), further contribute to this expanded

view. Understanding the nuances of variance risk premium and skewness provides a more

comprehensive perspective on the dynamics between financial markets and economic cycles,

which is crucial for effective risk modeling and management strategies.

Our research fills the gaps in existing literature by adopting a comprehensive approach.

We emphasize the VaR exception matrix, capturing the fluctuation of VaR exceptions and

providing a richer context for risk modeling. Moreover, our combined application of EVT
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models and cross-sectional concomitant VaR exceptions (Co-Exceptions) time series offers a

more thorough and robust understanding of extreme financial events. The use of knowledge

graphs in analyzing systemic risk by Chen and Zhang (2023) further enriches our methodology,

offering a novel perspective on the interconnectedness among financial firms and their exposure

to systemic risk. By juxtaposing the findings from the aforementioned models, we ensure that

our predictions are not merely a result of model-specific characteristics, but are valid across

different methodologies. Thus, our study not only emphasizes the importance and limitations

of traditional models such as VaR and EVT, but also demonstrates how combining systemic

risk measures, financial uncertainty analysis, and innovative risk assessment methods can

provide a more comprehensive risk management framework. This holistic methodology not

only aids in better understanding extreme events in financial markets but also offers new

insights into assessing their potential impact on the overall economy.

3 Data and Methodology

3.1 Data

In order not to work exclusively with financial institutions that survived the 2008 financial

crisis and thus limit the impact of survivorship bias, we use the data on a panel of large U.S.

financial firms, the same companies as Brownlees and Engle (2016). It consists of 95 financial

institutions that can be classified into 4 groups: Depositories, Insurance, Broker-dealers, and

Others (e.g. BlackRock). The data are observed from January 1, 2000 to December 30, 2022,

so our sample contains the 2008 financial crisis, the COVID-19 health crisis, and to a lesser

extent the 2011-2012 European sovereign debt crisis.

3.2 VaR with GARCH model

The first contribution of this paper is to compute a VaR exception matrix, In order to do that,

the first step is to calculate the VaR of assets, VaR can estimate of how much a certain portfolio

can lose within a given time period, for a given confidence level (Engle and Manganelli, 2004),
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The general form of VaR is as follow:

VaRt(α) = σΦ−1(α) (1)

Where Φ(.) is the distribution function of the law ∼ N (0, 1)

In order to calculate the VaR, we first need to calculate the volatility of each asset at

time t. There are different models that could calculate this volatility, the one we proposed

is the GARCH model, which allows us to model and predict the conditional variance of the

profit and loss distribution, which will then allow deriving a model or a prediction of the VaR,

GARCH alone ignores the extreme tail risks, leading to underestimating systemic risk (Girardi

and Tolga Ergün, 2013), but the combination of VaR with GARCH allows for possible changes

over time in the linkage between individual markets and the global economy, it is more robust

in assessing systemic risk (Ellis, Sharma, and Brzeszczyński, 2022). The returns are well fitted

by the GARCH model partly due to the volatility clustering and GARCH does not assume

that the returns are independent which allows modeling the leptokurtic property of returns.

The GARCH equation is as follows:

σ2
i,t = ω + αr2i,t−1 + βσ2

i,t−1 (2)

However, instead of working with VaR realizations computed over the estimation period of

the model, we compute one-period VaR forecasts using the estimated coefficients. We thus

have VaR forecasts in t knowing the set of information available in t − 1. The daily forecast

of the conditional volatility is equal to

σ2
i,t|t−1 = ω̂ + α̂r2i,t−1 + β̂σ2

i,t−1 (3)

In order to limit the computation time, we first report the results obtained by using the

whole period to estimate the models. Several GARCH models are tested during this analysis,

we select the model that tested the smallest Schwarz information criterion (BIC) but also we

bring to obtain non-correlated residuals (zi,t). The first criterion leads us to select parsimonious

models since the penalty term of this criterion increases more strongly (compared to the usual
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Akaike criterion) when we add one more parameter to be estimated:

BIC = ln

(∑T
i=1 ε̂

2
it

T

)
+ k

ln(T )

T
(4)

where k is the number of parameters of the model. The penalty term is the second element

of the equation. This leads us in most cases to use the GJR-GARCH(1,1,1) model, allowing

us to take into account the leverage effect, which we combine with innovations following a

Student’s t-t distribution with n degrees of freedom. The leverage effect could take into

account the additional variance generated by negative returns compared to that generated by

positive returns of the same magnitude. Also, GARCH is not able to asymmetric response of

the shocks. To remedy this issue, GJR-GARCH was proposed by Glosten, Jagannathan, and

Runkle (1993). The GJR-GARCH (1, 1, 1) is defined by :

σ2
i,t = ω + αr2i,t−1 + γIri,t−1<0

ε2i,t−1 + βσ2
i,t−1 (5)

where Iri,t−1<0
is an indicator variable such that :

Iri,t−1<0
=

 1 if ri,t+1 ≤ 0

0 if ri,t+1 > 0

γ controls for the asymmetry of the shocks and if γ = 0, then the response to the past shock

is the same; If γ > 0, then the response to the past negative shock is stronger than that of a

positive one; If γ < 0, then the response to the past positive shock is stronger than that of a

negative one. Finally we have the VaR calculated with GJR-GARCH model:

VaRα
i,t|t−1 = σ2

i,t|t−1Φ
−1(α) (6)

Using a Student distribution to model the conditional return allows us to capture the

excess kurtosis remaining in the latter. Indeed, in spite of the presence of a GARCH model,

very often the distribution of zi,t remains leptokurtic, it is thus necessary to model this greater

thickness in the tails of the distribution. The Student distribution allows this when its degree

of freedom is close to 2, conversely when n tends towards infinity (in general n > 30 ) then
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this distribution tends towards the normal distribution, it is thus not necessary to assume

normality on the residuals.

