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This paper introduces SpotV2Net, a multivariate intraday spot volatility forecasting
model based on a graph attention network architecture. SpotV2Net represents assets
as nodes within a graph and includes non-parametric high-frequency Fourier estimates
of the spot volatility and co-volatility as node features. Further, it incorporates Fourier
estimates of the spot volatility of volatility and co-volatility of volatility as features for
node edges, to capture spillover effects. We test the forecasting accuracy of SpotV2Net
in an extensive empirical exercise, conducted with the components of the Dow Jones
Industrial Average index. The results we obtain suggest that SpotV2Net yields sta-
tistically significant gains in forecasting accuracy, for both single-step and multi-step
forecasts, compared to a panel heterogeneous autoregressive model and alternative
machine-learning models. To interpret the forecasts produced by SpotV2Net, we employ
GNNExplainer (Ying et al., 2019), a model-agnostic interpretability tool, and thereby
uncover subgraphs that are critical to a node’s predictions.

© 2024 International Institute of Forecasters. Published by Elsevier B.V. All rights are
reserved, including those for text and datamining, AI training, and similar technologies.
1. Introduction

Volatility forecasting has long been at the core of the
iterature on financial econometrics, as scholars and prac-
itioners have been continually seeking accurate and ro-
ust asset volatility forecasts for applications in different
reas, including option pricing, portfolio optimization, and
inancial risk management (see, respectively, Christof-
ersen and Diebold (2000), Bandi, Russell, and Yang (2008),
nd Becker, Clements, Doolan, and Hurn (2015), among
any others).
Even though the focus of academic research has

ainly been on forecasting one-day-ahead volatilities
see, for instance, Andersen, Bollerslev, Christoffersen,
nd Diebold (2006), Brailsford and Faff (1996), Poon and
ranger (2003), Satchell and Knight (2011)), in recent
ears, the fast development of the high-frequency trading
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industry has emphasized the need for reliable intraday
volatility forecasts, see Engle and Sokalska (2012), Rossi
and Fantazzini (2015), Zhang, Zhang, Cucuringu, and Qian
(2023b). The availability of accurate intraday volatility
forecasts can be essential for the decision-making process
of market operators in different circumstances.

Firstly, short-term volatility forecasts may be exploited
to perform timely risk management tasks within the daily
horizon (see, e.g., Madhusudan and Samit (2019), Rice,
Wirjanto, and Zhao (2020)). Indeed, intraday volatility
prediction can anticipate sudden market shifts, especially
after significant events, and provide valuable information
for traders and portfolio managers who rely on real-time
risk assessments to adjust positions or hedge strategies
promptly. Secondly, with the growth of algorithmic and
high-frequency trading, modeling and forecasting intra-
day volatility dynamics has become foundational to guide
profit-making strategies that hinge on short-term price
movements (see, e.g., Behrendt and Schmidt (2018), Gold-
stein, Kwan, and Philip (2023), Liu, Pantelous, and von
Mettenheim (2018), Mariotti, Lillo, and Toscano (2023)).
aday spot volatility forecasting via vol-of-vol-informed graph attention
ijforecast.2024.11.004.
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or instance, anticipating short-term volatility changes
ould allow high-frequency traders to improve optimal
xecution, exploit sudden shifts in market sentiment,
nd optimally plan market entrance/exit. At the same
ime, financial institutions may exploit accurate short-
erm volatility predictions to adjust trading margins in a
imely way. Similarly, market makers could use intraday
olatility forecasts to optimally plan their operations in
rder to control bid–ask spreads and guarantee adequate
iquidity.

Beyond the trading setting, anticipating intraday
olatility changes may be instrumental for the early de-
ection of anomalies at the microstructural level (see, for
xample, Ligot, Gillet, and Veryzhenko (2021), Xue and
ençay (2012)). Moreover, regulators could use short-
erm volatility forecasts to anticipate the outset of insta-
ility conditions (Allaj & Sanfelici, 2023).
In this paper, we introduce a novel approach to multi-

ariate intraday volatility forecasting based on graph neu-
al networks (GNNs). GNNs represent a specific instance
f neural network architecture that can act on data struc-
ured as graphs. They have been successfully employed to
odel several complex multidimensional dynamic prob-

ems in different fields, such as traffic flows (Diao, Wang,
hang, Liu, Xie, & He, 2019; Jiang & Luo, 2022; Li & Zhu,
021), recommendation systems (Huang et al., 2021; Xia,
uang, Xu, Dai, & Bo, 2022; Ying, He, Chen, Eksombatchai,
amilton, & Leskovec, 2018), social networks (Fan et al.,
019; Minet al., 2021), supply chains (Gopal & Chang,
021), international trade (Monken, Haberkorn, Gopinath,
reeman, & Batarseh, 2021; Panford-Quainoo, Bose, &
efferrard, 2020), interbank markets (Liu, Cheng, & Jiang,
023), enterprise bankruptcy (Zhao et al., 2022), and tax
vasion (Shiet al., 2023). The dynamics of asset volatili-
ies in a high-dimensional intraday setting may be seen
s a complex system, based on the empirical evidence
hat suggests the presence of intraday co-movements
nd spillovers effects across different sectors and mar-
ets, see, e.g., Fassas and Siriopoulos (2019), Golosnoy,
ribisch, and Liesenfeld (2015), Jawadi, Louhichi, and
di. Cheffou (2015), Katsiampa, Corbet, and Lucey (2019),
aeem, Karim, Yarovaya, and Lucey (2023), Nishimura
nd Sun (2018). Hence, GNNs represent an effective mod-
ling framework to capture the changing patterns in the
ntraday volatility of assets by leveraging data from vari-
us correlated securities.
In a multidimensional setting, we assume that each as-

et represents a node in a graph. The features (covariates)
ssociated with each node comprise the instantaneous
or spot) volatility of the asset and the instantaneous
o-volatilities with every other asset in the graph, recon-
tructed using the non-parametric Fourier methodology
y Malliavin and Mancino (2002, 2009). Furthermore, to
apture spillover effects, the edge features encapsulate in-
ormation about the dynamic dependence between node
airs. Specifically, for any given edge, its features consist
f Fourier estimates of the volatility of volatility of each
f the assets connected by the edge and the co-volatility
f their individual volatilities. In this regard, we note
hat different studies have shown that encompassing real-
zed or implied volatility-of-volatility measures improves
2

a model’s performance in risk management tasks (see,
e.g., Chen, Chordia, Chung, and Lin (2021), Huang, Schlag,
Shaliastovich, and Thimme (2019), Li (2022) and forecast-
ing applications (see, e.g., Campisi, Muzzioli, and Baets
(2023), Catania and Proietti (2020), Ding (2023)). Node
and edge features represent the inputs of the forecasting
model. To account for (cross-) serial dependence, each
input includes not only current values but also several
lagged values. This is achieved by leveraging the capability
of deep learning architectures to handle a large number of
inputs (Jaegleet al., 2021; Menghani, 2023). In the specific
case of GNNs, inputs can be placed in both the nodes
and the edges (Wu et al., 2020a; Zhou et al., 2020). We
refer to the resulting architecture that we obtain as a spot
volatility and volatility-of-volatility network, abbreviated
SpotV2Net.

The GNN architecture that we employ in this paper
relies on an attention mechanism and thus falls within
the graph attention network (GAT) framework proposed
by Veličkovićet al. (2017). The attention mechanism al-
lows for assigning different attention scores to different
nodes in a graph, thereby enabling the forecasting model
to attribute more weight to the information embedded
into a specific subset of neighboring nodes. This adapt-
ability can be crucial for the efficiency of empirical ap-
plications in which nodes are not likely to contribute
equally to the forecast of the volatility of a given asset
in a graph. Moreover, the GAT framework can inherently
handle edge features because the attention mechanism
also includes the latter in the calculation of attention
scores. On the contrary, other types of GNN instances,
such as graph convolutional networks (GCNs) (Kipf &
Welling, 2016), spectral-based GNNs (Defferrard, Bresson,
& Vandergheynst, 2016), and spatial-based GNNs (Hamil-
ton, Ying, & Leskovec, 2017), operate with a fixed, pre-
determined weight for neighboring nodes and do not
naturally handle edge features.

