
Parametric insurance under demand and solvency constraints

Olivier Lopez1

January 6, 2025

Abstract

Parametric insurance is frequently mentioned as a method to reduce protection gaps,

especially in the field of emerging risks. Compared to traditional insurance, the idea is to

compute the compensation from a parameter (or index) that can be measured soon after

the occurrence of the claim. The advantage is that payment is fast, and this might be

appealing for the policyholder that needs to quickly receive funds to rebuild after an incident,

rather than waiting for an expert to be sent on site. For the insurer, the costs related to

claim management are considerably reduced. Moreover, the volatility of the risk is usually

controlled since, by design, the parameter is a quantity on which a significant amount of data

has been collected, hence its distribution is well estimated statistically speaking. Machine

learning techniques play a significant role in optimizing the design of such indexes. An

important difference with the concept of Cat Bonds is that the feasibility of such a cover

relies on the possibility to mutualize. Mutualization, on the other hand, is achieved only if a

sufficiently high number of policyholders accept to subscribe. The purpose of this paper is to

introduce a model for the demand in parametric insurance and to provide conditions under

which the solvency of the portfolio is achieved. We deduce from these conditions a product

that combines parametric and traditional insurance in order to benefit from the best of the

two worlds.
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1 Introduction

Parametric insurance is often promoted as a solution capable of addressing certain structural

weaknesses of traditional insurance (see for example Barnett and Mahul [2007], Carter et al.

[2017], Prokopchuk et al. [2018] or Han et al. [2019]). The principle of these coverages lies in

the use of an index (or parameter) that can be easily calculated based on information avail-

able immediately after the incident. This automated calculation significantly simplifies claim

management. Since the compensation is determined without the need for an expert to evaluate

the amount, it can be paid out very quickly to the insured. The clarity of the indemnification

conditions also reduces the likelihood of legal disputes. On the other hand, the insured must

bear a basis risk (see Clement et al. [2018]), as the compensation is not based on the actual loss

rather on an approximation of it. Consequently, there is a concern that parametric insurance

may have a disappointing aspect, which is seen as a barrier to its development (see Johnson

[2021]).

The design of an index that can serve as the basis for insurance coverage is similar to a sta-

tistical problem of estimation or prediction: using available variables, the goal is to approximate

as closely as possible an unobserved quantity (the loss), see Cesarini et al. [2021]. However, this

problem involves a number of constraints due to the need to align with the insured’s expecta-

tions. For instance, the construction of an index proposed by Conradt et al. [2015], Zhang et al.

[2019], or Chen et al. [2023] is based on maximizing the insured’s utility rather than relying on

a more standard metric commonly used in regression or forecasting.

Indeed, behind the question of meeting the insured’s needs lies the issue of demand. Para-

metric insurance remains an insurance product: while other index-based products, such as Cat

Bonds, can achieve balance through diversification strategies inherent to financial instruments, a

parametric insurance product relies solely on pooling to withstand adverse outcomes. However,

the pooling mechanism requires a sufficiently large number of insured participants. Insufficient

demand will weaken the product, beyond simply failing to recover the cost of designing the

index.

The purpose of the present paper is to study, through a modeling of the demand for para-

metric insurance, the viability of such a product when it competes with a traditional insurance

product. The aim here is less about designing an optimal index and more about examining the

conditions under which such an index becomes acceptable in a situation where the insurer must

meet a solvency requirement. Particular attention will be paid to the impact of the loading rate

(which can be lower in the case of parametric insurance due to reduced management costs) as

a lever for achieving this objective. This analysis will also lead us to propose the construction

of a ”hybrid” coverage: by hybrid, we mean a combination of traditional insurance with para-

metric insurance, which supplements it in certain cases to leverage the best of both worlds, with
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parametric insurance not intervening when the basis risk is too high.

The rest of the paper is organized as follows. In section 2 we set up the notations and

formalize the problem of demand in parametric insurance and its link with solvency. Section 3

then shows conditions to determine (under the assumption that the utility of the policyholder is

exponential) for a sufficient demand in parametric insurance to exist. These conditions lead to

a natural choice for a hybrid coverage, mixing traditional and parametric insurance. A practical

example in cyber insurance is then provided in section 4.

2 Notation and settings

In this section, we formalize the general framework that we consider to study the demand

(section 2.1) and solvency (section 2.2) of a portfolio of parametric insurance products, first in

the classical case where policyholders are independent, then introducing (section 2.3) to add

some accumulation component that may happen with a simultaneous claim for a large number

of policyholders.

2.1 Parametric Insurance demand and statement of the problem

We consider a situation where a policyholder has a choice between two insurance products:

• The first one is a ”traditional” insurance product, where the loss Y ≥ 0 of the policyholder

in the following year is fully covered.

• The second one is a parametric insurance product, that is based on ϕ(W) where W is a

set of covariates that are measured after a claim in order to compute the index.