3.3 Exception of VaR

After estimating the VaRs, we can use them to determine the day on which a financial institu-

tion i is under financial stress. We therefore define what are called exceptions. The Value-at-

Risk exception is a situation where the loss exceeds the calculated VaR for a given portfolio or

investment. When the actual loss exceeds the VaR, it means that the risks of the portfolio or

investment were higher than the VaR predicted. The VaR exception is an indicator that risk is

not well understood or managed (Xiong, 2018). It is defined at each period by the variable Ii,t:

Ii,t =

 1 if ri,t ≤ V aRα
i,t|t−1

0 if ri,t > V aRα
i,t|t−1

(7)

where ri,t is the observed daily return for financial institution i, while V aRα
i,t|t−1 is the forecast

in t knowing t− 1 of the Value-at-Risk of financial institution i for a risk threshold α.

The exception matrix is in fact a matrix in which we calculate the VaR exception for all the

assets in the portfolio (in columns) and for each day (in rows). From these VaR exceptions,

we can now proceed to the computation of the cross-sectional sum. A cross-sectional sum

is a vector of dimension n × 1., where n is the number of dates at which we computed the

exceptions. The components of this vector are computed daily on a portfolio by summing the

value of the Value-at-Risk exception of each asset in the portfolio. For example, for a portfolio

composed of 5 assets, the exception matrix between 01/01/2000 and 04/01/2000 is in Table

1, This exception vector is therefore a quantitative means that allows financial institutions

that use it to validate or not an internal forecasting model. The exception matrix and the

Co-Exceptions represent relevant information on the systemic financial risk that may threaten

the market, which refers to a particular event that will cause a chain reaction with significant

negative effects on the entire system, potentially leading to a general crisis in its functioning.

By its magnitude, systemic risk is sufficient to cause the collapse of almost an entire financial
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Table 1: Example of a VaR Exception Matrix

Time Asset 1 Asset 2 Asset 3 Asset 4 Asset f5 ΣException

01/01/2000 1 0 0 1 0 2

02/01/2000 1 1 0 1 0 3

03/01/2000 0 1 1 0 0 2

04/01/2000 1 1 1 1 1 5

Notes: Columns represent the assets and the rows represent the time. The cross-sectional
concomitant VaR exceptions (Co-Exceptions) of this portfolio between 01/01/2000 and
04/01/2000 is therefore the vector: ΣException = (2, 3, 2, 5)

or economic system. The study of a daily cross-section tells us a lot about the performance

of the market. The systemic risk then manifests itself in a large number of exceptions to

Value-at-Risk.

3.4 EVT theory

In this section, we will model the series of the Co-Exceptions ΣException at a weekly level.

Extreme value theory allows us to calculate the probability of occurrence of a rare phenomenon

and to calculate the probability of observing a given number of simultaneous exceptions for a

fixed time horizon (A. Dicks and de Wet, 2014).

The most common example used to explain the theory of extreme values is the flooding of

the Seine. The level of the river has been recorded daily for several centuries. The classical

approach of generalized extreme values distribution (GEV) is to build a new series of data

that is aggregated by seeking the maximum value for a given block (Block Maxima Models).

Thus, it is necessary to recover the highest level of the Seine by year. An alternative approach

would be to consider only the daily levels of the Seine above a certain threshold and to model

this series with a generalized Pareto distribution (Peaks over Threshold Models). Once the

allocations are estimated, it is possible to calculate the return level of an event for a given

number of blocks. In this part, we focus on the first approach and we will discuss the second

approach in the robustness analysis of the next section.

As explained in the previous example, it is not possible to estimate directly the series of

the Co-Exceptions. This is why we construct a series containing only maxima by finding the

maximum value of the Co-Exceptions for each week of our sample. The GEV family could be
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combined by the Gumbel, Frechet and Weibull families :

H(x;µ, σ, ξ) = exp

[
−
(

1 + ξ
x− µ

σ

)− 1
ξ

]
(8)

defined on {
x : 1 + ξ

x− µ

σ
> 0

}
where −∞ < µ < +∞, σ > 0 and −∞ < ξ < +∞. The location parameter µ represents

the shift or offset of the distribution, determining the horizontal position of the distribution

curve. It determines the location of the distribution function along the horizontal axis; The

scale parameter σ controls the degree and magnitude of variation in the distribution, deter-

mining the vertical stretching or compression of the distribution curve. It determines the

expansion or contraction of the distribution function; The shape parameter ξ is used to de-

scribe the shape characteristics of the distribution. It determines the thickness or density of

the tails of the distribution. The shape parameter can take any real value, and different values

correspond to different distribution shapes or forms.

This series thus has good characteristics to be explained by one of the three large domains

of attraction of the extreme value theory. These three main domains are classified according

to the value of the shape parameter:

If ξ <0, then the density belongs to the Weibull maximum attraction domain (in red in

Figure 1);

If ξ =0, then the density belongs to the Gumbel maximum attraction domain (in black on

Figure 1);

If ξ >0, then the density belongs to the Fréchet maximum attraction domain (blue in

Figure 1), these distributions are capable of capturing thick distribution tails.