We test the SpotV2Net model in a universe of the 30
stocks that compose the Dow Jones Industrial Average
(DJIA) index at the time of writing. Using one-second
asset prices, we estimate model inputs, namely univariate
and multivariate spot volatility and volatility-of-volatility
time series, on a 30-minute grid. Then, we evaluate the
performance of SpotV2Net’s single-step and multi-step
spot volatility forecasts and compare its accuracy with
that of alternative models. These include a heterogeneous
autoregressive (HAR) model for spot volatility,1 and two
machine learning (ML) models that do not handle graph
structures, namely the extreme gradient boosting (XGB)
model and the long short-term memory (LSTM) model.
We find that the capability of SpotV2Net to learn from
graph-like structured data and, in particular, to capture
spillover effects via edge features yields statistically sig-
nificant gains in forecasting accuracy with respect to the
alternative models considered. Such gains are obtained
with both single-step and multi-step forecasts. In this

1 We adapt the HAR model by Corsi (2009) which is built to fore-
cast daily integrated volatilities, to forecast intraday spot volatilities.
The resulting model, which maintains a heterogeneous autoregressive
structure, is termed HAR-Spot and is illustrated in Appendix A.
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egard, we note that SpotV2Net is capable of produc-
ng multi-step forecasts without resorting to a recursive
pproach.
Furthermore, given the complexity of the GAT archi-

ecture employed, we address the issue of the inter-
retability of the predictions produced by the SpotV2Net
odel. Specifically, we employ the GNNExplainer frame-
ork (Ying, Bourgeois, You, Zitnik, & Leskovec, 2019)
o identify relevant nodes and edges that influence the
odel’s spot volatility predictions for a specific asset.
The paper is organized as follows. Section 2 reviews

he relevant literature on multivariate volatility forecast-
ng, while Section 3 introduces the notation and illus-
rates the assumptions behind the estimation of uni-
ariate and multivariate spot volatility and volatility-of-
olatility time series. Section 4 motivates the use of a
AT framework with co-volatilities of volatilities as edge
eatures for forecasting intraday multivariate spot volatil-
ties. Section 5 then formally introduces the SpotV2Net
odel, while Section 6 recalls the definition of the Fourier
pot estimators employed to reconstruct the inputs of
potV2Net. Section 7 illustrates the empirical application
f SpotV2Net to the universe of DJIA stocks, and Sec-
ion 8 concludes. Finally, Appendix A briefly illustrates
he modeling alternatives to SpotV2Net which are im-
lemented for comparison in the empirical application
f Section 7, while Appendix B provides information on
etting hyperparameters.

. Related literature

The complexity of financial markets explains the grow-
ng interest of the literature on multivariate models that
an capture volatility co-movements among different se-
urities. In this regard, see, for instance, Bauwens, Lau-
ent, and Rombouts (2006), who provide a comprehen-
ive survey of the multivariate extension of GARCH-like
odels–such as the diagonal VEC model (Bollerslev, Engle,
Wooldridge, 1988), the BEKK model (Engle & Kroner,

995), the VAR-GARCH model (Ling & McAleer, 2003), and
ishart autoregression (WAR) (Gouriéroux, Jasiak, & Su-

ana, 2009)–andWilms, Rombouts, and Croux (2021), who
mploy a multivariate version of the HAR model (Corsi,
009) to capture volatility spillover effects among stock
arket indices.
Bollerslev, Meddahi, and Nyawa (2019), Caldeira,

oura, Nogales, and Santos (2017), Herskovic, Kelly,
ustig, and Va. Nieuwerburgh (2016, 2020) show the
mportance of these models for applications in asset
ricing, portfolio optimization, and risk management.
owever, these models present a number of drawbacks.
or example, the diagonal VEC, BEKK, and HAR models
ace significant computational challenges when scaling to
large number of assets. For instance, Callot, Kock, and
edeiros (2017) explored the curse of dimensionality in
ultivariate volatility models, noting that these models
ay lead to poor out-of-sample forecasts and high com-
utational burdens, making the development of a more
calable solution a valuable approach in this area of study.
dditionally, as pointed out by Zhang, Pu, Cucuringu, and
ong (2022a, 2023a), VAR-GARCH and WAR struggle to
apture long-term dependencies in volatility time series.
3

Within a multivariate framework, forecasting an in-
traday spot measure of asset volatility is a critical area
of exploration that has received little attention in the
literature, to the best of our knowledge. Few works at-
tempt to model intraday volatility through ARCH (Taylor
& Xu, 1997) and GARCH (Engle & Sokalska, 2012) variants.
However, their modeling focus is on integrated measures
of volatilities, namely on realized volatilities (Andersen,
Bollerslev, Diebold, & Ebens, 2001), rather than on spot
estimates. Moreover, as pointed out by Christensen, Sig-
gaard, and Veliyev (2023), traditional linear models may
break down when the explanatory variables are strongly
correlated, exhibit low signal-to-noise ratios, or if the
underlying structure is nonlinear.

On this behalf, ML techniques, which have recently
made an impact on the field of finance, represent an alter-
native approach to effectively handling these issues. The
capability of ML models, especially deep neural networks,
to handle high-dimensional data and approximate com-
plex patterns has impacted key areas of finance, such as
portfolio optimization (Heaton, Polson, & Witte, 2017; Lin
& Taamouti, 2024; Ma, Han, &Wang, 2021; Zhang, Zohren,
& Roberts, 2020), asset pricing (Chen, Pelger, & Zhu, 2023;
Gu, Kelly, & Xiu, 2020; Wu, Brinton, Zhang, Pizzoferrato,
Liu, & Cucuringu, 2021), and volatility forecasting (Bucci,
2020; Christensen et al., 2023; Liu, 2019; Xiong, Nichols,
& Shen, 2015; Zhu, Bai, He, & Liu, 2023). For the specific
problem of volatility forecasting, it is worth underlining
that the findings by Christensen et al. (2023) suggest that
several ML algorithms, despite being implemented with
minimal hyperparameter tuning, yield improved forecast-
ing performance compared to models in the HAR lineage,
especially at longer horizons. The authors attribute such
forecast accuracy gains to higher persistence in the ML
models –which helps to approximate the long memory
of realized variance– and the capability of ML models to
encompass the contribution from additional predictors,
besides past volatility lags.

GNNs are part of the ML-based approaches that can
play a significant role in enhancing financial applications,
see, e.g., the review by Wang, Zhang, Xiao, and Song
(2021) and Zhang, Chen, Miao, and Liu (2022b). Recent
studies (see Chen and Robert (2022), Djanga, Cucuringu,
and Zhang (2023), Reisenhofer, Bayer, and Hautsch (2022),
Zhang et al. (2022a)) employ GNN-based models to fore-
cast integrated measures of asset volatility, illustrating
the potential of graph-based methods to capture complex
inter-asset relationships, including non-linear volatility
spillover effects (Zhang et al., 2023a). Similarly, Wu and
Pan and Long et al. (2020b) and Cheng, Yang, Xiang,
and Liu (2022) extend the scope of application for GNNs
by employing the latter for forecasting financial time
series. Building on these foundations, our research aims to
extend the use of GNNs by including the attention mecha-
nism typical of GATs. GAT architectures have already been
employed to predict stock market movements (Cheng
et al., 2022; Kimet al., 2019) and provide stock recommen-
dations (Ying, Xu, Gao, Wang, & Li, 2020). However, few
works have leveraged the flexibility of GATs for modeling
spillover effects in financial markets. For instance, Cheng
and Li (2021) model the momentum effect between firms
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sing an attribute-sensitive architecture similar to our
pproach, but they focus on solving a binary classification
roblem to predict the directional movements of stock
rices, rather than forecasting asset volatilities.

. Notation and assumptions

We consider a collection of N assets. For i = 1, . . . ,N ,
e let pi(t) and Vi(t) denote, respectively, the log-price
nd the spot volatility of the ith asset at time t ∈ [0, T ].
e assume that the dynamics of the pair (pi(t), Vi(t))

satisfy{
dpi(t) = µi,1(t)dt +

√
V i(t)dWi,1(t)

dVi(t) = µi,2(t)dt +

√

Ṽ i(t)dWi,2(t)
,

where, for any i ∈ {1, . . . ,N} and for any k ∈ {1, 2},
Wi,k is a Brownian motion on the filtered proba-
bility space (Ω, P,F, (Ft )t∈[0,T ]), while the drift µi,k
and the spot volatility of volatility Ṽi are continuous,
bounded, and adapted stochastic processes defined on
(Ω, P,F, (Ft )t∈[0,T ]). The pairwise correlations between
the Brownian motionsW1,1, . . . ,WN,1,W1,2, . . . ,WN,2 are
allowed to be time-dependent and random.

Let ⟨pi, pj⟩t denote the quadratic covariation between
pi and pj on [0, t]. We define the spot co-volatility process
as

Cij(t) :=
d⟨pi, pj⟩t

dt
and note that Cii(t) = Vi(t). Similarly, we define the spot
o-volatility-of-volatility process as

ij(t) :=
d⟨Vi, Vj⟩t

dt
,

ith C̃ii(t) = Ṽi(t).
The SpotV2Net model employs estimates of the dis-

rete trajectories

Cij,t}t∈T , {Vi,t}t∈T , {̃Cij,t}t∈T , {Ṽi,t}t∈T ,

(i, j) ∈ {1, . . . ,N} × {1, . . . ,N}, i ̸= j,

here T = {0 = τ0 < τ1 < · · · < T = τB}, B ∈ N.
or ease of notation, we use, e.g., Vi,b to indicate Vi,τb ,
= 0, 1, . . . , B. Estimates are obtained using the Fourier
ethodology, which is detailed in Section 6. We denote

he estimate of, e.g., Vi,b by V̂i,b.