Typically, ϕ(W) will be lower than Y, the situation of overcompensation being supposed to be

rare in parametric insurance. To simplify, we consider that a policyholder experiences at most

one claim, otherwise W should be understood as the (different) circumstances of all encountered

claims. If there is no claim, Y = 0 and ϕ(W) = 0.

A traditional way to model the demand in insurance relies on the concept of expected util-

ity, as in Cummins and Mahul [2004], Hao et al. [2018] or Eeckhoudt and Kimball [1992]. A

refinement of this approach, especially in the context where there is a choice between different

products is proposed in Braun and Muermann [2004] or Fujii et al. [2016] and relies on the

notion of ”regret”. In this paper, we concentrate ourselves with the most classical framework,

that is expected utility, also because of recent contributions to the conception of index based

covers which rely on expected utility maximization, see for example Zhang et al. [2019] or Chen

et al. [2023].

Consider a class of utility functions U = {x ∈ R → Uα(x) : α ∈ A} , where A ⊂ Rk. Every

function Uα is supposed to be non decreasing and strictly concave to materialize a property of
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risk aversion. Each policyholder is associated with a different function, that is with a different

value of α. The decision to buy parametric insurance compared to traditional one is motivated

by the maximization of the expected utility, corresponding of the final output.

• In the case of parametric insurance, the policyholders pays a premium πϕ, encounters a

loss Y and receives a compensation ϕ(W). The corresponding expected utility is

Uϕ(α) = E [Uα(ϕ(W)− Y − πϕ)] .

• In the case of traditional insurance, the difference stands in the fact that the price is πY , but

the compensation is Y. However, we want to materialize the fact that this compensation is

usually paid with a longer delay than with parametric insurance, which may be a problem

for the policyholder who requires liquidity to repair the damages. Therefore we consider

that the compensation will be discounted by a factor exp(−τ) for some τ ≥ 0. This leads

to the following expected utility for this solution,

UY,τ (α) = E [Uα ({exp(−τ)− 1}Y − πY )] .

Let us note that we did not consider the initial capital of the policyholder. This can be

taken into account via incorporating this aspect in the parameter α (that may be multivariate).

Moreover, let us assume that we consider a function that is defined on R to allow the possibility

to consider negative value for the fortune of the policyholder (in which case, a debt is created).

Then, a policyholder with parameter α ∈ Rk will chose to rely on parametric insurance only

if

Uϕ(α)− UY,τ (α) > 0. (2.1)

Here, we assume to simplify that the customer buys one of the two contracts. Alternatively, one

could easily consider the option where a third choice of not buying any insurance protection is

possible.

2.2 Effect on mutualisation

To be viable, a parametric insurance product requires to be subscribed by a sufficient number

of policyholders. Consider a target population of potential customers is of large size N, the

number of policyholders buying the parametric contract will be approximately

n = N

∫
1Uϕ(α)−UY,τ (α)>0dµ(α), (2.2)

where µ is the distribution of α among the population.
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The question is then to know is this number is large enough to build a portfolio that is

economically viable. Considering that (Yi)1≤i≤n are the losses of the n policyholders, the loss of

the insurance company is

Ln(πϕ) =
n∑

i=1

ϕ(Wi)− nπϕ.

The size of the portfolio should be large enough to ensure that ruin during the next year is

avoided with a sufficiently high probability, that is we want

P (Ln(πϕ) ≥ 0) ≤ ε, (2.3)

where ε > 0 is close to zero.

If we assume that the policyholders are independent and identically distributed, the Central

Limit Theorem applies, and

n−1/2

{
n∑

i=1

ϕ(Wi)− π∗ϕ

}
=⇒ N

(
0, σ2ϕ

)
,

where σ2ϕ = V ar(ϕ(W)) and π∗ϕ = E[ϕ(W)]. From this distributional convergence, one can

deduce the approximation

P (Ln(πϕ) ≥ 0) ≈ S

(
n1/2θπ∗ϕ
σϕ

)
,

where S is the survival function of a N (0, 1) variable, and πϕ = (1+ θ)π∗ϕ. Hence (2.2) approxi-

mately rewrites
n1/2θπ∗ϕ
σϕ

≥ S−1(ε). (2.4)

Of course, increasing θ does not necessarily lead to an improvement of the solvency, since n

decreases with θ as demand is reduced.

We will keep this Gaussian approximation in the following, but let us observe that this

requires the variance of ϕ(W) to be finite, which may not be the case for heavy-tail distributions.

If ϕ(W) is heavy tail, and if ε is small compared to ε, other kind of approximations based on

Generalized Pareto distributions may be used, see for example Mikosch and Nagaev [1998] for

more details. However, heavy tail variables are not our main focus in the present paper, since

incompatible with the exponential utility approach developed in section 2 (which requires the

loss to have a finite Laplace transform).