The theorem gives us the distribution of our maximum series, next we estimate the param-

eters using the Maximum likelihood method, there are several methods available to estimate

the parameters of the GEV distribution, including maximum likelihood estimation, moment

estimation, and Bayesian estimation, among others. Each estimation method has its own

advantages and limitations. However, we consider maximum likelihood estimation to be a

preferable approach, details of the MLE for GEV distribution see Appendix.
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3.5 Return level

The return level is one of the key indicators to assess the risk of financial markets. It tells us the

average frequency of extreme events above or equal to a certain threshold over a certain time

horizon. By calculating the return level, we can understand the probability of extreme events

occurring at a given level of risk, which helps us understand the frequency and magnitude of

similar events in the past and informs future decisions.

In order to calculate the return level, we need to define the return period, the return period

is the average duration during which an event of the same intensity recurs. The return period

T of an event s is defined by :

T (s) =
1

P (X > s)
=

1

1 − F (s)
(9)

where P (X > s) denotes the probability of exceeding the s level. For example, we suppose

event X has 200 observations over a period of 40 years. The probability that the return period

of this event is 100 years verifies:


P (X ≥ s) =

x

200

100 =
40

x

Finally, we obtain

P (X ≥ s) =
40

200
× 1

100
= 0.002

It is simpler to say that we are interested in an event that is observed every 100 years

rather than an event whose probability is 0.002.

The return level Lt exceeded once every T periods verifies :

P (X ≥ Lt) =
1

T
(10)

We thus obtain:

Lt = F̄−1

(
1

T

)
(11)

where F̄ (x) = 1 − F (x). Finally, we have the return level (See detailed calculation in
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Appendix):

Lt = µ− σ

ξ
×

(
1 + log

(
1 − 1

T

)−ξ
)

(12)

The calculation of the return level provides a benchmark that allows us to assess whether

current market conditions have deviated from historical levels and to evaluate possible future

risks based on past experience. Furthermore, it can also be used to verify the fitness of the

generalized extreme value distribution model. By comparing with observed data, we can

evaluate the performance of the fitted model at different return levels and check the fitness

and accuracy of the model.

4 Empirical results

In this section, we first report the daily VaR Exceptions of the 95 financial institutions from

2000 to 2022, and then the modeling results of the GEV theory.

4.1 Daily VaR Exceptions

Figure 2 is the Co-Exceptions in a daily basis, most of the exceptions were concentrated during

the 2007-2009 financial crisis, the 2010 European sovereign debt crisis, and the COVID-19

crisis. The subprime crisis began to emerge in February 2007 when HSBC increased its bad

debt provisions by 1.8 billion dollars for its subprime mortgage business in the United States,

reaching the first peak of VaR Exceptions. Since then, several financial institutions such as

Bear Stearns, BNP Paribas, and Deutsche Bank suffered losses due to the subprime crisis.

Companies like New Century Financial Corporation, IndyMac Bank, and Lehman Brothers

filed for bankruptcy, while others were nationalized. In Figure 2, the Co-Exceptions only

slightly decreased by the end of 2009, representing the end of the 2008 financial crisis. From

the graph, it can be seen that around May 2010, Co-Exceptions increased again, marking the

beginning of the European debt crisis, several banks, including the four major Greek banks,

Barclays Bank, and HSBC, had their ratings downgraded. In 2016, major banks like Deutsche

Bank and Banca MPS of Italy incurred significant losses, explaining the occurrence of a new

peak in VaR Exceptions. Due to the COVID-19 crisis in 2020, the economy experienced a
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downturn and turbulence, explaining the peak of the third round of VaR Exceptions.

Table 2 represents the top 20 daily Co-Exceptions with their financial events. While Co-

Exceptions are typically employed as indicators of systemic risk, the table reveals that these

exceptions are not solely attributable to the intrinsic structure of financial markets or the

frailties within the financial system. On the contrary, a multitude of these exceptions can be

traced to specific exogenous events, ranging from political decisions such as Brexit, to sudden

economic disturbances like oil price skirmishes, global health crises exemplified by the COVID-

19 pandemic, and even including natural disasters and conflicts. VaR exceptions capture not

only systemic risk but also non-systemic risks that are intimately tied to market operations.

Events such as oil price wars or credit rating downgrades may deliver immediate shocks to

the markets, yet they do not invariably pose a long-term threat to the entire financial system.

Additionally, this underscores the financial market’s susceptibility to non-financial occurrences,

like political resolutions or public health emergencies, which can precipitate severe market

fluctuations without forewarning.

4.2 GEV model results

Figure 3 represents the density of the weekly maxima of VaR Exceptions. From the graph,

it can be observed that for the majority of the observation period, the financial system is

relatively stable, with weekly maxima ranging from 0 to 20 and the density decreasing with

higher weekly maxima. The portion where weekly maxima exceeds 40 represents significant

fluctuations in nearly half of the financial institutions during the observation period, which is

an area that we should pay attention to.

We then calculate GEV parameters using the maximum likelihood estimation method.

The GEV model has three parameters: the location parameter, scale parameter, and shape

parameter. When the shape parameter ξ is zero, the GEV model degenerates into the Gumbel

distribution. The Gumbel distribution has a unimodal, right-skewed shape and is suitable for

describing extreme values with a longer right tail. When ξ is greater than zero, the GEV

model corresponds to the Fréchet distribution. The Fréchet distribution has a right-skewed

shape with a heavier tail and is suitable for describing extreme values with a larger tail risk.

