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Abstract

We introduce a novel shrinkage methodology for building optimal portfolios in

environments of high complexity, where the number of assets is comparable to or

larger than the number of observations. Our universal portfolio shrinkage approxi-

mator (UPSA) is given in closed form, is easy to implement, and improves existing

shrinkage methods. It exhibits an explicit two-fund separation, complementing the

Markowitz portfolio with an optimal complexity correction. Importantly, UPSA does

not annihilate the low-variance principal components (PCs) of returns but weights them

optimally. Contrary to conventional wisdom, we find that low variance in-sample PCs

are key to out-of-sample portfolio performance. By optimally balancing them in the

portfolio construction, UPSA produces a stochastic discount factor that substantially

improves on its PC-sparse counterparts, showing that PC sparsity is highly costly once

SDFs are optimally shrunk.

1 Introduction

Efficient portfolios that optimally balance risk and return play a key role in asset pricing.

However, in practically relevant scenarios involving thousands of stocks and hundreds of

factors, classical estimators of the (Markowitz, 1952) portfolio are severely contaminated by

noise. Despite their stellar in-sample performance, they typically fail out-of-sample and are

often dominated by naively diversified portfolios (DeMiguel et al., 2009). The huge wedge

between their in-sample (IS) and out-of-sample (OOS) performance is driven by estimation

complexity: Since the number of parameters entering the portfolio construction typically

exceeds the number of observations, the Law of Large Numbers breaks down (Didisheim et

al., 2023).1

1For example, when the number of IS periods is smaller than the number of assets, the IS Sharpe ratio
of the Markowitz Portfolio is not even finite.
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An established way of reducing the wedge between IS and OOS performance is to optimize

the bias-variance tradeoff through shrinkage. However, existing shrinkage methodologies

either excessively constrain the admissible forms of shrinkage or target restrictive statistical

objectives, such as the estimation error of the covariance matrix. Instead, optimal portfolio

shrinkage should be built to target what investors care about: The OOS performance of the

Stochastic Discount Factor (SDF). Our Universal Portfolio Shrinkage Approximator (UPSA)

is precisely designed to tackle these issues. It is tractable, closed-form, easy to implement,

and universal because it encompasses very general forms of shrinkage and easily adapts to

the specifics of a particular economic objective.

To understand the nature of optimal shrinkage estimators developed in our paper, we

start by noting that the Markowitz portfolio always admits an intuitive decomposition as

a portfolio of principal component (PC) returns. Here, each individual portfolio weight is

given by each PC’s estimated risk-return tradeoff, i.e., the ratio of the PC’s average return

and sample variance. Inspired by the Arbitrage Pricing Theory (APT) of (Ross, 1976),

many papers postulate that only top principal components of asset returns enter the SDF.2

Intuitively, if risk premia are compensations for systematic risk, only risk factors that explain

a large fraction of cross-sectional variation in returns should command non-negligible risk

premia. Hence, low-variance PCs should have sufficiently small risk-premia to be safely

ignored for the purpose of SDF construction.

As we argue in this paper, the above intuition breaks down when one has to estimate

these principal components. Indeed, in realistic situations where the number N of assets

is large, estimated low-variance PCs are severely contaminated by noise. This leads to two

conceptually distinct effects. First, even when some “true”, unobservable low-variance PCs

may offer a very good investment opportunity with a highly favorable risk-return tradeoff,

statistical limits to arbitrage (Da et al., 2022) and limits to learning (Didisheim et al., 2023)

make it impossible to precisely isolate these opportunities out-of-sample. Second, incorrectly

estimated in-sample low-variance PCs may also have significant exposure to the “true”,

unobservable high-variance PCs. In both cases, estimated low-variance PCs might offer

important diversification opportunities for generating out-of-sample portfolio performance.

Therefore, they should not be neglected in high-complexity environments where the number

of assets is comparable to (or even larger than) the number of observations.