On the other hand, the assumption of independence between policyholders is more restrictive.

For example, in the case of crop insurance (which is probably one of the most famous use case

of parametric products, see for example Cesarini et al. [2021] or Barnett and Mahul [2007]),

weather events may strike a significant part of the portfolio simultaneously. A better view of

the dependence between policyholders can help to take this aspect into account. We propose,

in the following section, a simplified way to proceed via the introduction of a shock on the i.i.d.

model that materializes the presence of catastrophic events.

5



2.3 A simplified way to include accumulation phenomena

An accumulation phenomenon occurs when a significant number of policyholders encounter

claims in a short period of time. In climate related risk, this is essentially linked to the prox-

imity between policyholders: insured that live in the same area are affected by similar weather

conditions. In other cases, the dependence may not solely rely on geographic proximity, like in

cyber insurance. In such cases, it may be hopeless to obtain a clear map of the links between the

policyholders. Moreover, following this path of modeling the dependence between policyholders

would introduce an additional difficulty in our context where we take demand into account: even

in the case of geographic dependence, this would require to model a link between the distribution

µ (describing the behaviors of the policyholders) and the localization of the potential customer.

Calibrating the model would then require an important amount of data that may be difficult to

get.

Consequently, we consider a simplified case where the accumulation episode materializes via

an additional loss which is heavy tail. The total loss of the portfolio is then

Ln(πϕ) = An +

n∑
i=1

δiϕ(Wi)− nπϕ,

where δi = 0 if policyholder i was part of an accumulation episode, and An represents the

amount related to accumulation episodes.

For An, we consider a Generalized Pareto distribution, that is

P(An ≥ t) =
1(

1 + γt
ns

)1/γ ,
with γ < 1 and s > 0. Here we consider a Generalized Pareto where the scale parameter is

proportional to n : this is the idea that the cost of the accumulation episode is proportional to

the size of the portfolio.

In this case, the probability of ruin is bounded by

P (Ln(πϕ) ≥ 0) ≤ P
(
An − nθ

a
≥ 0

)
+ P

(
n∑

i=1

δiϕ(Wi)− n

(
1 +

{
1− 1

a

})
nθπ∗ϕ ≥ 0

)
,

for all a > 1. Using the same Gaussian approximation as in section 2.2, the right-hand side is

approximately

1(
1 + γθ

as

)1/γ + S

(
(a− 1)

n1/2θπ∗ϕ
aσϕ

)
.

To make this quantity less than the tolerance ε, we need

n1/2θπ∗ϕ
σϕ

≥ a

(a− 1)
S−1

ε− 1(
1 + γθ

as

)1/γ
 , (2.5)
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if

1 < a <
γθεγ

s(1− εγ)
,

which imposes θ to be large enough to absorb the accumulation episode.

Logically, dealing with an additional accumulation risk increases the number of required

policyholders to achieve mutualization. Moreover, a constraint appears on the loading factor

θ which should by enough. Again, since the achievable n tends to decrease when the loading

factor increases due to a lower demand, this number may become impossible to reach in some

cases.

In the following section, we discuss conditions on the demand for (2.4) and (2.5) to hold in

the special case where the utility function is exponential: the simpler form of the utility allows

to obtain simple constraints on the measure µ.

3 Sufficient conditions for the viability of a parametric insur-

ance product under exponential utility

In this section, we consider the particular case where the utility function is exponential. This

allows to simplify considerably the formulation of the problem, and to provide in section 3.1

sufficient conditions for a parametric product to be preferable compared to a traditional one.

Then, we consider in section 3.2 the consequences on the solvency of the portfolio. Section 3.3

introduces a way to combine traditional and parametric insurance to optimize the attractiveness

of the product.

3.1 Exponential utility

In this section, we consider Uα(x) = −α exp(−αx). The parameter α can be interpreted as a

materialization of risk aversion, in the sense that a policyholder with high value of α will tend

to accept an higher premium in exchange of a insurance protection against the risk. In this

case, the condition (2.1) can be simplified. We introduce the Laplace transform and conditional

Laplace transforms of Y ,

ΨY (α) = E [exp(αY )] ,

ψY (α|w) = E [exp(αY )|W = w] .

We assume that ΨY (α) <∞ for all α in the support of µ. Then,

Uϕ(α)− UY,τ (α) > 0 ⇐⇒ −α
{
E [ψY (α|W) exp (−α{ϕ(W)− πϕ})]−ΨY (α

′) exp(απY )
}
> 0,

⇐⇒ E [ψY (α|W) exp (−αϕ(W))] < ΨY (α
′) exp (α(πY − πϕ)) , (3.1)
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where α′ = (1− exp(−τ))α.
From this expression, we see that condition (2.1) is essentially a matter of bounding the

difference mY (α|W)) − ϕ(W), where mY (α|w) = logψY (α|w)/α. The difference should be

small enough compared to the difference of prices πY − πϕ, and the presence of ΨY (α
′) allows

this difference to go higher when τ increases.