When ξ is less than zero, the GEV model corresponds to the Weibull distribution. The Weibull

distribution has a left-skewed shape with a heavier tail and is suitable for describing extreme
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Table 2: Top 20 daily VaR Co-Exceptions

Date VaR Exceptions Event

2007/2/27 65 Shanghai Stock Exchange drop 9%, global impact

2007/3/13 51 Housing slump affects the financial sector, market volatility

2007/7/24 50 Housing market sags, subprime crisis intensifies

2007/8/3 55 The subprime mortgage issue worsened further

2007/11/7 50 General crash in global stock markets

2008/9/29 56 Market crash after bailout bill failure

2010/8/11 53 The European sovereign debt crisis

2011/8/4 59 Eve of U.S. credit rating downgrade by S&P

2011/8/8 67 U.S. and global markets fall post U.S downgrade

2015/6/29 54 Greek debt crisis peak impacts European banks

2015/8/24 63 Flash crash

2016/6/24 61 Brexit vote causes market turbulence

2018/2/5 59 2018 stock market correction begins

2018/2/8 58 Continued market adjustment

2018/3/22 53 Trade war fears due to U.S.-China tensions

2018/12/4 55 The stock market declined

2019/8/14 52 Yield curve inversion signals potential recession

2020/2/24 52 COVID-19 pandemic starts, economic concerns

2020/3/9 60 Oil price war and COVID-19 impacts markets

2020/6/11 58 Market drops due to COVID-19 case increases

Notes: This table represents the top 20 daily VaR Co-Exceptions.

values with a smaller tail risk. After fitting the weekly maxima to the GEV model using the

maximum likelihood estimation, the following parameter results were obtained in Table 3.

The shape parameter is greater than 0, indicating that it belongs to the Fréchet distribu-

tion, which can describe extreme values with a larger tail risk. This aligns with our hypothesis.

The GEV diagnostic pictures are presented in Figure 4, Quantile-Quantile (Q-Q) Plot (top

left) compares the quantiles of the empirical data against the quantiles of the theoretical GEV

distribution, it appears that for the most part, the data conform to the GEV model quite well

except for the tail, which seems to be heavier than the model predicts, indicating potential

underestimation of extreme values. The probability plot (top right) is similar to the Q-Q plot
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Table 3: GEV parameters

Parameters Location Scale Shape

Value 3.099 3.779 0.878

Notes: The 3 GEV parameters are calculated using whole sample period, shape parameter
is greater than 0 meaning the model follows a Fréchet distribution.

and shows some deviation at the higher quantiles. In the density plot (bottom left), the density

of the empirical data (solid line) is very close to that of the fitted model (dashed line), but

in the return level plot (bottom right), the empirical points at the extreme end significantly

deviate from the model, suggesting that the model may not fully capture the most extreme

events.

In this context, we propose to use a rolling window to estimate the model and calculate the

return level. We take into consideration the dynamics of the data, as financial markets data

often exhibit dynamics and time-varying behavior, capturing market behavior and volatility

across different time periods. By using the rolling window approach, we can apply calculations

to subsets of data from different time periods, better reflecting the dynamic nature of the data.

Financial markets operate under different market conditions, also it allows us to calculate the

recurrence levels for each window period, capturing changes in different market environments

and gaining a more comprehensive understanding of market changes and risks.

We select a rolling window size of 2 years because it covers a longer time span, allowing

for better capturing of long-term trends and cyclical changes. Compared to shorter-term

rolling windows, our approach provides more comprehensive data information, as shorter-term

windows may result in smaller sample sizes and be more susceptible to data noise and outliers.

Furthermore, it is better to resist such disturbances and provide more reliable estimation

results. Additionally, it can reduce estimation errors caused by data volatility within a single

time period. By taking the average of multiple time periods, more stable parameter estimation

results can be obtained, reducing estimation biases caused by randomness.

Figure 5 represents the parameters of the GEV model using a 2-year rolling window.

It shows that regardless of the observation period, the shape parameter is greater than 0,

indicating that it follows the Fréchet distribution. The mean values of the three parameters

are shown in Table 4.
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Table 4: GEV parameters using rolling window

Parameters Location Scale Shape

Mean Value 3.446 4.040 0.822

Notes: The 3 GEV parameters are calculated using 2-year rolling window, the mean of
the shape parameter is greater than 0, indicating that the model always follows a Fréchet
distribution in the different time periods.

The location parameter and scale parameter are larger than those calculated without using

the rolling window, indicating that the rolling window better captures the overall risk level

and volatility. A larger scale parameter value suggests higher volatility and risk. However,

the shape parameter calculated through the rolling window is slightly smaller, indicating a

lower tail risk and a lower probability of extreme events. We consider the parameter results

obtained using the rolling window method to be more reliable because the rolling window

method captures the effects of time changes. Financial markets and economic conditions may

change over time, leading to variations in the probability of extreme events and tail risk.

Therefore, using the rolling window method can better reflect the impact of time changes on

the shape parameter.

Figure 6 illustrates how the estimated risk level, as quantified by the return level of VaR

Co-Exceptions, changes over time. The return level reflects the estimated maximum loss for

a given return period, in this context, relates to six weeks. It is evident from the graph that

the return level is not static but fluctuates, indicating that the market’s perception of risk is

dynamic and influenced by numerous factors. The ebb and flow of the return levels might

be linked to changes in market conditions, such as variations in volatility, macroeconomic

announcements, or significant geopolitical events. The peaks in the graph generally correspond

to periods of market stress or financial instability. During such times, market participants

anticipate higher potential losses, which is reflected in increased return levels. For example,

the sharp rise around the 2007-2009 period likely corresponds to the global financial crisis,

where market volatility and risk aversion reached extreme levels. Conversely, the troughs may

reflect periods of relative market calm or confidence, where lower return levels suggest a lower

expected frequency and severity of VaR Co-Exceptions. The trajectory of the return level

over time can provide insights into the evolving nature of market risk. An overall downward

trend might suggest that markets are becoming more efficient at pricing risk or that risk
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mitigation mechanisms are becoming more effective. Alternatively, it could signal a period of

increasing market stability or decreasing volatility. It’s also noteworthy that the reaction of

the return levels to recent events (like the COVID-19 pandemic), shows that even in an era

of advanced financial instruments and risk management strategies, markets remain vulnerable

to unexpected, high-impact events.