Granted that low-variance PCs may offer important diversification opportunities, a nat-

ural question is how should estimated PCs be optimally weighted into a portfolio that delivers

the highest out-of-sample economic value? To tackle this question with a good degree of

2Following (Chamberlain and Rothschild, 1982), this assumption can be rationalized formally whenever
the maximum Sharpe ratio portfolio investing in the low-variance PCs has a vanishing variance.
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generality, we start from a broad family of spectral shrinkage estimators, which transform the

sample variances of estimated PCs, or equivalently the eigenvalues of the sample covariance

matrix of returns, with some potentially non-linear function f . De facto, these estimators

adjust individual PC weights in the Markowitz portfolio with a single transformation of

PC variances, thus effectively re-weighting all individual PC estimated Sharpe ratios with a

flexible scheme. The first key question we answer in this paper is how to find the optimal,

non-parametric shrinkage function f that maximizes the out-of-sample portfolio performance.

The second related important question we answer is about the shape of the optimal shrinkage

and whether it gives rise to SDFs with nontrivial exposure to low-variance PCs.

Finding the optimal shrinkage function f without imposing overly restrictive assumptions

on the shapes of admissible shrinkages or on the covariance matrix of returns may be

challenging. Strikingly, we show that a large class of relevant portfolio shrinkage devices can

be efficiently spanned using a tractable Universal Portfolio Shrinkage Approximator (UPSA),

which is built just from a basis of Ridge-penalized portfolios depending on a corresponding

set of Ridge penalties.3 The tractability of UPSA comes from the fact that its shrinkage

function is given in closed form and that its computation essentially only depends on the

eigenvalues and eigenvectors of the sample covariance matrix of returns. Therefore, it is

computationally scalable to even very large datasets. In addition, UPSA can be naturally

modified to incorporate further desirable shrinkage features, such as strict positivity and

monotonicity. Such a constrained version of UPSA (CUPSA) is built simply by forcing

positivity of all weights of the Ridge-penalized portfolios, forming the basis for UPSA.

The monotonicity of CUPSA’s shrinkage implies estimated SDFs in which the order of

the risks of each estimated PC is maintained as the one before shrinking. It also means

that sample covariance matrices associated with a larger estimated risk for all portfolios will

still imply a larger risk after shrinking. Strict positivity further ensures that no PC gets

eliminated after shrinking, i.e., CUPSA produces as Ridge a soft shrinkage thresholding and

SDFs that are not sparse. These properties are essential for the ability of CUPSA to leverage

information in low-variance PCs efficiently. In contrast, hard shrinkage thresholding violates

both monotonicity and strict positivity, giving rise to sparse SDFs that de facto implicitly

assign an infinite risk to some low-variance PCs.

By construction, the CUPSA portfolio is equivalent to an optimal fund portfolio, which

allocates wealth across a family of funds, given by distinct ridge-shrunk portfolios, and is

subject to a short-selling constraint on each of the funds. Therefore, CUPSA also has the

interpretation of a Bayesian optimal portfolio, which extends the standard interpretation

3The class of portfolio shrinkage functions universally approximated by UPSA is the class of continuous
functions vanishing at infinity.
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of ridge-shrunk portfolios in the literature. While ridge-shrunk portfolios are the optimal

Bayesian portfolios of an investor having a Gaussian prior with scalar covariance matrix on

expected returns, the CUPSA portfolio is the optimal Bayesian portfolio of an investor having

a mixture of Gaussian prior on expected returns. In this interpretation, the CUPSA portfolio

weights allocated to individual ridge-shrunk portfolios equal the weights in the mixture

of Gaussian prior, thus incorporating richer forms of prior uncertainty about expected

returns. From this point of view, the superior performance of CUPSA portfolios relative

to standard ridge-shrunk portfolios may also be attributed to their ability to capture better

and incorporate prior uncertainty about expected returns.

To emphasize the link between CUPSA and SDF estimation in our empirical analysis,

we investigate the performance of CUPSA on a large set of managed portfolios from (Jensen

et al., 2023), which are commonly thought to span a significant part of the risks in the

SDF. We build several natural benchmarks for the CUPSA portfolio performance. The first

is a simple ridge-shrunk portfolio, in which the ridge penalty is optimally selected through

cross-validation. The second one is a Markowitz portfolio with a covariance matrix shrunk

following the classic covariance spectral shrinkage approach in (Ledoit and Wolf, 2017). In

all experiments we perform, we find that CUPSA achieves a higher OOS Sharpe ratio than

the benchmark methods, i.e., the associated SDF leads to lower out-of-sample pricing errors

(see, again, (Didisheim et al., 2023)). When stratifying into 13 anomaly themes the OOS

pricing performance of the CUPSA-SDF across the 150 anomalies in (Jensen et al., 2023),

we further find that the CUPSA-SDF achieves significantly lower pricing errors for every

single theme. These effects are strongest for the two “hardest-to-price” anomaly themes:

Momentum and low risk. Indeed, while benchmark SDFs have a hard time pricing these,

the CUPSA-SDF achieves comparably low pricing errors for momentum and low risk as it

does for other themes.