Therefore, a first idea could be to take ϕ(w) = mY (α|w) as an indemnity function. But

this solution would not be efficient, in the sense that this pay-off would lead to a too high price:

from Jensen’s inequality, the pure premium would then be

E [mY (α|w)] > E[Y ].

Hence, except if we are very close to equality (which would happen only if α is close to zero

and/or Y |W has a variance close to zero), it would become very difficult to offer a premium πϕ

smaller that πY , and in some cases even impossible with a loading factor θϕ > 0. In addition to

the problem of high prices, this type of contract would typically lead to a too important com-

pensation in many cases. This may collide with some legal constraints depending on insurance

regulations1.

To be compatible with this operational necessity to keep a low price, we consider a pay-off

ϕ(w) = ϕβ(w) = βE[Y |W = w], with β ≤ 1. This choice also allows to control the probability

of over-compensating for a claim. From Chernoff inequality, this probability is

P (Y − βE[Y |W] < 0|W = w) ≤ ψY (ρ|w) exp (−ρ(1− β)E[Y |W = w]) , (3.2)

for all ρ > 0 such that ψY (ρ|w) < ∞. Another approach to define the pay-off is to perform

utility maximization as in Zhang et al. [2019] of Chen et al. [2023]. In such an approach, the

idea is to maximize a trade-off between an important value of the compensation ϕ(W) and

an affordable price. However, let us note that, with this approach, E[ϕ(W)] may be superior

to E[Y ] is some situations. Therefore we here prefer to consider a particular shape of pay-

off, determining which difference of price between the classical and the parametric product is

acceptable by the customer. If we determine a situation where ϕ(W) = βE[Y |W], associated

to a loading factor θ, is an acceptable parametric product, an additional optimization can be

performed if the constraint on E[ϕ(W)] ≤ E[Y ] is not an issue.

The following Proposition 3.1 shows that the parametric insurance product is chosen by a

policyholder with risk aversion α provided that the loading factor θ is small enough and that a

constraint on the conditional Laplace transform at point α holds.

1For example, according to the French legislation, this could be interpreted as ”enrichment without cause”,

although the existence of a claim may be a protection against this argument, see for example S. Bros, L’assurance

paramétrique en assurance de dommages, bjda.fr 2023, Dossier n° 6.
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Proposition 3.1 Assume that

sup
w∈W

mY (α|w)− ϕβ(w)

E[Y ]
< 1− β + θY . (3.3)

Let

η = 1− β + θY −
{

sup
w∈W

mY (α|w)− ϕβ(w)

E[Y ]

}
.

Then, for τ ≥ 0, Condition (2.1) holds if

θ ≤ η

β
.

Hence, in this case, there exists a parametric product with a positive loading factor that is

preferable for a policyholder with risk aversion α.

The proof is given in section 6.1.

In this result, Condition (3.3) is key and needs to be examined more closely.

By Jensen’s inequality, mY (α|w) ≥ E[Y |W = w], so

mY (α|w)− ϕβ(w) ≥ (1− β)E [Y |W = w] .

Taking the expectation, we see that

E [mY (α|w)− ϕβ(w)]

E[Y ]
≥ (1− β). (3.4)

Hence, a necessary condition for (3.3) is that the difference between the left-hand side and

right-hand side of (3.4) is not too high (less than θY ). This difference tends to become lower

when α tends to zero, confirming the intuition that risk aversion plays against the parametric

insurance product. Moreover, a smaller value of V ar(Y |W = w) will also reduce the gap

between mY (α|w)−ϕβ(w) and its lower bound (1− β)E[Y |W = w]. This directly refers to the

ability to efficiently predict Y from the available information W, from which is computed the

index.

3.2 Consequences on the solvency of the portfolio

Let us note that Proposition 3.1 only provides a sufficient condition for Condition (2.1) to hold.

It is valid for all values of τ, including τ = 0, and is then sufficient to obtain a lower bound for

the demand, since higher values of τ will increase the disadvantage of the traditional insurance

product. In case of τ > 0, there is room for weakening (3.3) and/or the condition on θ.

From Proposition 3.1, we easily gate the following corollary.

Corollary 3.2 Assume that (3.3) holds for some α0 > 0. Then, if θ ≤ ηβ−1, Condition (2.1)

holds for all values of α ∈ (0, α0 + hβ(τ)] with

hβ(τ) = F−1
(
F (α0) exp(−τ) exp(−α[πY − πϕβ

])
)
− α0,
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where F (α) = Ψ′(α) = E[Y exp(αY )], and

n ≥ Nµ ((0, α0 + hβ(τ)]) . (3.5)

This result is a direct consequence of the more general result of Lemma 6.1.