We compared the return level with the VIX index in Figure 7, The VIX index is commonly

viewed as a measure of market panic, with higher values indicating greater expected risk and

uncertainty in the market. During certain periods, the return levels are closely correlated

with peaks in the VIX. This suggests that expectations of VaR Co-Exceptions increase with

rising market pressures. This correlation might indicate that the return level, as a measure

of risk, is capable of capturing changes in market volatility and investor sentiment. Peaks are

usually associated with extreme events in the financial markets, such as the global financial

crisis of 2008, the European debt crisis of 2010, and the COVID-19 pandemic in 2020. During

these periods, the VIX index rose significantly, with return levels showing a similar upward

trend, reflecting extreme uncertainty and risk aversion in the market during these times. The

return levels of VaR Co-Exceptions show a smoother and more sustained trend, while the VIX

displays more intense and brief peaks. This is because the VIX reflects immediate market

sentiment, whereas return levels are statistical measures based on historical data, containing

more information and being more robust to short-term noise.

Figure 8 displays a comparison between the GEV return level calculated using a 6-week

return period and the SP 500 market VaR. It is observed that while there are significant

spikes in the GEV return level, corresponding large spikes do not appear in the market VaR.

This phenomenon could be attributed to the inclusion of numerous smaller-scale companies

when calculating VaR Co-Exceptions, whose volatility is not substantial enough to impact the

market VaR significantly. Notably, there is a pronounced spike in the GEV return level chart

around mid-2016, which is not present in the market VaR. This suggests that our method

captures a more comprehensive picture of the risk fluctuations within the system, particularly

the risks of smaller entities that might be overlooked by market VaR. Hence, our approach

offers a broader perspective in identifying systemic risks, capturing hidden risk points that

could pose a threat to overall market stability.

Figure 9 presents the return probability of exceeding 50 VaR Co-Exceptions. We can esti-
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mate the probability of having 50 VaR Co-Exceptions occurring in any given week. Unlike the

return level, which indicates the potential maximum loss that might be reached, the return

probability refers to the likelihood that a given threshold will be met or exceeded within a

specific future time frame. This probability itself can fluctuate under different market condi-

tions, and these fluctuations are typically associated with market instability and impending

potential risks.

4.3 Regression

In this section, we will explain return levels (for a monthly 6-week return period) using macroe-

conomic and systemic variables. To determine the factors influencing our return levels, we

have selected these potential variables in Table 5.

Table 5: Explanatory variables

Variables Signification

INTDSRUM193N Interest rate

UNRATE Unemployment rate

INDPRO Industrial production index

VOL Volatility

EXUSEU Euro-dollar exchange rate

CPIAUCNS Consumer Price Index for All Urban Consumers

PCE Personal Consumption Expenditures Price Index

FEDFUNDS Effective federal funds rate

CISS Composite indicator of systemic stress

EXPINF1YR Expected inflation

Notes: This table explains the explanatory variables selected to estimate the return levels
of a monthly 6-week return period.

Initially, we examined the correlations between our different explanatory variables to make

an initial selection. Figure 11 is the correlogram of the variables, correlogram is a graph

showing the correlations between variables in a data set, it is useful for identifying variables

that are highly correlated and for assessing the nature of the relationship between variables.

Figure 11 shows that there is a very strong correlation (0.98) between the PCE and CPIAUCNS

variables. In fact, these two variables relate to consumer product prices. To avoid any inversion
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difficulties, we drop the PCE variable. Next, we perform a residual analysis to see how the

model fits the data by examining the goodness of fit, this is to check whether the assumptions

of the linear Gaussian model are satisfied. As shown in Figure 12, the residuals of the Residuals

vs Fitted plot are randomly distributed around the center line without any apparent patterns

or systematic structure, suggesting that the linear assumption is appropriate. The Normal

Q-Q plot indicates that most points do indeed follow a straight line, but there is a slight

deviation at the ends, especially on the right tail, which may suggest that the tail of the

residual distribution is heavier than that of a normal distribution. In the Scale-Location plot,

we observe that the variation in residuals does not appear to significantly increase or decrease

as the fitted values increase, which is a positive sign. The Residuals vs Leverage plot is used to

detect influential observations that may disproportionately influence the regression estimates;

in the plot, only one point (labeled as 124) has both high leverage and Cook’s distance. In

summary, these diagnostic plots show that the model is well-fitted.

The results of our regression are illustrated in Table 6, The Consumer Price Index (CPI-

AUCNS), the Federal Funds Rate (FEDFUNDS), and the Interest Rate (INTDSRUSM193N)

all have inverse relationships with return level. This suggests a higher inflation is associated

with lower risk levels or a reduction in the severity of VaR Co-Exceptions. This phenomenon

could stem from the impact of inflation on the real value of financial assets or the antici-

pated contractionary monetary policies. A higher interest rate set by central bank policies

is associated with a lower return level. This correlation may underscore the central bank’s

instrumental role in stabilizing the economy and managing systemic risks, as heightened inter-

est rates typically aim to temper economic growth and inflation, potentially fostering a more

stable financial milieu. Furthermore, increased market rates may compensate for reduced

liquidity and credit risks.