. Motivation

In the last two decades, different studies have high-
ighted the importance of including time-varying
olatility-of-volatility effects in financial models to ac-
urately capture price and volatility stylized facts and
mprove forecasting performance. For instance, in their
eminal work, Bollerslev, Tauchen, and Zhou (2009) found
hat accounting for time-varying volatility-of-volatility
ffects is of primary importance for modeling and
orecasting the temporal variation of expected returns.
urthermore, the findings by Corsi, Mittnik, Pigorsch, and
igorsch (2008) suggest that allowing for time-varying

olatility of volatility substantially improves both the

4

it and the predictive performance of traditional au-
oregressive models like the ARFIMA (Granger & Joyeux,
980) and HAR models. More recently, other works have
emonstrated the importance of the volatility of volatility
n forecasting financial variables. Catania and Proietti
2020) proposed a score-driven model for the realized
olatility and price dynamics with time-varying volatility-
f-volatility effects and showed that the latter contributed
o improving out-of-sample performance compared to a
enchmark HAR-GARCH model. Additionally, Ding (2023)
ntroduced a GARCH-type model that allows for condi-
ional heteroskedasticity in the volatility of asset returns
nd showed that this model can capture returns stylized
acts and yield more accurate volatility forecasts than
ommonly used models in the GARCH family. Moreover,
eyond traditional autoregressive models, Campisi et al.
2023) found, by implementing several ML methods, that
he implied volatility of volatility, as proxied by the CBOE
VIX index,2 is a predictor, along with other market
ndices, of the future direction of the stock market.

The SpotV2Net model employs the information em-
edded in spot co-volatility-of-volatility paths to obtain
ccurate intraday spot volatility forecasts in a multivariate
etting. Specifically, the model rests on the idea that in-
tantaneous spillover effects between asset volatilities are
aturally captured by the dynamics of the time-varying
pot co-volatilities of volatility pairs.
Intuitively, SpotV2Net views asset spot volatilities at

given point in time as different nodes of a graph that
re connected by edges embedding information about
he contingent strength of the relationship between node
airs. Such information is naturally represented by the in-
tantaneous dependence between two nodes (i.e., volatil-
ties), as measured by the spot co-volatility between the
odes (i.e., the spot co-volatility of volatility). Given this
tructure, a time-varying co-volatility of volatility can be
aturally seen as an indicator of the magnitude of instan-
aneous spillover effects.

We can illustrate the role of the co-volatility of volatil-
ty with an empirical example. Consider the two conse-
uential financial events that occurred in March 2023,
amely the collapses of Silicon Valley Bank (on March
0) and Signature Bank (on March 12). Given the pivotal
ole of banks in the financial system, these bank failures
mmediately initiated a volatility burst that spread from
he US to international markets. However, not all stocks’
olatilities were affected by spillover effects of the same
agnitude.
For example, consider the following three US compa-

ies that are part of the Dow Jones Industrial Average
ndex: American Express (AXP) and Visa (V), two compa-
ies that provide financial services, and Caterpillar (CAT),
manufacturing company. As illustrated in Fig. 1, all three
ompanies experienced an increase in their spot volatility
evel right after the failures of Silicon Valley Bank and
ignature Bank, showing the largest volatility peaks right
fter March 13. The largest volatility peaks were then
ollowed by sequences of local peaks of lower magnitude
nd a progressive reversion to the volatility level observed
t the beginning of the month.

2 CBOEVVIXwebsite

https://www.cboe.com/us/indices/dashboard/vvix
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Fig. 1. Fourier spot volatility estimates {Vi,t }t∈T for i ∈ {AXP, CAT , V } on the 30-minute grid T = {τj = jT/13 : j = 0, 1, . . . , 13}, where T is a
.5-hour trading day. Estimates were obtained using one-second prices. Details about the Fourier estimator of the spot volatility are provided in
ection 6.
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However, by observing Fig. 2, one immediately no-
ices that the pairwise co-volatilities of volatility behave
ery differently. In particular, the spot co-volatility of
olatility between AXP and V shows two very large peaks
ear March 16 and March 17, while the co-volatility of
olatility between each of these two stocks and CAT main-
ains substantially stable and lower values during March
023. Such bursts in the spot co-volatility of volatility
ay indicate the presence of more pronounced instan-

aneous spillover effects between AXP and V, compared
o the pairs AXP-CAT and V-CAT. This is not surprising,
ince AXP and V operate in the same sector, namely,
inancial services, which the collapses of Silicon Valley
ank and Signature Bank directly impacted. Instead, CAT
s a well-diversified manufacturing company whose spot
olatility may be less correlated with the volatility of
ompanies operating in the banking and insurance indus-
ry. SpotV2Net can recognize such effects using the atten-
ion mechanism inherent in the GAT architecture. When
redicting the future value of a specific node, the atten-
ion mechanism allows for assigning different weights
o neighboring nodes, based not only on node features
ut also on features embedded in the connecting edges.
ence, the attention mechanism enables SpotV2Net to
aturally capture the time-varying spillover effects be-
ween volatility pairs by including edge features. The next
ection describes the attention mechanism in detail.

. The SpotV2Net model

GNNs are a family of deep learning models (Good-
ellow, Bengio, & Courville, 2016) that can learn from
ata structured as graphs. They differ from other widely
sed neural network architectures such as convolutional
eural networks (CNNs) (LeCun, Bengio, et al., 1995) and
5

ecurrent neural networks (RNNs) (Hochreiter & Schmid-
uber, 1997; Rumelhart, Hinton, Williams, et al., 1985),
hich are designed to model for grid and sequence data,
espectively.

The general idea of GNNs rests on the principle of
terative message passing, where graph nodes aggregate
nformation from themselves and their connected nodes,
eferred to as neighbors. This aggregation can be repeated
y stacking multiple layers, where each layer generates its
wn representation based on the output of the previous
ayer. These representations are then passed to a linear
ggregation layer to perform node regression, i.e., ob-
aining output forecasts for each node. This end-to-end
earning process allows for training the model to operate
irectly on graph-structured data.
The mathematical operation that produces the aggre-

ation defines the type of GNN algorithm. Scarselli, Gori,
soi, Hagenbuchner, and Monfardini (2008) presented the
irst example of GNN modeling characterized by an it-
rative updating procedure for the node representation.
ther models introduce improvements in computational
fficiency, ease of training, and the ability to handle com-
lex graph structures. For instance, graph convolutional
etworks (GCNs) allow the computation to be performed
n parallel and follow a static layered structure similar to a
eedforward neural network (Kipf & Welling, 2016). Fur-
hermore, graph isomorphism networks (GINs) (Xu, Hu,
eskovec, & Jegelka, 2018) include fixed trainable weights
hat determine the different impacts of neighboring nodes
hen performing the prediction of a specific node.
The GAT (Veličkovićet al., 2017), on which SpotV2Net

s based, introduces an attention mechanism that sets
t apart from other models. While GCNs propagate and
ggregate information uniformly from neighbors, and the
IN ensures that the network can effectively discern the



ARTICLE IN PRESS
A. Brini and G. Toscano International Journal of Forecasting xxx (xxxx) xxx

0
v

r
p
t
t
o
o
e

L
{

E
t
d
w
c
i
A

v
T
l
W
o
t

r

Fig. 2. Fourier spot co-volatility-of-volatility estimates {̃Cij,t }t∈T for i, j ∈ {AXP, CAT , V }, i ̸= j, on the 30-minute grid T = {τj = jT/13 : j =

, 1, . . . , 13}, where T is a 6.5-hour trading day. Estimates were obtained using one-second prices. Details about the Fourier estimator of the spot
olatility are provided in Section 6.
elative significance of a node’s inherent features as op-
osed to the aggregated features from neighboring nodes,
he GAT empowers nodes to assign different weights to
heir neighbors based on their features and the features
f the connecting edges. This dynamic mechanism builds
n transformer-based natural language processing mod-
ls (Vaswani et al., 2017).
Let us now consider the mechanism behind a GAT.

et G = {V, E} denote a graph structure, where V =

ν1, . . . , νN} is the set of the N nodes of the structure, and
is the set of edges, where εij =

(
νi, νj

)
∈ E denotes

he edge connecting node νi and node νj. Further, let A
enote the N×N binary adjacency matrix of the structure,
here A[i, j] is equal to 1 (respectively, 0) if νi and νj are
onnected (respectively, are not connected). The graph G
s assumed to be fully connected. That is, all the entries of
are assumed to be equal to 1.
A GAT involves a sequence of layers, where the pre-

ious layer’s input represents the next layer’s output.
he final layer is referred to as the prediction (output)
ayer. Intermediate layers are referred to as hidden layers.
hen implementing SpotV2Net, we optimize the number
f hidden layers as a hyperparameter, determining that
wo hidden layers are optimal.

The input to the first GAT layer is the set of vectors
epresenting node features, namely x = {x1, x2, . . . , xN},
xi ∈ RM , where M indicates the number of features in
each node. The GAT layer outputs a different represen-
tation of the initial set of node features, with different
cardinality M ′, denoted by x′

= {x′

1, x
′

2, . . . , x
′

N}, x′

i ∈ RM ′

.
We treat M ′ as a hyperparameter and optimize its value
through the training phase.

Specifically, the operation performed by the GAT layer
consists of the following steps. Firstly, the attention coef-

ficient that indicates the importance of node j’s features

6

to node i, denoted by eij, is obtained as

eij = a(Wxi,Wxj),

where a is a R-valued function defined on RM ′

× RM ′

,
and W ∈ RM ′

×M is a weight matrix. Then, attention co-
efficients are normalized to make the values comparable
across nodes. The normalization is performed using the
softmax function:

αij = softmaxj(eij) =
exp(eij)∑N
k=1 exp(eik)

.