To understand the origins of the improved out-of-sample performance provided by the

UPSA portfolio, we make use of random matrix theory and derive an explicit link between

the latter, the standard estimator of the maximum Sharpe ratio portfolio, the unknown

covariance matrix of returns and the degree of model complexity c = N/T , which is given

by the ratio between the number N of assets in a portfolio problem and the number T of

available time series observations for estimation. High complexity c > 0 causes a breakdown

of the law of large numbers. This creates a wedge between in-sample and out-of-sample

moments that does not disappear asymptotically. Intuitively, a larger model complexity

is responsible for a larger wedge between the out-of-sample performance of CUPSA and

Markowitz portfolios. We find that such a wedge is particularly large when using monthly

data and a number of SDF factors, as in the recent literature. Perhaps surprisingly, we
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further find that the complexity wedge remains significant even when c is relatively small,

e.g., c ∼ 0.1, when using N = 153 factors and T = 1500 daily observations. This finding can

be partly explained by the covariance structure of the asset pricing factors, which exhibits

many factors with high correlations. This feature further lowers the effective sample size and

makes the small eigenvalues hard to estimate even with large training samples.

We study the behavior of CUPSA for various rolling training windows, from very short

(a few weeks) to very long (seven years of daily data). In this way, we better account for

a potential non-stationarity in the data. We find evidence for this non-stationarity. In

particular, the OOS performance of the different benchmark portfolios is non-monotonic

in the rolling window size: Models based on shorter windows suffer more from the lack of

observations, but they adapt faster to changing economic conditions, and vice versa. Our

empirical results show that CUPSA can better adjust to this non-stationarity than its feasible

“optimal ridge” counterpart. It does so by diversifying and smoothing out the choice of the

optimal shrinkage parameter across the multiple ridge-shrunk portfolios in the UPSA basis.

Strikingly, we find that the average CUPSA weights across ridge penalties closely emulate

the unconditional distribution of the time-varying optimal ridge penalty across time. The

single-ridge-penalty shrinkage naively attempts to adjust to non-stationarity, with an optimal

penalty oscillating substantially throughout the sample and generating a huge turnover. In

contrast, CUPSA shrinkage better adjusts to non-stationarity by diversifying and smoothing

across multiple ridge penalties to construct the optimal portfolio shrinkage. In doing so, it

also generates a substantially lower turnover.

We finally explore the shape of the optimal CUPSA shrinkage, particularly whether it

gives rise to SDFs with nontrivial exposure to low-variance PCs. Therefore, we compare the

behavior of all portfolio shrinkage estimators under scrutiny on the set of estimated PCs. We

find that the out-of-sample Sharpe ratio of the CUPSA SDF monotonically increases with the

number of PCs it incorporates. Strikingly, this monotonic pattern persists with the inclusion

of the lowest-variance PCs. The underlying mechanism is as follows. First, low-variance PCs

add diversification benefits. Second, as for the other PCs, they contribute non-trivially to

the overall out-of-sample portfolio performance. This second feature is intrinsically related

to the fact that CUPSA can better capitalize on the complexity of the PC space by means

of a more flexible shrinkage able to form a fund portfolio of high- and low-variance PCs with

improved out-of-sample economic value. The importance of a ‘flexible portfolio shrinkage”

for optimal portfolio and SDF estimation is a subtle and novel phenomenon in connection

with complexity. In stark contrast with CUPSA, the out-of-sample Sharpe ratio of the

standard ridge portfolio is inverse U-shaped with respect to the number of included top PCs

and saturates quite early, at about 20 top PCs. Therefore, the restrictive shape of the family
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of portfolio shrinkages admitted by the standard ridge estimator spuriously suggests sparse

optimal SDFs that load exclusively on the top estimated PCs. These findings spotlight a

novel form of shrinkage-based virtue of complexity, consistent with earlier findings in (Kelly

et al., 2022; Didisheim et al., 2023). It also indicates that the conventional APT wisdom,

advocating SDF–sparsity in the PC space, is misplaced when building optimally shrunk

portfolios and SDFs in complex environments. The opposite actually holds: SDF–sparsity

is highly costly once SDFs are optimally shrunk.