The Composite Indicator of Systemic Stress (CISS), Industrial Production (INDPRO),

and Unemployment Rate (UNRATE) show a direct correlation with the return level. An

upsurge in systemic stress corresponds with elevated return levels, signifying that systemic

risks are a pivotal determinant of the risk levels captured by the sum of VaR Co-Exceptions.

Industrial production, an indicator of economic expansion, may be allied with higher financial

risk levels. This could be attributable to cyclical dynamics where periods of economic growth

could culminate in overheating and an increased probability of corrective downturns. Elevated
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unemployment rates bolster return levels, meaning that economic recessions characterized by

higher unemployment are perceived as epochs of intensified financial risk.

In summary, macroeconomic indicators, particularly those reflecting monetary policy, in-

flation, and systemic stress, are paramount in determining the financial system’s risk level as

captured by the sum of VaR Co-Exceptions. These findings emphasize the intricate interplay

between the macroeconomic milieu and systemic risks as gauged by VaR Co-Exceptions. The

research reveals that the central bank’s monetary policy, as reflected in interest rates and the

federal funds rate, along with systemic stress indicators, plays an indispensable role in the

risk landscape of the financial system as perceived through the VaR Co-Exceptions. These

insights are instrumental for central banks, financial regulators, and policymakers dedicated

to understanding and mitigating systemic risks within the financial system.

5 Robustness analysis

In our robustness analysis, we transition our model to the Peaks Over Threshold (POT) ap-

proach. This methodology employs a threshold to segregate extreme values from the dataset,

facilitating the modeling of the distribution’s tail for values exceeding this threshold. Accord-

ing to Pickands’ Theorem, for a sufficiently high threshold u, the distribution of exceptions

converges to a Generalized Pareto Distribution (GPD) characterized by specific shape and

scale parameters. The GPD family, parameterized by ξ ∈ R and σu > 0 is defined by:

Gξ,σu(y) =

1 −
(

1 + ξ y
σu

)−1
ξ

if ξ ̸= 0

1 − exp
(

−y
σu

)
if ξ = 0

(13)

subject to 1 + ξ y
σu

> 0

Selecting an optimal threshold necessitates a balance between bias and variance. The

threshold u must be sufficiently high to allow for theoretical convergence, yet low enough to

retain an ample number of exceedances for robust estimation. The mean excess function for

a random variable X over a threshold u is defined by:

e(u) = E(X − u | X > u) (14)
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The return level of the GPD model (See details in Appendix):

Lt = u +
σ

ξ
×

((
1

T × P (X > u)

)−ξ

− 1

)
(15)

The Peaks Over Threshold model with the Generalized Pareto Distribution offers a robust

framework for estimating the return level and return probability of extreme financial events.

By calibrating the model with the optimal threshold and employing maximum likelihood

estimation, we refine our analysis of the tails of the loss distribution, which is crucial for

comprehensive risk management in financial markets. This methodological robustness check

ensures the solidity of our findings and enhances the credibility of our risk assessment approach.

The return probability using GPD model is in Figure 10, it reveals an intermittent pattern

of elevated probabilities, with peaks corresponding to tumultuous market episodes. These

findings corroborate the predictive efficacy of the GPD model and underscore its aptitude

for apprehending the risk of rare yet impactful events. The observed fluctuations in return

probabilities are consistent with the market’s historical propensity for abrupt transitions,

aligning with the overarching narrative of financial markets’ susceptibility to sudden shifts in

sentiment and economic conditions.

The GPD model, as applied in this robustness check, emerges as a vital tool for financial

risk assessment, particularly in modeling the behavior of market extremes. The consistency

between the GPD model outputs and our financial indicator using GEV model reinforces the

resilience of our risk evaluation framework, thereby affirming the robustness of our approach

in the measurement and interpretation of financial risk within the broader context of systemic

stability.

6 Conclusion

In this paper, we propose a new systemic risk indicator from a global perspective by integrat-

ing Value at Risk (VaR) with Extreme Value Theory (EVT). It improves the inadequacy of

traditional models for modeling extreme events, offers a comprehensive view of systemic risk.

And also it captures not just the magnitude but also the probability of extreme financial losses

across a broad spectrum of financial institutions. A distinctive feature of our approach is that
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we use predicted volatility to model the indicator, which provides a forward-looking view.

We demonstrate how the return level can serve as a robust indicator for extreme losses

in the financial market. This method proves superior in capturing both systemic and non-

systemic risks, we show its effectiveness of identifying major financial crises and specific market

events that other indicators, like the VIX and market VaR, fail to comprehensively detect.

Additionally, our research makes a substantial contribution by establishing a clear link

between extreme financial losses and key macroeconomic variables. This analysis not only

sheds light on the underlying dynamics between economic policies and financial stability but

also provides invaluable insights for policymakers in devising strategies to mitigate systemic

risk.

In conclusion, our research contributes to the systemic risk assessment, it is importance

to integrate diverse methodologies for a holistic understanding of financial markets. This

comprehensive framework not only enhances our grasp of extreme events in financial markets

but also paves the way for new insights into their potential impact on the overall economy.
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Abad, P., S. Benito, and C. López (2014): “A comprehensive review of Value at Risk method-

ologies,” The Spanish Review of Financial Economics, 12(1), 15–32. 5

Adrian, T., and M. K. Brunnermeier (2016): “CoVaR,” American Economic Review, 106(7),

1705–41. 5

Allen, D. E., A. K. Singh, and R. J. Powell (2011): “Extreme market risk-an extreme value

theory approach,” . 5

Altınkeski, B. K., E. I. Cevik, S. Dibooglu, and A. M. Kutan (2022): “Financial stress

transmission between the U.S. and the Euro Area,” Journal of Financial Stability, 60, 101004. 4

Aslanertik, B. E., S. Erdem, and G. Kurt Gümüş (2017): “Extreme Value Theory in Fi-
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Table 6: Regression results on return levels

Notes: *p<0.1, **p<0.05, ***p<0.01; t-value in parentheses. The dependent variable of each
column is the monthly return level calculated by averaging the weekly return level of 6 weeks
return period.