In our study, we follow the implementation by
Veličkovićet al. (2017), so that a is a single-layer feedfor-
ward neural network with a LeakyReLU activation func-
tion (Maas, Hannun, Ng, et al., 2013) and weight vector
q ∈ R2M ′

. The LeakyReLU function is defined as

L(x) =

{
x if x > 0
cx if x ≤ 0

,

where c is a positive constant. The resulting attention
coefficient reads as

αij =
exp(L(qT [Wxi ∥ Wxj]))∑N
k=1 exp(L(qT [Wxi ∥ Wxk]))

,

where ·
T represents transposition, and ∥ indicates the

concatenation operation.
Once the attention parameters are computed, the hid-

den representation for each node in the graph is ex-
pressed as

x′

i = σ

⎛⎝ N∑
j=1

αijWxj

⎞⎠ ,

where σ represents a nonlinear activation function cho-
sen as a hyperparameter of the model.
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To improve the expressiveness3 and accuracy of the
raining process (Vaswani et al., 2017), when implement-
ng SpotV2Net we follow a multi-head attention mecha-
ism that consists of a number K of independent attention
echanisms. Multiple heads perform the same opera-

ions on the same input but are initialized with different
eights. This approach allows each head to learn distinct
atterns from the inputs and capture various aspects of
he data. The resulting hidden node representation is
btained via concatenation and reads as

′

i =
⏐⏐⏐⏐K

k=1 σ

⎛⎝ N∑
j=1

αk
ijW

kxj

⎞⎠ ,

where αk
ij denotes normalized attention coefficients com-

puted by the kth attention mechanism, and W k is the
corresponding weight matrix. To avoid an excessive in-
crease in dimensionality, which could lead to overfit-
ting (Veličkovićet al., 2017), concatenation is not per-
formed if the hidden layer precedes the final prediction
layer. Instead, in this case, an average is computed:

x′

i = σ

⎛⎝ 1
K

K∑
k=1

N∑
j=1

αk
ijW

kxj

⎞⎠ .

In the last layer, an affine transformation is applied to
obtain the prediction. Specifically, the final layer yields
the prediction for node i, denoted by ŷi, which reads as

ˆ i = Ox′

i + u,

here O ∈ RN×M ′

and u ∈ RN .
In the specific case of SpotV2Net, at a given time τb,

e feed the GAT the node feature vectors

i =

[{
V̂i,b−l

}
l=0,...,L ,

{{̂
Cij,b−l

}
j=1,...,N;j̸=i

}
l=0,1,...,L

]
. (1)

hat is, xi includes contemporaneous values and all the
ags up to L of the estimated volatility of the ith asset
and the estimated co-volatility between the ith asset and
all the other assets. Note that the number of lags L is
not predetermined a priori, but rather treated as a hy-
perparameter subject to tuning (see the hyperparameter
‘Number of Lags’ in Appendix B). This allows for flexibility
in dynamically capturing the long-memory property of
the spot volatility.

Our application of the GAT layer also allows for edge
features, i.e., information regarding the dependence be-
tween two nodes in a graph. Specifically, we have a set of
edge features xe = {xeij | i < j}, xeij ∈ RE . We set

xeij =

[{ˆ̃V i,b−l

}
l=0,...,L

,

{ˆ̃V j,b−l

}
l=0,...,L

,

{ˆ̃C ij,b−l

}
l=0,1,...,L

]
.

(2)

hat is, xeij includes contemporaneous values and all the
ags up to L of the estimated volatility of volatility of the

3 Expressiveness (or capacity) refers to a model’s ability to capture
complex patterns and relationships in the data. For more details, see
Chapter 5 of Goodfellow et al. (2016).
7

ith asset and the jth asset, along with the estimated co-
volatility of volatility between the ith asset and the jth as-
set. Fig. 3 illustrates the general structure of SpotV2Net’s
input graph in the three-dimensional case.4

To include edge features in a GAT, it is sufficient to
modify the attention mechanism so that the function a :

RM ′

× RM ′

→ R becomes a′
: RM ′

× RM ′

× RE′

→ R. The
resulting normalized attention coefficient then reads as

α′

ij =
exp

(
L
(
q′T

[Wxi ∥ Wxj ∥ Uxeij]
))∑N

k=1 exp
(
L
(
q′T [Wxi ∥ Wxk ∥ Uxeik]

)) ,
where U ∈ RE′

×E is the weight matrix for the linear trans-
formation of the edge features, and E ′ is the dimension of
the transformed edge features.

6. Fourier estimators

In this section, we briefly illustrate the Fourier esti-
mation method, which allows us to efficiently reconstruct
the entries of node and edge feature vectors defined, re-
spectively, in (1) and (2). The Fourier non-parametric es-
timation method, originally introduced by Malliavin and
Mancino (2002, 2009), allows for reconstructing the latent
spot co-volatility paths from high-frequency price obser-
vations. The method is particularly apt for estimating spot
co-volatilities in the presence of microstructure noise, as
it removes the influence of the latter by simply cutting off
the highest coefficients of the price increment from the
convolution that yields the co-volatility coefficients (see
Eq. (3)), without the need for bias correction.

The Fourier spot volatility estimator has been shown to
achieve the optimal rate of convergence in the presence
of noise, see Mancino, Mariotti, and Toscano (2022).5 Its
finite-sample efficiency at high frequencies is supported
by the studies of Mancino et al. (2022), Mancino and
Recchioni (2015), Mariotti et al. (2023).

The Fourier method also allows us to estimate the
co-volatility-of-volatility path (Barucci & Mancino, 2010).
It is worth noting that the Fourier spot co-volatility-of-
volatility estimator does not require the pre-estimation
of the spot volatility path but only the computation
of integrated quantities, namely the coefficients of the
co-volatility. This feature enhances the finite-sample
efficiency of the Fourier methodology, compared to
alternative approaches that require the pre-estimation
of the spot volatility path, see Toscano, Livieri, Man-
cino, and Marmi (2022). The consistency of the Fourier
spot volatility-of-volatility estimator with noisy prices
is proven in Mancino et al. (2022). Its finite-sample
performance at high frequencies is studied in Toscano
(2022).

4 This simplified, low-dimensional representation is intended to
illustrate the process clearly, avoiding the cluttered figure that would
result from using higher dimensions. However, the inherent scalability
of the GNN architecture allows SpotV2Net to be applied effortlessly
to a much larger cross-section of assets. Accordingly, in the empirical
application presented in Section 7, we employ SpotV2Net to model the
spot volatility of all of the 30 constituents of the DJIA index.
5 This result is trivially extended to the Fourier spot co-volatility

estimator if prices are sampled on a synchronous grid, as is the case
in the empirical application of Section 7.
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6.1. Fourier estimator of the volatility and co-volatility

Without loss of generality, consider the case with just
two assets, that is N = 2. For any i = 1, 2, assume
that the log-price process pi is observable on the grid
Dn := {0 = t0,n < t1,n . . . < tn−1,n < T = tn,n} such
that maxs∈{1,...,n}|ts,n − ts−1,n| → 0 as n → ∞.6

For |k| ≤ Nc , an estimator of the kth Fourier coefficient
of the co-volatility is given by the convolution

ck
(
Cn,Nc

)
=

T
2Nc + 1

∑
|l|≤Nc

cl
(
dp1,n

)
ck−l

(
dp2,n

)
, (3)

here, for any integer k such that |k| ≤ 2Nc , ck
(
dpi,n

)
is

he kth discrete Fourier coefficient of the log-return of the
th asset, namely

k
(
dpi,n

)
:=

1
T

n−1∑
l=0

e−ik 2π
T tl,n

(
pi(tl+1,n) − pi(tl,n)

)
, i = 1, 2.

Similarly, for |k| ≤ Nvi , an estimator of the kth Fourier
coefficient of the volatility of the ith asset is given by

ck
(
Vn,Nvi

)
=

T
2Nvi + 1

∑
|l|≤Nvi

cl
(
dpi,n

)
ck−l

(
dpi,n

)
, i = 1, 2.

Once the Fourier coefficients of the co-volatility and the
individual volatilities have been computed, applying the
Fourier–Fejér inversion formula yields estimators of the
co-volatility and volatility paths. Specifically, the Fourier
estimators of the spot co-volatility and volatility at time
τb ∈ T are defined as

C12,b =

∑
|k|<Mc

(
1 −

|k|
Mc

)
ck
(
Cn,Nc

)
eik

2π
T τb ,

and

Vi,b =

∑
|k|<Mvi

(
1 −

|k|
Mvi

)
ck
(
Vn,Nvi

)
eik

2π
T τb , i = 1, 2,

6 For simplicity of the exposition, we assume that two price series
are synchronous, that is, are observed on the same grid Dn , containing
n + 1 points.
 D

8

where Mc < Nc and Mvi < Nvi .