Proposition 3.3 Under the framework of section 2.2 (i.i.d. policyholders and no accumulation

phenomenon) and the conditions of Corollary 3.2, the condition (2.3) holds for ϕβ provided that

θ ≤ ηβ−1 and

η ≥ σβS−1(ε)

N1/2E[Y ]µ ((0, α0 + hβ(τ)])
1/2

, (3.6)

where

σ2 = V ar (E[Y |W]) ,

which can also be rewritten as

sup
w∈W

mY (α|w)− ϕβ(w)

E[Y ]
≤ 1− β + θY − σβS−1(ε)

N1/2E[Y ]µ ((0, α0 + hβ(τ)])
1/2

.

In case of including the possibility of accumulation episodes as in section 2.3, the result of

Proposition 3.4 is slightly modified.

Proposition 3.4 Under the framework of section 2.3 (probability of an accumulation phe-

nomenon described by a Generalized Pareto distribution) and the conditions of Corollary 3.2,

the condition (2.3) holds for ϕβ provided that θ ≤ ηβ−1 and that, for some ε′ < ε and a > 1,

η ≥ max

(
σβaS−1(ε− ε′)

(a− 1)N1/2E[Y ]µ ((0, α0 + hβ(τ)])
1/2

,
aβs(1− ε′γ)

γε′γ

)
(3.7)

which can also be rewritten as

sup
w∈W

mY (α|w)− ϕβ(w)

E[Y ]
≤ 1−β+θY −max

(
σβaS−1(ε− ε′)

(a− 1)N1/2E[Y ]µ ((0, α0 + hβ(τ)])
1/2

,
aβs(1− ε′γ)

γε′γ

)
.

The proofs of these two results are given in Section 6.2.

Again, according to Proposition 3.3 and 3.4, solvency can be achieved as long as (mY (α|w)−
ϕβ(w))/E[Y ] is sufficiently small, which, as we mentioned earlier, can be interpreted as the abil-

ity of W to catch sufficient information on Y. Let us note that, in this condition, the uniformity

with respect to w is an important weak point: one expects to have situations where it is harder

to approximate Y from W, leading to an increase of V ar(Y |W = w). This pleads to introduce,

in the next section, an hybrid product, mixing traditional and parametric insurance, where the

use of parametric insurance is restricted to the most favorable type of events.
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3.3 Hybrid product

Let

Wα(e, β) = {w ∈ W : mY (α|w)− ϕβ(w) ≤ e} .

We define the following pay-off,

heα,β(Y,W) = Y 1
W∈Wα,β(e)

+ ϕβ(W)1W∈Wα,β(e), (3.8)

where A is the complementary set of the set A.
The idea is that we use parametric insurance only in cases where we expect this solution to

be reliable. From Proposition 3.1, we saw that the unfavorable situations are when mY (α|w)−
ϕβ(w) is large, which motivates the introduction of Wα,β(e).

The premium πh associated with this product is

πh = (1 + θY )E
[
Y |Wα,β(e)

]
(1− pe(α, β)) + (1 + θ)E [Y |Wα,β(e)] pe(α, β),

where pe(α, β) = P(W ∈ Wα,β(e)). We here apply the same loading factor θY as for the tradi-

tional contract for cases where exact compensation is offered, the lower loading factor θ being

applied only on the parametric part.

Proposition 3.5 provides condition for the hybrid product heα,β to be chosen instead of the

traditional contract.

Proposition 3.5 If

ηe(α, β) = 1− β + θY − e

E [Y |We(α, β)] pe(α, β)
. (3.9)

Then, if θ ≤ ηeβ
−1, the policyholder with risk aversion less than α prefers the contract defined

by the pay-off heα,β for all τ ≥ 0.

From the fact that (3.9) should be non negative, we see that the setWα(e, β) should not be too

small, otherwise the probability pe(α, β) could make the left-hand side larger than 1 − β + θY .

On the other hand, one could be tempted to take a low value for e to control the difference

between mY (α|w) and ϕβ(w), but this mechanically tends to make We(α, β) shrink. Let us also

note that a too important decrease of e introduces more constraints on θ : a decrease of ηe(α, β)

makes condition (3.9) easier to achieve, but the loading factor θ then should be smaller.

Proof. Similarly to the case of the purely parametric product, the situation Uheα,β
(α) −

UY,τ (α) > 0 is implied by

E
[
exp(Y − heα,β(Y,W))

]
≤ exp(α[πY − πh]). (3.10)

The left-hand side rewrites

(1−pe(α, β))+E
[
exp (α {mY (α|W)− ϕβ(W)})1W∈Wα,β(e)

]
≤ (1−pe(α, β))+exp(αe)pe(α, β) ≤ exp(αe).
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Moreover,

πY − πh = (1 + θY − β − βθ)E[Y |Wα,β(e)]pe(α, β).