2 Literature Review

Covariance estimation: Our research contributes to the field of covariance matrix estima-

tion. Within this domain, the predominant focus of existing research has been minimizing the

Frobenius norm of the difference between the true and the estimated covariance matrices.4

Pioneering work in this area includes simple, linear shrinkage estimators introduced in

(Ledoit and Wolf, 2004b) and their applications to minimum variance portfolios (Ledoit

and Wolf, 2003) and portfolio tracking (Ledoit and Wolf, 2004a).

The idea of spectral shrinkage of covariance matrices was introduced in the influential lec-

ture notes by (Stein, 1986). In a sequence of path-breaking papers, (Ledoit and Wolf, 2012),

(Ledoit and Wolf, 2015), and (Ledoit and Wolf, 2020) developed novel, non-linear spectral

shrinkage estimators based on random matrix theory techniques introduced in (Ledoit and

Péché, 2011). These estimators can be computed analytically and are asymptotically optimal

with respect to the Frobenius norm in the limit as N, T → ∞, N/T → c. In (Ledoit and

Wolf, 2017), the authors apply the same methodology to compute the asymptotically optimal

non-linear shrinkage, minimizing the variance of the portfolio return.

To our knowledge, our paper is the first to directly compute the optimal, non-linear

spectral shrinkage for the generic (Markowitz, 1952) problem. In stark contrast to the above

papers, our shrinkage operator directly optimizes the out-of-sample utility and is explicitly

designed for portfolio optimization and asset pricing.5 While our estimator is a spectral

shrinkage estimator (it only transforms the eigenvalues of the sample covariance matrix),

the shrinkage itself depends explicitly and non-linearly on the expected asset returns. This

form of shrinkage (shrinking Σ based on µ) is novel and has never been studied in the

literature before.

4Frobenius norm measures the Euclidean distance between two matrices: ∥A−B∥2Frobenius =
∑

i,j(Ai,j−
Bi,j)

2.
5As (Didisheim et al., 2023) show, when properly defined, minimizing the (Hansen and Richard, 1987)

distance is equivalent to maximizing the Sharpe ratio of the SDF.
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SDF estimation with PCs: Motivated by the emergence of the factor zoo (see (Cochrane,

2011), and (Harvey et al., 2016)), many papers attempted to find a characteristics-sparse

representation of the SDF.6 Recent research, based on the ideas of APT, proposed instead to

look for a PC-sparse representation of the SDF constructed from a few (typically, less than

six) principal components of factors. See, for example, (Kozak et al., 2018), (Kozak et al.,

2020), (Lettau and Pelger, 2020), (Kelly et al., 2020), (Gu et al., 2021), (Bryzgalova et al.,

2023b), (Giglio and Xiu, 2021).

Of particular relevance to us is the paper (Kozak et al., 2020), which argues that a good

SDF approximation can be constructed by selecting the top few PCs of factors and applying

simple ridge shrinkage to their covariance matrix. Thus, the SDF is sparse in the space of

PCs. In this paper, using a different dataset (we use 150 factors from (Jensen et al., 2023)),

we find that low-variance estimated PCs are important contributors to SDF performance.

In fact, the out-of-sample Sharpe ratio strictly increases monotonically in the number of

PCs. Furthermore, our non-linear shrinkage methodology dominates the simple ridge. While

the latter corresponds to a prior with a fixed degree of uncertainty, our optimal shrinkage

captures heterogeneous beliefs of investors with varying degrees of prior uncertainty. Our

findings suggest that the intuition of (Kozak et al., 2020) is misled by a sub-optimal shrinkage

procedure: When using a simple ridge for shrink, optimal SDF is indeed PC-sparse. However,

the optimal non-linear shrinkage allows us to a form of “goldilocks” shrinkage, whereby each

PC is shrunk “just right,” according to its estimated risk-return tradeoff.