.2. Fourier estimator of the volatility of volatility and the
o-volatility of volatility

The knowledge of the Fourier coefficients of the latent
pot co-volatility and volatility allows for treating the
atter as observable processes and iterating the procedure
or computing the Fourier coefficients of the co-volatility
f volatility and the volatility of volatility. Estimators of
he kth Fourier coefficient of the co-volatility of volatility
nd the kth Fourier coefficient of the volatility of volatility
re respectively defined as

k
(̃
Cn,Nc ,Sc

)
=

T
2Sc + 1

∑
|l|≤Sc

l(l − k)cl
(
Cn,Nc

)
ck−l

(
Cn,Nc

)
,

and

ck
(
Ṽn,Nvi ,Svi

)
=

T
2Svi + 1

∑
|l|≤Svi

l(l − k)cl
(
Vn,Nvi

)
ck−l

(
Vn,Nvi

)
,

i = 1, 2,

where Sc < Nc and Svi < Nvi . The Fourier estimators of the
spot co-volatility of volatility and volatility of volatility at
time τb ∈ T are then defined as

C12,b =

∑
|k|<Lc

(
1 −

|k|
Lc

)
ck
(̃
Cn,Nc ,Sc

)
eik

2π
T τb ,

and

V i,b =

∑
|k|<Lvi

(
1 −

|k|
Lvi

)
ck
(
Ṽn,Nvi ,Svi

)
eik

2π
T τb , i = 1, 2,

where Lc < Sc and Lvi < Svi .

. Empirical study: Application to the universe of DJIA
tocks

In this section, we employ SpotV2Net to predict the
ntraday spot volatilities of the 30 components of the
ow Jones Industrial Average (DJIA) index. After briefly
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escribing the dataset and the estimation procedure for
btaining univariate and multivariate spot volatility and
olatility-of-volatility time series from high-frequency
rices, we evaluate the accuracy of the SpotV2Net
odel’s single-step and multi-step forecasts. In the case
f single-step forecasts, we employ GNNExplainer (Ying
t al., 2019) to obtain insight into the most influential
ubgraphs related to a specific node’s prediction.

.1. Data preparation and estimation of univariate and mul-
ivariate spot volatility and the volatility-of-volatility series

We collected the raw price data for the 30 compo-
ents of the DJIA index from the TAQ – Millisecond Con-
olidated Trades database, which we accessed through
harton Research Data Services (WRDS). The dataset cov-

rs the period from June 1st, 2020, to May 10th, 2023,
orresponding to 737 days.
For the implementation of the Fourier estimator, we

roceed as follows. Starting from tick data, we filter the
ransactions to include only those executed on the New
ork Stock Exchange (NYSE) and exclude transactions that
ccurred outside the operating market hours from 9:30
.m. to 4:00 p.m. Then, we resample the tick data to the
ne-second frequency, selecting the price associated with
he transaction closest to each second’s onset. The result-
ng sample size employed in the implementation of the
stimators is n = 23,400 per day. Note that we measure
ime in days and set T equal to 1. The cutting frequencies
vi , Mvi , Svi , and Lvi (for the ith asset) and Nc , Mc , Sc , and Lc
for each pair of assets) are selected using guidance from
he paper by Sanfelici and Toscano (2024), who intro-
uced a MATLAB library for the implementation of Fourier
stimators.7 Univariate and multivariate spot volatility
nd volatility-of-volatility estimates are obtained on the
0-minute grid.
As the output of the univariate estimation process,

or each of the N = 30 DJIA components, we obtain
time series that contains 10,318 spot volatility values
nd a time series with the same length that contains spot
olatility-of-volatility values.8 Furthermore, the output of
he multivariate estimation process includes 1

2N × (N −1)
ime series with length 10,318 for the spot co-volatilities,
nd other 1

2N × (N −1) time series of the same length for
the spot co-volatilities of volatility.

Fourier estimates time series are partitioned into three
sets: training, validation, and test. Table 1 outlines the
start and end dates of each set, along with the proportion
of observations included in each set. For each set, every
30 min we set up a static fully connected graph which

7 The Fourier method is not consistent in the presence of jumps.
To remove the effect of jumps from the estimation, we identify one-
second returns whose absolute value is larger than a given threshold
ϑn and replace them with zeros. Letting ϑn = β (T/n)α , the constants
hat determine the threshold are selected using numerical simulations.
s a result, we find that suitable choices are β = 0.5 and α = 0.5.
8 The dataset covers 737 days. For each day (i.e., 6.5 h) we obtain
4 estimates on the 30-minute grid (note that the last estimate was
erformed at 3:59 p.m., instead of 4:00 p.m., to reduce the effects of
eriodicity on Fourier estimates). Hence the total of 737×14 = 10,318

estimates.
 t

9

Table 1
The table delineates the periods of the dataset allocated for the
training, validation, and test sets, with the corresponding start and end
dates. It also details the number of 30-minute observations employed
in each period and their proportions within the dataset.

Training Validation Test

Start 06/01/2020 07/21/2022 10/15/2022
End 07/20/2022 10/14/2022 05/10/2023
# of 30-min obs. 7518 840 1960
Proportion 73% 8% 19%

includes contemporaneous and lagged Fourier estimates
as node and edge features, according to the structure
outlined in Section 5.

7.2. Single-step forecast

In this section, we present the results of the application
of SpotV2Net for predicting the 30-minute-ahead spot
volatility of the entire cross-section of DJIA constituents.
We train the model using the data-splitting strategy de-
tailed in Table 1 and use the validation set to fine-tune the
hyperparameter choices. The test set is kept completely
separate and is used for out-of-sample forecast evalua-
tion. The selection of hyperparameters is documented in
Appendix B.

Note that our focus is on predicting volatilities, i.e., the
diagonal elements of the covariance matrix, rather than
the entire covariance matrix. While the model architec-
ture is inherently flexible and could be adapted to fore-
cast the entire covariance matrix, we leave this extension
to future research. This decision was motivated by the
challenge posed by the curse of dimensionality, which
causes the number of parameters in the model to increase
rapidly with the cross-sectional dimension, with negative
consequences regarding computational costs.

We compare the forecasting accuracy of SpotV2Net
with that of three alternative models, detailed in Ap-
pendix A: the panel HAR-Spot model, the XGB model,
and the LSTM model. We also compare the forecasting
accuracy of SpotV2Net with that of a modified version of
the latter that does not accept edge features as input but
only node features. We refer to it as SpotV2Net with no
edge features, shortened to SpotV2Net-NE. Table 2 shows
aggregate values of the mean squared error (MSE):

1
Ttest

Ttest∑
j=1

1
N

N∑
i=1

(
V̂i,j − V̂ ∗

i,j

)2
, (4)

and the QLIKE:

1
Ttest

Ttest∑
j=1

1
N

N∑
i=1

[
V̂i,j

V̂ ∗

i,j

− log
V̂i,j

V̂ ∗

i,j

− 1

]
, (5)

where V̂ ∗

i,j denotes the forecast at time τj−1 of the spot
volatility of ith asset at time τj, and Ttest is the length
f the test period as indicated in Table 1. When the
alidation period is considered, Ttest is replaced by Tval,
hich indicates the length of the validation period.
Aggregate performance measures in Table 2 suggest

hat SpotV2Net outperforms the HAR-Spot model and
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able 2
ggregate values of MSE and QLIKE in Eqs. (4) and (5) for the
potV2Net model and the alternative models during the validation and
est phases. An asterisk (*) indicates models that are included in the
CS at the 5% significance level.

Validation Test

Single-step model MSE QLIKE MSE QLIKE

HAR-Spot 3.797e−08 0.263 5.089e−08 0.343
XGB 3.148e−08 0.217 6.232e−08 0.429
LSTM 2.629e−08 0.184 5.198e−08 0.359
SpotV2Net-NE 2.513e−08 0.173 5.115e−08 0.354
SpotV2Net 2.079e−08* 0.137* 4.273e−08* 0.286*

the other ML models considered, namely XGB and LSTM,
during both the validation and test periods. Further, while
the LSTM and XGB models represent an improvement in
forecasting accuracy compared to the HAR-Spot model
in the validation period, the latter shows better perfor-
mance, compared to LSTM and XGB, in the test period.
SpotV2Net-NE is less accurate than SpotV2Net in both
the validation and the test phases. Moreover, it is worth
noting that SpotV2Net-NE still outperforms HAR-Spot and
the other ML methods in the validation period. Instead, in
the test period, SpotV2Net-NE performs worse than HAR-
Spot, but still better than LSTM and XGB. These findings
underline the crucial role of edge features (that is, the
values of the spot co-volatility-of-volatility matrix) in cap-
turing spillover effects and improving forecasting accu-
racy. Note that the improved performance by all models in
the validation period is due to the fact that the validation
employs data for fine-tuning model hyperparameters.

Table 2 also reports the results of the model confi-
ence set (MCS) (Hansen, Lunde, & Nason, 2011), which is
pplied column-wise to identify a subset of models that
emonstrate superior performance with a 95% level of
onfidence. We implemented the MCS with 5000 boot-
trap replications, using the range statistic to compute
he p-values. The results show that the subset of superior
odels contains only SpotV2Net, indicating that the latter
ields superior predictive performance compared to the
ther models considered, with a level of confidence of
5%.
Moreover, we employ the Diebold–Mariano test

Diebold & Mariano, 2002) to compare the forecasting
ccuracy between models at the 5% significance level.
he test statistics are provided in Tables 3 and 4 for the
alidation and test sets, respectively. The results of the
iebold–Mariano test suggest that the gain in forecasting
ccuracy provided by SpotV2Net is statistically significant.

.3. Model interpretation

The complexity of the GAT architecture, on which
potV2Net is based, suggests using specific methodologies
o enhance interpretability. Indeed, model interpretation
an be particularly important for applications in the fi-
ancial domain. In particular, it may be relevant to pin-
oint which nodes (i.e., which asset volatilities) are the
ost influential in predicting the volatility of a specific
ode, thereby obtaining insight into spillover effects and

olatility transmission channels captured by SpotV2Net.