Hence, a sufficient condition for (3.10) is

e

E [Y |Wα,β(e)] pe(α, β)
≤ 1− β + θY − βθ,

which means that θ should be less than ηe(α, β)β
−1. As for the proof of Proposition 3.1,

Uheα,β
(α)− UY,τ (α) > 0 implies that Uheα,β

(α̃)− UY,τ (α̃) > 0 for any α̃ ≤ α.

4 Illustration with real data

We here illustrate in a simplified example in the field of cyber insurance a way to calibrate the

model and to deduce in which case parametric insurance is relevant. In section 4.1, we describe

the database and the choices that have been made for the different parameters required in our

models. Section 4.2 is devoted to the conception of the hybrid product of section 3.3.

4.1 Description of the context and of the database

Business interruption and cyber insurance.

We consider, for this illustration, a database of losses generated by business interruption

caused by a cyber incidents. Business interruption is indeed an important consequence of cyber

attacks, that can even be more expensive than the loss or leak of digital assets. The increased

digitalization of the economy makes industries vulnerable when they can not rely anymore on

their information systems. The hacking of Colonial Pipeline shows that even non-tech companies

can be seriously damaged by such events.

The losses generated by such attacks can be relatively hard to evaluate, also because of

some relatively long term consequences, and sometimes even immaterial consequences like loss

of reputation2. Although the way to cover immaterial damages is far beyond the scope of

the present paper, this aspect also explains the increasing appetence for parametric insurance

products in the field of cyber3. Moreover, a fast compensation mechanism is also key to rebuild

after the claim.

Since the time of business interruption is obviously correlated with the severity, it is quite

natural to use this quantity, instantly measurable after the event, as the core element to build a

parametric product. The link between the duration of business interruption and the economic

loss is also a key element in evaluating the consequences of a cyber attack in several studies like

2See Hiscox’s Cyber Readiness Report, https://www.hiscoxgroup.com/cyber-readiness
3The French General Direction of Treasury, in a report of 2022, mentioned parametric insurance as one of the

possible way to increase coverage of cyber risk, see https://www.tresor.economie.gouv.fr/Articles/2022/09/

07/remise-du-rapport-sur-le-developpement-de-l-assurance-du-risque-cyber
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Variable Mean Minimum Maximum Standard deviation

Y (Keuros) 10.9 0.73 565 47

T (days) 3.5 0.34 6.2 0.83

Y, δ = 1 7.1 0.73 516 31.7

T, δ = 1 3.36 0.34 5.7 0.78

Y, δ = 0 48.5 2.9 565 115.4

T, δ = 0 4.6 3.1 6.2 0.46

Table 1: Descriptive statistics for the database.

Tam et al. [2023]. Of course, the effect of a given duration of service interruption is strongly

dependent from the sector of activity of the victim and of its size. In this simplified example,

we only consider a portfolio composed of policyholders with the same profile, that is in the same

sector of activity, same operating country, and size (turnover between 10 to 50 million euros).

The database.

To learn about the link between the loss Y and the time of business interruption, we consider

a database contains 1000 incidents. It has been rescaled to be consistent with the market trends

we consider for the premium, and that are described below.

For each claim, we have at our disposal:

• the amount of the claim Y ;

• the time of business interruption T ;

• an indicator function δ ∈ {0, 1} that is equal to 1 if the victim managed to trigger some

back-up plan, which can reduce the impact of the business interruption.

Some descriptive statistics are given in Table 1 below.

Premium amount.

We consider in this simplified framework that each policyholder pays the same premium,

which is given by the average insurance premium for year 2022 according to the report LUCY

(Light Upon Cyber Insurance) on the French market conducted by AMRAE (Association pour

le Management des Risques et l’Assurance de l’Entreprise)4. This premium is, according to the

report, πY = 9, 163 euros. To consider a reasonable value for the loading factor θY , we consider

the loss ratios observed on the market between 2020 and 2022 for the companies of ”medium

size” (following the terminology of the report) that we consider. These loss ratios are 45%

(2020), 36% (2021) and 100% (2022), with an average of approximately 60%. We then make

4See the AMRAE report LUCY, https://www.amrae.fr/bibliotheque-de-amrae/

lucy-light-upon-cyber-insurance-2024-edition
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the (strong) assumption that πY is calibrated to generate an average result which is 40% higher

than the pure premium, that is θY = 0.4.

We insist on the fact that this loading factor does not pretend to accurately reflect the

practices of the insurance market: first of all, there may be important differences from one

customer to another, and the evolution of the loss ratios are not necessarily anticipated: the

current state of cyber insurance is quite instable (as shown in the same LUCY report, the amount

of premiums considerably evolve from one year to another, showing a constant reevaluation of

the risk by the insurers, that react to previous results).

Frequency of claims.