(1) (2)

Variables RL1 RL2

Constant 8.8778 14.2439

(0.900) (1.676)

CPIAUCNS -0.0556* -0.0690**

(-1.802) (-2.313)

FED FUNDS -1.5623*** -1.4014***

(-5.038) (-5.010)

INTDSRUSM193N -0.9015*** -0.9802***

(-3.780) (-4.665)

CISS 18.0763*** 14.6053***

(6.216) (9.438)

INDPRO 3.2312*** 3.2478***

(15.044) (15.926)

UNRATE 0.7284*** 0.7305**

(2.880) (3.116)

EXUSEU 1.7312

(0.576)

VOL -0.0689

(-1.220)

EXPINF1YR 0.6513

(1.214)

Observation 170 170

Adj.R2 0.865 0.864
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Figure 1: Example of densities associated with an extreme-value distribution

Notes: This figure shows the 3 distributions in GEV model, the red line is Weibull dis-
tribution(when shape parameter ξ <0 ), the black line is Gumbel distribution(when shape
parameter ξ =0 ), the blue line is Fréchet distribution(when shape parameter ξ >0 ).
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Figure 2: Daily VaR Co-Exceptions

Notes: This figure shows daily VaR Co-Exceptions calculated by a 3-year rolling window GJR-
GARCH, it predicts correctly the financial events in the sample period, and the peaks in the
figure indicate that the volatility of most financial institutions is higher than usual, therefore
has higher risks.

Figure 3: Density of weekly maxima

Notes: This figure represents the density of the weekly maxima of VaR Co-Exceptions. For
most of the observation period, the financial system is relatively stable, with weekly maxima
ranging from 0 to 20 and the density decreasing with higher weekly maxima.
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Figure 4: Diagnostic pictures of GEV model

Notes: The 4 pictures are the diagnostic graph of the GEV model, respectively the Quantile-
Quantile (Q-Q) Plot (top left), the probability plot (top right), the density plot (bottom left),
and the return level plot (bottom right).

Figure 5: Parameters of GEV using rolling window

Notes: This figure shows the 3 parameters of GEV estimated by using rolling window, re-
gardless of the observation period, the shape parameter is greater than 0, indicating that it
follows the Fréchet distribution, has a right-skewed shape with a heavier tail, and is suitable
for describing extreme values with a larger tail risk.
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Figure 6: Return level of 6 weeks return period

Notes: This figure represents the return level for a 6-week return period. the return level
effectively predicts the occurrence of major financial events. During the 2008 financial crisis,
the 2010 European sovereign debt crisis, and the COVID period, the return level increased,
indicating that significant financial and economic instability occurs when systemic risk events
happen.

Figure 7: Return level and VIX index

Notes: This figure represents the return level for a 6-week return period compared with the
VIX index. It often moves in tandem with the return levels of VaR Co-Exceptions, especially
during financial crises like those in 2008, 2010, and 2020, suggesting that these levels effectively
capture shifts in market volatility and sentiment.
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Figure 8: Return level and VaR of the Market

Notes: This figure represents the return level for a 6-week return period compared with the
VaR of the market revealing pronounced spikes not mirrored in the market VaR, highlighting
our method’s ability to capture a broader spectrum of risks, including those from smaller
entities typically overlooked in market analyses.

Figure 9: Return probability of 6 weeks return period

Notes: This figure represents the return probability of a 6-week return period. It refers to the
likelihood that a given threshold will be met or exceeded within a specific future time frame.
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Figure 10: Return probability of 6 weeks return period

Notes: This figure represents the return probability of a 6-week return period using the GPD
Model.

Figure 11: Correlogram of the explanatory variables

Notes: This figure represents the correlogram of the explanatory variables. there is a very
strong correlation (close to 1) between the PCE and CPIAUCNS variables, these two vari-
ables relate to consumer product prices, to avoid any inversion difficulties, we will keep the
CPIAUCNS variable.
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Figure 12: Residual analysis

Notes: This figure shows the residual analysis of the regression. Residuals remain globally
uniformly distributed on both sides of 0. In the bottom left-hand chart, the red curve is
”horizontal”, with the points evenly distributed around it. In the QQ plot, the points are
aligned around the first bisector, confirming that the residuals follow a normal distribution.
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Appendix A Appendix

Appendix A.1 MLE for the GEV distribution

We consider maximum likelihood estimation to be better for the GEV distribution for the

following three main reasons: Firstly, it is the only method that can adapt to model varia-

tions and is applicable to different approaches for modeling extremes. While different extreme

modeling methods may yield different models and representations of the maximum likelihood

estimates may vary, the essence of the method remains unchanged. Secondly, it allows for

integrating various relevant information into statistical inference. This enables the incor-

poration of different types of information to improve the estimation process. Last but not

least, the most critical aspect is that maximum likelihood estimation exhibits excellent large-

sample properties and provides a measure of uncertainty for the estimation method, due to

its flexibility, ability to incorporate diverse information, and good properties in large samples,

we consider maximum likelihood estimation to be a favorable approach for estimating GEV

parameters

In the case ξ ̸= 0, the log-likelihood for a sample X1, . . . , Xn of i.i.d. variables following a