10
Table 3
Comparison of single-step forecasting accuracy using the Diebold–
Mariano test with MSE (top) and QLIKE (bottom) losses in the
validation period. Positive numbers indicate that the column model
outperforms the row model. An asterisk (*) denotes a significance level
of 5%.
Validation period (MSE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot 6.32* 40.23* 42.12* 45.18*
XGB – 5.50* 6.16* 25.94*
LSTM – – 2.34* 9.08*
SpotV2Net-NE – – – 6.12*

Validation period (QLIKE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot 13.11* 21.05* 23.45* 28.14*
XGB – 12.32* 13.06* 20.06*
LSTM – – 5.67* 12.43*
SpotV2Net-NE – – – 8.91*

Table 4
Comparison of single-step forecasting accuracy using the Diebold–
Mariano test with MSE (top) and QLIKE (bottom) losses in the test
period. Positive numbers indicate that the column model outperforms
the row model. An asterisk (*) denotes a significance level of 5%.
Test period (MSE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot −42.69* −1.11 −0.38 6.71*
XGB – 37.89* 43.25* 52.12*
LSTM – – 0.71 11.87*
SpotV2Net-NE – – – 7.23*

Test period (QLIKE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot −44.34* −3.17* −2.41* 6.57*
XGB – 22.98* 26.15* 32.54*
LSTM – – 0.55 10.62*
SpotV2Net-NE – – – 7.05*

For this purpose, we employ GNNExplainer (Ying et al.,
2019), a model-agnostic approach that provides inter-
pretable explanations for the predictions of GNN-based
models. Specifically, GNNExplainer can identify the sub-
graph9 deemed the most influential for the model’s pre-
diction of a specific node.

We briefly illustrate how GNNExplainer works. Con-
sider a trained GNN-based model, denoted by S , and let
G denote the input graph of S , composed of N nodes.
Further, let ŷi,S(G) denote the prediction produced by S for
the target variable yi associated with the ith node of G. For
brevity, we use the shorthand notation ŷi := ŷi,S(G). In the
case of SpotV2Net, ŷi and yi will be, respectively, the spot
volatility prediction and the actual spot volatility value
associated with the ith node of the input graph described
in Section 5.

For a given node i of G, GNNExplainer aims to select the
subgraph G∗, composed of N∗ < N nodes, that maximizes
the mutual information (MI) between the prediction ŷi
and the prediction ŷ∗

i := ŷi,S(G∗), which indicates the

9 A subgraph is defined as a graph consisting of a subset of the
nodes and edges of the original graph.
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Fig. 4. Heatmaps assigning to nodes on the y-axis (‘source nodes’) the frequency (in percentage terms) by which GNNExplainer includes them in
the most influential subgraphs (with N∗

= 5 nodes) for predicting the spot volatility of nodes on the x-axis (‘target nodes’), in the validation set (left
panel) and test set (right panel). For each target node, GNNExplainer is implemented at every timestamp (i.e., single-step forecasts). The frequency
of inclusion is computed by counting the number of timestamps (i.e., single-step forecast) for which a node is retained in the subgraph of the most
influential nodes.
prediction produced by S for node i when its input is
restricted to the subgraph G∗.

Let pi := pi,S(G) and p∗

i := p∗

i,S(G∗) denote, respectively,
the density of the forecasts ŷi and ŷ∗

i . The corresponding
supports are denoted by Y ⊆ R and Y∗

⊆ R. The
optimization problem solved by GNNExplainer reads as

max
G∗

MIi,G,G∗ = h(ŷi) − h(ŷ∗

i ), (6)

where h(ŷi) = −
∫
Y pi(x) log pi(x)dx and h(ŷ∗

i ) =

−
∫
Y∗ p∗

i (x) log p∗

i (x)dx denote, respectively, the entropy
of ŷi and ŷ∗

i . As the entropy of a forecast represents the
level of uncertainty related to the forecast’s outcomes,
MIi,G,G∗ in Eq. (6) quantifies the difference in such uncer-
tainty between the case when the input graph of S is the
full graph G and the case when the input graph of S is
restricted to G∗. The larger the difference in Eq. (6), the
more the subgraph G∗ is deemed influential in predicting
the target yi. In other words, if removing the uncertainty
ascribed to subgraph G∗ maximizes the uncertainty re-
lated to the forecast ŷi, then the subgraph G∗ is deemed a
relevant counterfactual explanation of the forecast ŷi (see
Section 4.1 of Ying et al. (2019) for further details).

Since h(ŷi) is independent of G∗, the maximization
problem in Eq. (6) is equivalent to the minimization prob-
lem minG∗ h(ŷ∗

i ).
For the interpretation of the single-step forecasts

produced by SpotV2Net for the spot volatilities of the
DIJA constituents, we implement GNNExplainer for each
of the N = 30 nodes (i.e., asset spot volatilities) of
the input graph, with the aim of extrapolating, for
each node, a subgraph composed of the N∗

= 5 nodes
representing the most influential nodes for predicting the
node’s spot volatility. Note that we use GNNExplainer
to identify the most influential subgraph, not to isolate
the most influential individual features of specific nodes.
This approach provides a global perspective on the
relevance of a particular subgraph based on the entire
information set embedded in its nodes and edges. This

way, GNNExplainer complements traditional econometric

11
methods, which typically emphasize the statistical sig-
nificance of the contribution of individual features. The
implementation is repeated at each time step.10

The results of the implementation of GNNExplainer are
summarized in Fig. 4 using two heatmaps, one for the
validation set and one for the test set, which illustrate
the frequency (in percentage terms) of the inclusion of
nodes into the subgraphs of the most influential nodes for
predicting the spot volatility of a given asset.

Fig. 4 shows that Amgen (AMGN), Salesforce (CRM),
and Honeywell (HON) are deemed the three most influ-
ential nodes for predicting the intraday spot volatility of
all stocks in the dataset, in both the validation and test
phases. Interestingly, these three companies became part
of the DJIA index at the end of August 2020, near the
beginning of the dataset, which starts in June 2020. More
specifically, GNNExplainer suggests that the univariate
and multivariate volatility and volatility of volatility of
the three new index constituents –included in node and
edge feature vectors, respectively– are often influential in
predicting the intraday spot volatility of all other assets
during the period covered by our study. In particular, note
that AMGN is included in the most influential subgraphs
for other nodes with a frequency between approximately
40% and 80%, in both the validation and test sets. CRM and
HON follow with frequencies that range approximately
between 40% and 50% (for CRM) and 10% and 30% (for
HON).

These findings may be explained by the fact that the
training period of SpotV2Net, which ranges tentatively
from mid-2020 to mid-2022, corresponds to eventful con-
tingencies for these three companies. At that time, Amgen
was conducting its research on the Covid-19 vaccine,
Salesforce was experiencing an increase in the demand
for cloud platforms, due to the rise in remote work caused

10 For the implementation, we use the Python package available at
the link GNNExplainer. Details about the optimization algorithm are
provided in Section 4 of Ying et al. (2019).

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.explain.algorithm.GNNExplainer.html#torch_geometric.explain.algorithm.GNNExplainer
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y the pandemic and the related lockdowns, and Honey-
ell was converting part of its manufacturing facilities to
roduce protective equipment for healthcare workers to
educe contagion risks. Furthermore, it is worth noting
hat the features of Verizon (VZ) and Walgreens (WBA)
re also recognized as influential for nodes’ predictions by
NNExplainer, with frequencies that range approximately
etween 10% and 30%. This may be explained by the
act that their businesses (telecommunications and retail
harmacy, respectively) were closely tied to pandemic-
elated contingencies. Overall, the GNNExplainer-based
nterpretation of the relationships learned by SpotV2Net
uring the training period may suggest the presence of
drag effect coming from the volatility of certain DJIA

ndex components related to key economic sectors for the
bserved period.

.4. Multi-step forecast

Accurate multi-step forecasting can be advantageous
or high-frequency traders who wish not only to pre-
ict volatilities at the immediate next time step but also
o extrapolate entire trajectories, enabling them to plan
heir operations with a broader, daily, temporal perspec-
ive. Accordingly, in this section, we extend the scope of
pplication of the SpotV2Net model to obtain multiple-
tep-ahead forecasts. Specifically, we adapt the model’s
rchitecture to predict the entire daily volatility function
n the 30-minute grid, which corresponds to 14 future
bservations for a 6.5-hour-long trading day.11 Note that
ulti-step forecasts are all conditional on the information
vailable at the end of the previous trading day (i.e., node
nd edge features of the graph at the end of the previous
rading day). In other words, letting τ0 denote the end
f the previous day, the multi-step version of SpotV2Net
oes not use as input the predictions at times τ1, . . . , τh−1
o obtain the prediction at time τh, 1 < h ≤ 14. Instead,
he model produces, at τ0, a unique joint forecast of the
alues of the spot volatility function on the time grid
1, . . . , τ14, with a mesh size equal to 30 min. We refer
o this type of multi-step forecast as a functional forecast.
e evaluate the performance of SpotV2Net at produc-

ng such forecasts against the same alternative models
onsidered in Section 7.2.12
To evaluate the accuracy of the functional forecasts,

e use global loss functions. Specifically, we employ the
verage MSE of the multi-step prediction, that is,

1
Dtest

Dtest∑
j=1

1
N

N∑
i=1

1
H

H∑
h=1

(
V̂i,j+h − V̂ ∗

i,j+h

)2
(7)

11 In principle, it is possible to adapt SpotV2Net’s architecture to
produce multi-step forecasts at any point in time. For simplicity, we
restrict our study to multi-step forecasts obtained at the end of a
trading day for the entire next trading day.
12 The ability to produce a functional forecast is characteristic of
deep learning models, like SpotV2Net and the LSTM model. However,
such an ability is not shared by the HAR-Spot model and the XGB
model. Indeed, to obtain multi-step forecasts with these models, one
has to resort to a recursive approach, where the one-step-ahead fore-
cast for time τj is employed as an input to obtain the one-step-ahead
forecast for time τ .
j+1

12
Table 5
Aggregate values of the average MSE and QLIKE in Eqs. (7) and (8) for
the SpotV2Net model and the alternative models during the validation
and test phases. An asterisk (*) indicates models that are included in
the MCS at the 5% significance level.