The database we consider only gives us information about the losses, but not about the

frequency, since we have no indication about the exposure. This gives us information about the

pay-off in case of claim, but not about its probability of occurrence.

To consider a plausible number for the frequency, we set the probability of having an incident

to p = 0.06. This value is, again inspired from the report LUCY (492 medium size companies

in the sample used for the report, and 30 claims). Again, we recall that, in our framework, we

considered the case that a policyholder does not experiences more than 1 claim per year for

simplification.

Demand and risk aversion.

We consider a target population of size of N = 500, which corresponds approximately to the

number of policyholders in the perimeter of the LUCY study (medium-size companies).

For this application, we stay with an exponential utility function, and need to give a measure

µ to describe the distribution of risk aversion among potential policyholders. In the absence of

a rigorous market study that allows to measure price elasticity, modeling the measure µ is the

most disputable point. Again, our purpose is only to illustrate the methodology described in

the paper, and not to provide a reliable estimation of the demand in cyber insurance.

We consider here that µ is a shifted exponential distribution, that is

dµ(t) = λ exp(−λ(t− α−))1t≥α− .

To determine the value of α−, we observe that the target population of policyholders who already

subscribed an insurance contract accepted a price πY . Since their preferences are described via

an exponential utility, this is possible only if their risk aversion α is high enough. If we do not

take into account the potential discount factor τ at this stage, this means that

logΨY (α−)

α−
= πY .

Estimating empirically α→ ΨY (α) from the database (see Figure 1), we get α− = 0.0108.

Next, to consider a proper value for λ, we make the assumption that half of the population of

the policyholders is ready to accept an increase of 40% of the premium. This choice is arbitrary,
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Figure 1: Estimation of α → logΨY (α)/α (exponential premium). The left point corresponds

to the value of risk aversion corresponding to an exponential premium equal to πY . The right

point (blue) corresponds to the case where πY increases by 40%.

but is motivated by the fact the LUCY report noted an increase of 84% of the collected premiums

over 2022, for an increase of 53% of the number of policyholders in the perimeter of the study

(while deductible increase and insurance capacity stays stable). This seems to indicate that

all of the current policyholders were ready to accept an increase of approximately 20% of their

premium. The proportion 40% that is taken to set the value of λ is then based on twice this

number. This leads to λ = 433.

4.2 Estimation of the conditional expectation and conditional Laplace trans-

form

To estimate the conditional distribution of Y, we rely on regression trees (see for example Breiman

[2017] or Loh [2014]). This choice is motivated by simplicity, the will to have simple and

intelligible rules to produce a compensation, and a tractable and simplified way to give an

example of design of the ”hybrid” product that we propose.

Since the efficiency of the back-up plan plays a particular role in the severity, we arbitrary

distinguish between the claims that are associated with a back-up plan that failed (or that was

not triggered, δ = 0) and the ones where this solution managed to reduce the impact of the

incident. This produces two regression trees that are reported in Figure 2.

The covariates at our disposal after a claim are W = (δ,X) where X = l if T is in the l−th

leaf of the tree. We consider three values of β, namely β = 0.75, β = 0.9 and β = 1. For each

leaf and each tree, we compute ∆(δ, l) = (mY (α0|δ, l)− ϕβ(δ, l))/{E[Y |δ,X = l]pe(α0, β)}. The
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(a) Back-up plan failed (δ = 0).

(b) Back-up plan was at least partially success-

ful (δ = 1).

Figure 2: Regression trees for the distribution of Y depending on the success of the backup plan.

results are reported in Tables 2 and 3.

The values obtained promote the use of a parametric product for small durations of business

interruption, depending on the values of θY and the size of the target population. A more

careful analysis of the claims in the left leaves of each tree would lead to a better structured

product: in the fit of the regression trees, the shape of the tree is strongly influences by the

largest observations, while the majority of cases fall in the left-hand side leaves.

X δ = 0, β = 0.75 δ = 0, β = 0.9 δ = 0, β = 1

l = 1 0.71 0.55 0.44

l = 2 2.55 2.39 2.28

l = 3 0.82 0.66 0.55

Table 2: Value of ∆(0, l) for the different leaves of the tree of Figure 2 (b) (the leaves are

numbered from left to right).
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X δ = 1, β = 0.75 δ = 1, β = 0.9 δ = 1, β = 1

l = 1 0.30 0.15 0.04

l = 2 0.79 0.63 0.52

l = 3 3.1 2.9 2.8

l = 4 1.90 1.43 1.12

Table 3: Value of ∆(1, l) for the different leaves of the tree of Figure 2 (b) (the leaves are

numbered from left to right).