Several recent papers argue that the emergence of the factor zoo is associated with the

existence of the so-called weak factors, whose risk premia are too small to be efficiently

identifiable 7. To deal with the weak factor problem, (Lettau and Pelger, 2020) develop a

novel covariance shrinkage methodology they name Risk Premium PCA (RP-PCA). This

methodology still advocates a PC-sparse SDF but with PCs computed for the shrunk co-

variance matrix. This shrinkage introduces an important bias in the PCs, tilting the PCs

towards the vector of their sample means. In particular, their estimator does not belong

to the spectral family. The RP-PCA’s goal is to correct the bias (induced by complexity

c = N/T > 0) in the estimation of PCs. (Lettau and Pelger, 2020) prove that this bias

correction is indeed efficient for high-variance PCs but cannot be used to fix low-variance

PCs because they are severely contaminated by noise; hence, they build their SDF from a few

bias-corrected top PCs. By contrast, our approach keeps all of the original PCs (including

the low-variance ones) and, instead, re-weights them optimally through eigenvalue shrinkage.

6See, e.g., (Fama and French, 1993), (Hou et al., 2015), (Fama and French, 2015), and (Barillas and
Shanken, 2018).

7see, (Bryzgalova et al., 2023a), (Preite et al., 2022)
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These low-variance PCs matter precisely because they capture the exposures to the weak

factors. Shrinkage corrects some of the bias in estimating these weak factor risk premia and

generates the virtue of complexity, whereby the inclusion of these (properly re-weighted)

weak factors boosts OOS performance.

Statistical Pricing Frictions and Complexity: Our paper also addresses statistical

limits to efficient estimation in Finance. It is particularly suited for dealing with situations

where the number of model parameters and training samples are of the same order of

magnitude. A sequence of recent papers shows how classical statistical theory needs to

be adjusted when dealing with such situations of estimation complexity. See, (Martin

and Nagel, 2021), (Kelly et al., 2022), (Da et al., 2022), and (Didisheim et al., 2023). In

particular, (Martin and Nagel, 2021) emphasize the importance of employing both shrinkage

techniques and out-of-sample (OOS) testing in Bayesian high-dimensional models. In a

similar vein, (Kelly et al., 2022) and (Didisheim et al., 2023) highlight both theoretically

and empirically the advantages of complex models in asset pricing for achieving superior

out-of-sample performance. This holds true both for forecasting asset returns (Kelly et al.,

2022) and constructing SDFs (Didisheim et al., 2023). Our paper contributes to the literature

on complexity by introducing a robust shrinkage methodology to mitigate high-dimensional

noise. Furthermore, we offer an unbiased estimator for OOS performance, aiding in model

selection and helping to bridge the complexity wedge (Didisheim et al., 2023) between in-

sample (IS) and OOS performance.

3 Optimal Portfolio Shrinkage

We consider a set N of assets (factors) whose excess returns follow a stochastic process

Ft ∈ RN , t ≥ 0. In a perfect information environment, an economic agent maximizing

quadratic utility8

U(Rπ
t ) = Rπ

t − 1

2
(Rπ

t )
2 (1)

of portfolio returns

Rπ
t = π′Ft (2)

8Our analysis is readily applicable to non-quadratic utilities. However, in these cases, the starting point
for shrinkage deviates from the traditional Markowitz solution. Instead, the function f should be applied to
the IS solution derived from the non-quadratic utility.
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would select the efficient portfolio

π∗ = E[FF ′]−1E[F ] , (3)

achieving the expected utility

E[U(Rπ
t )] =

1

2
E[F ]′E[FF ′]−1E[F ] . (4)

A real-world economic agent with access to T in-sample observations of Ft can instead

compute finite-sample moments

Ē[FF ′] =
1

T

T∑
t=1

FtF
′
t

Ē[F ] =
1

T

T∑
t=1

Ft,

(5)

and construct a simple, empirical counterpart of (3), given by

π̄ = Ē[FF ′]−1Ē[F ] . (6)

The corresponding in-sample (IS) utility is given by

ū =
1

T

T∑
t=1

U(Rπ̄
t ) =

1

2
Ē[F ]′Ē[FF ′]−1Ē[F ] , (7)

while the out-of-sample (OOS) expected utility is given by

uOOS = E[U(Rπ̄
t )], t > T. (8)

When N/T ̸= 0, complexity leads to a breakdown of the law of large numbers, and empirical

and theoretical moments diverge,

Ē[F ] ̸→ E[F ], Ē[FF ′] ̸→ E[FF ′] . (9)

The exact out-of-sample behavior of (6) depends on subtle properties of the stochastic process

Ft. When Ft are independent and identically distributed over time, random matrix theory

methods can be used to characterize these quantities in the limit when N, T → ∞, N/T → c.