Validation Test

Multi-step model MSE QLIKE MSE QLIKE

HAR-Spot 4.453e−08 0.310 5.876e−08 0.407
XGB 4.156e−08 0.291 6.943e−08 0.478
LSTM 2.923e−08 0.204 5.467e−08 0.379
SpotV2Net-NE 2.643e−08 0.180 5.312e−08 0.368
SpotV2Net 2.145e−08* 0.142* 4.342e−08* 0.294*

Table 6
Comparison of multi-step forecasting accuracy using the Diebold–
Mariano test with the average MSE (top) and QLIKE (bottom) losses
on the validation set. Positive numbers indicate that the column model
outperforms the row model. An asterisk (*) denotes a significance level
of 5%.
Validation period (MSE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot 7.12* 46.76* 48.21* 58.23*
XGB – 28.55* 35.15* 47.36*
LSTM – – 5.64* 11.98*
SpotV2Net-NE – – – 8.53*

Validation period (QLIKE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot 5.41* 30.20* 37.05* 43.82*
XGB – 24.79* 31.63* 38.37*
LSTM – – 6.83* 14.51*
SpotV2Net-NE – – – 7.09*

and the average QLIKE, that is,

1
Dtest

Dtest∑
j=1

1
N

N∑
i=1

1
H

H∑
h=1

[
V̂i,j+h

V̂ ∗

i,j+h

− log
V̂i,j+h

V̂ ∗

i,j+h

− 1

]
, (8)

where H = 14 denotes the number of intraday 30-minute
forecast steps, and Dtest indicates the number of days in
the test set. When the validation period is considered,
Dtest is replaced by Dval, which indicates the number of
days in the validation period.

Table 5 summarizes the multi-step forecasting per-
formance of the models employed in our study, in the
validation and test phases. In the validation period, the
ranking is the same as for single-step forecasts, in terms
of aggregate values of both the average MSE and QLIKE.
In the test period, however, the HAR-Spot model has
a worse ranking than in the single-step exercise, as it
outperforms only the XGB model. This finding is in line
with the results by Christensen et al. (2023), suggesting
that the relative forecasting accuracy of HAR-type models
may deteriorate at longer forecasting horizons, compared
to that of ML models. Table 5 also reports the results of
the application of the MCS at the 95% confidence level.
The outcome is analogous to the one obtained in the
single-step case and supports the superior forecasting
performance of SpotV2Net in the multi-step exercise as

well.
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Fig. 5. Predicted (dotted blue) and actual (reconstructed, dashed grey) spot volatility path for AXP, DIS, HON, and MSFT. The first row refers to
September 19, 2022, comprised in the validation period, and the second row to February 1, 2023, comprised in the test period. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 7
Comparison of multi-step forecasting accuracy using the Diebold–
Mariano test with the average MSE (top) and QLIKE (bottom) losses
on the test set. Positive numbers indicate that the column model
outperforms the row model. An asterisk (*) denotes a significance level
of 5%.
Test period (MSE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot −25.57* 9.80* 13.52* 33.16*
XGB – 35.38* 39.10* 59.51*
LSTM – – 3.71* 24.61*
SpotV2Net-NE – – – 21.01*

Test period (QLIKE)

XGB LSTM SpotV2Net-NE SpotV2Net

HAR-Spot −20.23* 7.90* 11.15* 28.57*
XGB – 28.21* 31.34* 46.95*
LSTM – – 3.13* 21.34*
SpotV2Net-NE – – – 17.15*

Moreover, the Diebold-Mariano test statistics are re-
ported in Tables 6 and 7. The results suggest that the gain
in forecasting accuracy provided by SpotV2Net is statis-
tically significant at the 5% level for multi-step forecasts
as well. Finally, to illustrate an example of the accu-
racy of the multi-step functional predictions produced
by SpotV2Net, Fig. 5 shows a comparison of the latter
with the actual reconstructed spot volatility path of four
companies for two days, one in the validation set and one
in the test set.

8. Conclusions

This paper contributes to research on volatility fore-
casting by introducing SpotV2Net, a model that employs
a neural network with a GAT architecture to produce
intraday forecasts of multivariate spot volatilities. Specif-
ically, SpotV2Net leverages the interconnected nature of
financial markets by modeling each asset as a node in a
graph structure, where node and edge features represent,
respectively, univariate and multivariate spot volatilities
and volatilities of volatilities. Furthermore, the attention
13
mechanism embedded in the GAT architecture allows
SpotV2Net to optimally weigh the influence of specific
subgraphs when producing spot volatility forecasts for a
specific node.

The first novelty of this work is to address the rather
unexplored topic of intraday volatility forecasting, which
is relevant for its economic implications on intraday risk
management, high-frequency trading, and early detection
of market instability conditions. Specifically, it does so by
focusing on the actual spot co-volatility matrix, estimated
in a non-parametric setting by means of Fourier estima-
tors, rather than by considering parametric volatility es-
timates or non-parametric integrated volatility estimates
computed on short time horizons.

The second novelty of this work relates to the use of
the spot co-volatilities of volatilities as edge features in
the graph structure to model the dynamics of the depen-
dence between two nodes and thereby capture spillover
effects. Our findings related to single-step and multi-
step forecasts of the spot volatility of the DIJA compo-
nents suggest that including edge features in the attention
mechanism that weighs the importance of subgraphs for
predicting the future spot volatility of a specific node
yields statistically significant gains in forecasting accu-
racy, compared to the use of a HAR-type model and other
ML models.

The third novelty of our work is to address a typical
problem related to ML techniques, that is, interpretability.
In this regard, we used GNNExplainer, a model-agnostic
tool designed for graph neural networks, to interpret the
forecasts provided by the SpotV2Net model. As a result,
we obtained insights into the subgraph structures influ-
encing each node’s volatility predictions and discovered
the significant impact of the most recent additions to the
DJIA index.

Note that this paper focused on predicting individual
volatilities, rather than the entire co-volatility matrix, to
avoid the curse of dimensionality and reduce computa-
tional costs. However, we remark that SpotV2Net’s archi-
tecture is inherently flexible and thus could be adapted
to forecast asset co-volatilities. We leave this extension,
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hich would be particularly beneficial for portfolio op-
imization and risk management purposes, to future re-
earch.
Another potentially interesting topic for future re-

earch is the development of recurrent networks with
AT layers. This represents an unexplored area of study,
o the best of our knowledge. Indeed, integrating a recur-
ent neural network with the attention mechanism would
llow for directly capturing the evolution of dynamic
raphs over time, rather than relying on static graphs
onstructed using lagged features.
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ppendix A. Alternative models

.1. Heterogeneous autoregressive (HAR) spot model

We adapt the HAR model by Corsi (2009) to forecast
ntraday spot volatilities. The resulting model, which we
all HAR-Spot, assumes a linear relationship between the
0-minute-ahead spot volatility and three regressors: the
urrent spot volatility, the average spot volatility between
ag 1 (30 min) and lag 7 (3.5 h), and the average spot
olatility between lag 8 (4 h) and lag 13 (6.5 h, that is,
ne trading day). This way, in the spirit of the original
odel by Corsi (2009), the HAR-Spot model captures the
ersistence of the spot volatility in a parsimonious way.

pecifically, we implement the following panel version b

14
of the HAR-Spot model. For the ith asset, the HAR-Spot
model reads as

Vi,b+1 = µ + φ1V̂i,b + φ2

(
1
7

7∑
l=1

V̂i,b−l

)

+ φ3

(
1
7

13∑
l=8

V̂i,b−l

)

+

∑
k̸=i

[
θ1V̂k,t + θ2

(
1
7

7∑
l=1

V̂k,b−l

)

+ θ3

(
1
7

13∑
l=8

V̂k,b−l

)]
+ ϵi,b,

where
∑

k̸=i [· · · ] denotes the contribution from the lagged
olatilities of all other assets k ̸= i.