GEV is written as:

L(σ, µ, ξ) = −n log(σ) −
(

1

ξ
+ 1

) n∑
i=1

log

(
1 + ξ

Xi − µ

σ

)
−

n∑
i=1

(
1 + ξ

Xi − µ

σ

)−1
ξ

(A1)

In condition of 1 + ξXi−µ
σ

> 0, i = 1, . . . , n

In the case ξ = 0, the log-likelihood for a sample X1, . . . , Xn of i.i.d. variables following a
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GEV thus becomes :

L(σ, µ, ξ) = −n log(σ) −
n∑

i=1

exp

(
−Xi − µ

σ

)
−

n∑
i=1

(
Xi − µ

σ

)
(A2)

The estimators (σ̂, µ̂, ξ̂) of (σ, µ, ξ) are obtained by maximizing the above 2 equations.

Since the support of the density of a GEV depends directly on the value of the unknown

parameters (σ, µ, ξ), the usual regularity conditions underlying the asymptotic properties of

maximum likelihood estimators are not satisfied. It is therefore not possible to find an explicit

expression for (σ̂, µ̂, ξ̂), but it is possible to obtain an approximate value of these estimators

by numerical solution.

Appendix A.2 Return level calculation

We recall that the return level  Lt exceeded once every T periods verifies :

P (X ≥  Lt) =
1

T
(A3)

We thus obtain:

Lt = F̄−1

(
1

T

)
(A4)

where F̄ (x) = 1−F (x). Consequently, the return level Lt is a quantile of order α = 1
T

. In

the Block Maxima model, we take as a distribution the family of generalized extreme values
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(if ξ ̸= 0) :

Hξ,σ,µ(x) = exp

(
−
[
1 + ξ

(
x− µ

σ

)]− 1
ξ

)
(A5)

In the case of a GEV distribution. We have:

P (X >  Lt) = 1 − P (X ≤  Lt) = 1 − exp

(
−
[
1 + ξ

(
 Lt − µ

σ

)]− 1
ξ

)
(A6)

Thus, the level Lt exceeded once every T period is the solution of :

1 − exp

(
−
[
1 + ξ

(
Lt − µ

σ

)]− 1
ξ

)
=

1

T

We then obtain the equation of the return level:

Lt = µ− σ

ξ
×

(
1 + log

(
1 − 1

T

)−ξ
)

(A7)

Appendix A.3 GPD model of robustness check

When a GPD distribution function falls within one of the domains of attraction for the gen-

eralized extreme values (Fréchet, Gumbell or Weibull) then there exists a strictly positive

function σu and a parameter ξ ∈ R such that :

lim
u→F

sup
0≤y≤xF−u

|Fu(y) −Gξ,σu(y)| = 0 (A8)

Consequently, the distribution of exceptions over a large threshold u can be closely ap-

38



proximated by the GPD:

Fu ≈ Gξ,σu (A9)

GPD parameters are uniquely determined by GEV parameters. The shape parameter ξ is

identical to the GEV shape parameter and the scale parameter σu is a function of the GEV

location and shape parameters:

σu = a + ξ(u− b) (A10)

Selecting an optimal threshold could also be seen in the main text:

e(u) = E(X − u | X > u) (A11)

Let Y be a random variable with a Generalized Pareto distribution function Gξ,σu , then

its mean function of excesses e (u0) beyond a threshold u0 < xF is given by:

If this statement is true for the threshold u0, it will be true for any other threshold u > u0.

Thus, for all u > u0, we obtain the following equation:

e(u) =
σu

1 − ξ
(A12)

=
ξ (u− u0) + σu0

1 − ξ
(A13)
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Finally, for all u > u0, e(u) is a linear function in u

Upon determining the optimal threshold, we can model the exceptions that tend towards

a GPD. We will estimate the parameters of the GPD using the maximum likelihood method,

akin to our approach with the GEV model.

In the case ξ = 0, the log-likelihood for a sample Y1, . . . , Yn of i.i.d. variables following a

GPD is written :

logL(σ, ξ) = −n log(σ) −
(

1

σ

) n∑
i=1

(yi) (A14)

In the case ξ ̸= 0, the log-likelihood for a sample y1, . . . , yn of i.i.d. variables following a

GPD is written :

logL(σ, ξ) = −n log(ξ) −
(

1

ξ
+ 1

) n∑
i=1

log

(
1 + ξ

Yi

σ

)
(A15)

The subsequent step is to calculate the return level, in the POT model, we take the

Generalized Pareto Distribution (If ξ ̸= 0) :

Gξ,σu(y) = 1 −
(

1 + ξ
y

σu

)−1
ξ

(A16)

Let X be a random variable whose distribution function is a GPD. For a threshold u, we

have for all Lt > u :

P (X > Lt | X > u) = 1 − P (X ≤ Lt | X > u) =

(
1 + ξ

Lt

σu

)−1
ξ

(A17)
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Then we have:

P (X > Lt, | X > u) =
P (X > Lt, X > u)

P (X > u)
=

P (X > Lt)

P (X > u)
(A18)

Thus, the Lt level exceeded once every T period is a solution of :

P (X > u) ×
(

1 + ξ
Lt

σu

)−1
ξ

=
1

T
(A19)

We thus have the GPD equation:

Lt = u +
σ

ξ
×

((
1

T × P (X > u)

)−ξ

− 1

)
(A20)
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