5 Conclusion

In this paper, we proposed a framework to discuss the opportunity of introduction of a para-

metric insurance product in competition with a more traditional contract. The product should

be attractive enough to achieve a sufficient number of policyholders to achieve solvency of the

portfolio. The conditions we obtain suggest the introduction of an hybrid product, where para-

metric insurance is considered only in some specific situations to accelerate compensation and

reduce the premium. Beyond the concept of index based insurance, this result can also be used

for claim management purpose in traditional insurance contracts, removing the cost of experts

when dealing with some specific claims. Let us note that we do not cover here one of the appeal-

ing aspects of parametric insurance, which is to propose coverage for claims that are not covered

by traditional policies: the scope of the present paper is only to discuss the introduction of para-

metric insurance in a context where traditional insurance is already present. The question of

modeling the demand in situations where a traditional policy is not available will be considered

elsewhere, and would require a more delicate approach to calibrate the utility function.

6 Appendix

6.1 Proof of Proposition 3.1

Showing the result for τ = 0 is sufficient, since a higher value of τ reduces the expected utility

of the traditional insurance contract.

If τ = 0, condition (2.1) is

E [exp(α[mY (α|W)− ϕβ(W)])] ≤ exp (α[1 + θY − β − βθ]E[Y ]) .

So taking the logarithm, we get

logE [exp(α[mY (α|W)− ϕβ(W)])] ≤ α[1 + θY − β − βθ]E[Y ].
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Finally,

θβ ≤ 1− β + θY −
logE [exp(α[mY (α|W)− ϕβ(W)])]

αE[Y ]
. (6.1)

Since θβ needs to be strictly positive, this requires

logE [exp(α[mY (α|W)− ϕβ(W)])]

αE[Y ]
< 1− β + θY .

Since

logE [exp(α[mY (α|W)− ϕβ(W)])] < sup
w∈W

mY (α|w)− ϕβ(w)

E[Y ]
,

it follows from (3.3) that this condition holds. Then, taking θ ≤ ηβ−1 ensures that (6.1), hence

(2.1), holds.

6.2 Proof of Proposition 3.3 and 3.4

Proof of Proposition 3.3.

We have π∗ϕβ
= βE[Y ], and

σ2ϕβ
= β2V ar (E[Y |W]) = β2σ2.

From Corollary 3.2, which requires that θ ≤ ηβ−1,

n ≥ n0 = Nµ ((0, α0 + hβ(τ)]) .

Condition (2.3) holds if

n
1/2
0 θπ∗ϕβ

σϕβ

≥ S−1(ε).

This rewrites

θ ≥ σS−1(ε)

N1/2E[Y ]µ ((0, α0 + hβ(τ)])
1/2

.

To be compatible with the upper bound on θ, we need condition (3.6).

Proof of Proposition 3.4.

The proof is similar to the proof of Proposition 3.3, but with (2.4) replaced by (2.5). If

θ ≥ aσ(1− ε′γ)

γε′γ
,

we have

S−1

ε− 1(
1 + γθ

aσ

)1/γ
 ≤ S−1(ε− ε′).

Again, we need the upper and lower bounds on θ to be compatible, which leads to the result of

the Proposition.
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6.3 Risk aversion heredity property

Lemma 6.1 Assume that condition (2.1) holds for ϕ, α0 > 0 and with τ = 0. Let F (α) =

Ψ′(α) = E [Y exp(αY )] . Then, (2.1) holds for all τ and α ∈ (0, α0 + h(τ)] with

h(τ) = F−1 (F (α0) exp(−τ) exp(−α[πY − πϕ]))− α0.

Proof. Since Ψ(α′) ≥ 1 = Ψ(0), if (2.1) holds for τ = 0, it also holds for all τ > 0. Hence we

show the result in two steps. First, we show that condition (2.1) holds for τ = 0 and all α ≤ α0.

Then we study the case α0 < α ≤ α0 + h(τ).

First case: α ≤ α0.

Let Z = Y − ϕ(W)− πY + πϕ. Condition (3.1) rewrites

E [exp(αZ)] ≤ Ψ(α′).

We have, as a consequence of Jensen’s inequality,

logE [exp(αZ)]

α
≤ logE [exp(α0Z)]

α0
.

Hence

E [exp(αZ)] ≤ 1.

Second case: α0 < α ≤ α0 + h(τ).

Let α = α0 + x for 0 < x ≤ h, and α′ = α(1− exp(−τ)). From a Taylor expansion,

Ψ(α′) ≥ Ψ(α′
0) + x(1− exp(−τ))E

[
Y exp

(
α′
0Y
)]
.

On the other hand,

E [exp(αZ)] ≤ E [exp(α0Z)] + x exp(−α{πY − πϕ})E [Y exp(αY )] .

Since E[exp(α0Z)] ≤ 1 ≤ Ψ(α′
0),, condition (2.1) holds if

F (α)

F (α0)
≤ exp(−τ) exp(−α[πY − πϕ]).

By definition, this condition holds for h ≤ h(τ).
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