.2. Extreme gradient boosting (XGB)

Ensembles of weak learners, such as regression trees
Breiman, Friedman, Olshen, & Stone, 1984), can effec-
ively handle non-linear interactions between predictors.
pecifically, XGB (Chen & Guestrin, 2016) is a tree-based
nsemble algorithm that has proven effective at address-
ng prediction problems based on tabular data (Shwartz-
iv & Armon, 2022). Hence, our approach is to input the
egressors to such an algorithm in the same form we input
hem to fit the HAR-Spot model. Letting ui,b denote the
ector of input features for the ith asset at time τb, the
GB model is specified as

i(ui,b) =

J∑
j=1

fj(ui,b), fj ∈ R,

here J is the number of estimators composing the en-
emble, and R is the space of regression trees. The tree
nsemble model is trained sequentially. The boosting
echnique (Friedman, 2001) indicates that trees are added
o minimize the errors made by previously fitted trees
ntil no further improvements are achieved. The opti-
ization procedure builds trees as a forward mechanism,
here every step reduces the error of the previous itera-
ion. We initialize the ensemble with a single regression
ree and then iteratively add new trees that minimize the
rror made by the previous tree by gradient descent.
We chose to train XGB using the same inputs as for

he HAR-Spot model because training the latter using all
he inputs considered in the node and edge features of
potV2Net resulted in lower performance. This choice
ligns with findings in the literature suggesting that
hen the feature space is too large, gradient boosting
echniques, including XGB, are more prone to overfit-
ing (Natekin & Knoll, 2013). Additionally, limiting the
umber of features to just the volatilities, which represent
he objects of forecasting, simplifies the multi-step fore-
asting process. Like HAR-Spot, XGB performs multi-step
orecasts recursively. Hence, including additional features
n the input space, such as, e.g., the co-volatilities, would
equire XGB to recursively forecast not only volatilities

ut also the additional features.
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.3. Long short-term memory (LSTM) neural network

Recurrent neural networks (RNNs), see Hochreiter and
chmidhuber (1997), are models designed to retain infor-
ation about sequential data, making them particularly
ffective in the financial context where one usually fore-
asts future values based on historical data. A performing
ersion of an RNN is the LSTM network (Hochreiter &
chmidhuber, 1997), which has contributed to significant
reakthroughs across several fields, including natural lan-
uage processing, time series forecasting, and generative
odeling (Gers, Eck, & Schmidhuber, 2001; Siami-Namini,
avakoli, & Namin, 2019).
The LSTM architecture proposes a memory block to

apture long-term dependencies more effectively. Within
ach LSTM unit, a standard transformation of the orig-
nal input occurs. Consider the vector of input features
τb at time τb which comprises all companies’ univari-
te volatilities and co-volatilities. The LSTM model ac-
epts these vectors xτb up to a given lag L. Note that
e input only spot volatilities and co-volatilities time
eries in the LSTM algorithm because our experiments
uggested that also inputting univariate and multivari-
te co-volatilities of volatilities and their lags worsens
he model’s performance. We attribute this performance
ecrease to the large dimensionality of the input size.
n contrast, SpotV2Net uses this information efficiently
y distributing it into a graph structure with node and
dge features. LSTM has no knowledge of such a structure
nd thus infers relationships by combining information
hrough different layers, which proved to be limited in our
mpirical experiment.
The transformation performed by the LSTM on the

ectors xτb at time τb reads as

fτb = σg
(
Wf xτb + Uf hτb−1 + bf

)
iτb = σg

(
Wixτb + Uihτb−1 + bi

)
oτb = σg

(
Woxτb + Uohτb−1 + bo

)
c̃t = σc

(
Wcxt + Uchτb−1 + bc

)
cτb = fτb ◦ cτb−1 + iτb ◦ c̃τb

τb = oτb ◦ σh
(
cτb

)

15
here xτb is the input vector, fτb is the forget gate’s
ctivation vector, iτb is the update gate’s activation vector,
τb is the output gate’s activation vector, c̃τb is the cell
nput activation vector, cτb is the cell state vector, and hτb
s the hidden state vector, i.e., the output vector of the
STM unit. Further, ◦ is the Hadamard product function,
g is the sigmoid function, and σc and σh are hyperbolic
angent functions. Finally, W(·) and b(·) refer to weight
atrices and bias vectors that need to be estimated by

raining the model, while U(·) refers to the weight matri-
es that are applied to the hidden state vector from the
revious time step hτb−1 .

ppendix B. Hyperparameters

For the SpotV2Net, XGB and LSTM models, we utilized
he Optuna framework implemented in Python, which
erforms a search over a predefined grid of hyperpa-
ameters. This technique is commonly employed for op-
imizing neural network-based models. In our hyperpa-
ameter optimization process with Optuna, we employ
he tree-structured Parzen estimator (TPE) algorithm as
ur sampler (Bergstra, Bardenet, Bengio, & Kégl, 2011;
ergstra & Bengio, 2012). The TPE algorithm enhances the
fficiency of the search by using a Bayesian optimization
echnique. During each trial, for each parameter, TPE fits
ne Gaussian mixture model (GMM) (Dempster, Laird, &
ubin, 1977) l(x) to the set of parameter values associated
ith the best objective values, and another GMM g(x) to
he remaining parameter values. It then chooses the pa-
ameter value x that maximizes the ratio l(x)

g(x) . By choosing
the hyperparameter values that maximize this ratio, the
TPE focuses the search on regions where the likelihood of
improving the objective function is higher. This approach
ensures that our hyperparameter tuning is both effective
and computationally efficient.

The grid for Optuna is constructed by specifying a
meaningful set of possible values for each hyperparam-
eter, which we report together with the optimized values
in Tables 8, 10, and 9 for the SpotV2Net, LSTM, and XGB
models, respectively. Due to memory constraints on the
NVIDIA GeForce RTX 2080 Ti with 12 GB of memory that
we used to train the deep learning models, we were
Table 8
Hyperparameter grid search options and optimized values for the single-step and multi-step SpotV2Net models.
Hyperparameter Grid search options Single-step opt. val. Multi-step opt. val.

Loss Function – MSE MSE
Activation Function (σ ) ReLu, Tanh, Sigmoid ReLu ReLu
Batch Size 32, 64, 128, 256 128 128
Concatenate Heads True, False True True
Number Hidden Layers 1, 2, 3 2 2
Dimension Hidden Layers (M ′) from 50 to 600 (step 50) [400, 200] [400, 400]
Dropout (Architecture) 0.0 to 0.7 (step 0.1) 0.1 0.2
Dropout (Attention) 0.0 to 0.7 (step 0.1) 0.1 0.0
Learning Rate {1, 2.5, 5} × 10−2 to −5 1 × 10−4 5 × 10−5

Negative Slope LeakyReLu (c) 0.05, 0.1, 0.2, 0.5, 0.6, 0.8 0.1 0.1
Epochs 60 to 200 (step 20) 120 120
Number of Heads (K ) 2, 3, 4, 5, 6, 7 4 5
Optimizer RMSProp, Adam, AdamW AdamW AdamW
Output Dim – 1 14
Number of Lags (L) 14 to 112 (step 14) 42 42

https://pytorch-geometric-temporal.readthedocs.io/en/latest/index.html
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Table 9
Hyperparameter grid search options and optimized values for the XGB model.
Hyperparameter Grid search options Opt. val.

Subsample 0.6, 0.7, 0.8, 0.9, 1 0.7
Regularization λ 0.5, 1, 1.5, 2 1.5
Regularization α 0, 0.1, 0.5, 1 0
Number of Estimators (J) 50, 100, 150, 200, 300, 400, 500, 600 400
Minimum Child Weight 1, 3, 5, 7 5
Max Depth 3, 4, 5, 6, 7, 8 5
Learning Rate 0.001, 0.01, 0.05, 0.1, 0.2 0.2
Gamma 0, 0.05, 0.1, 0.2, 0.3, 0.4 0
Colsample by Tree 0.5, 0.6, 0.7, 0.8, 0.9, 1 1
Table 10
Hyperparameter grid search options and optimized values for the single-step and multi-step LSTM models.
Hyperparameter Grid search options Single-step opt. val. Multi-step opt. val.

Loss Function – MSE MSE
Batch Size 32, 64, 128, 256 64 64
Dropout (Architecture) 0.0 to 0.7 (step 0.1) 0.4 0.3
Number Hidden Layers 1, 2, 3 2 2
Dimension Hidden Layers from 50 to 600 (step 50) [400, 200] [400, 400]
Learning Rate {1, 2.5, 5} × 10−2 to −5 5 × 10−4 5 × 10−4

Optimizer RMSProp, Adam, AdamW AdamW AdamW
Output Dim – 1 14
B

B

B

B

B

C

C

C

C

unable to expand the grid search to include configu-
rations with more than three layers, larger layer sizes,
a higher number of heads, or larger batch updates, as
these modifications would exceed the available compu-
tational resources. The optimal values reported are the
result of this search process, indicating the configuration
that achieved the best performance on the validation set,
as shown in Table 1. The hyperparameters are optimized
for all models by evaluating their performance on a val-
idation set, ensuring that the test set remains unseen
during the training and tuning phases. This strategy pre-
vents any bias towards the test set and ensures that our
evaluation metrics reflect the models’ ability to generalize
to new data.

Data and code availability

The data used in this study is proprietary and comes
rom the Trade and Quote (TAQ) database via Wharton Re-
earch Data Services (WRDS). The data must be purchased
eparately through WRDS, and redistribution is not per-
itted. The source code used for this study is publicly
vailable at: https://github.com/Alessiobrini/SpotV2Net.
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