See, (Didisheim et al., 2023). The key insight from these theoretical results is that, for c > 0,
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there is a potentially large complexity wedge

Wedge = ū − uOOS > 0. (10)

(Didisheim et al., 2023) refer to this wedge as limits to learning and show how this wedge orig-

inates in the misestimation of factor moments (9). The common approach in the literature

for dealing with this misestimation is the shrinkage of the covariance matrix.

Let Ē[FF ′] = U diag(λ)U ′ be the eigenvalue decomposition of the covariance matrix,

and RPC
i,t = U ′

iFt be the returns of these principal components. We also use R̄PC
i = Ē[RPC

i,t ]

to denote the in-sample mean returns of these PCs. In this case, we can rewrite portfolio

returns as

Rπ̄
t =

N∑
i=1

R̄PC
i

λi
RPC
i,t . (11)

In other words, the estimated efficient portfolio return is the sum of PC returns, with each

PC weighted by its estimated risk-return tradeoff. Empirically, when N is large enough, we

often observe that these tradeoffs,
R̄PC

i

λi
, are very large for small λi. As a result, the estimated

efficient portfolio severely overweights low-variance PCs, leading to poor OOS performance.

A common approach for dealing with instabilities induced by small eigenvalues is to use the

ridge-penalized covariance matrix (see, e.g., (Kozak et al., 2020), (Didisheim et al., 2023)):

π̄(z) = (zI + Ē[FF ′])−1Ē[F ], (12)

leading to the following decomposition of portfolio returns:

R
π̄(z)
t =

N∑
i=1

R̄PC
i

λi + z
RPC
i,t =

N∑
i=1

R̄PC
i

λi

1

1 + z/λi
RPC
i,t . (13)

The formula (13) shows how a ridge penalty acts as a “soft” thresholding of the eigenvalues,

with the shrinkage factor 1
1+z/λi

effectively annihilating the contributions of low-variance

PCs. Two limiting cases of ridge shrinkage are lim z → 0 (the so-called ridgeless case)

lim
z→0

π̄(z) ≈z→∞ = (Ē[FF ′])+Ē[F ] (14)

where (Ē[FF ′])+ is the pseudo-inverse of the covariance matrix. When N < T , the ridgeless

portfolio is equal to the Markowitz portfolio (11). The infinite ridge limit z → ∞, converges

to the simple “momentum” portfolio that completely ignores the covariance matrix and
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invests proportionally to in-sample mean returns:

zπ̄(z) = (I + z−1Ē[FF ′])−1Ē[F ] ≈z→∞ Ē[F ] . (15)

By varying z between 0 and ∞, we effectively interpolate between the no-shrinkage and full

shrinkage regimes.

Motivated by the Arbitrage Pricing Theory (APT) of (Ross, 1976), some papers (see,

e.g., (Kozak et al., 2020)) use hard thresholding of eigenvalues, only retaining top principal

components in (13) (see (Chamberlain and Rothschild, 1982) for the underlying theory).

This “one-size-fits-all” shrinkage approach is potentially highly inefficient. Ideally, we would

like to have an estimator that optimally defines the contribution of each PC based on its

estimated OOS risk-return tradeoff. The goal of this paper is to develop such an algorithm.

Formally, an estimator that only shrinks the weights of all PCs in (13) without modifying

the PCs themselves is commonly referred to as a spectral shrinkage estimator. This class

of estimators was introduced in the influential paper by (Stein, 1986). A generic spectral

shrinkage estimator is defined by a function f applied to the eigenvalues of the sample

covariance matrix, whereby Ē[FF ′] is replaced with

f(Ē[FF ′]) = U diag(f(λ))U ′ . (16)

Let

π̄(f) = f(Ē[FF ′])︸ ︷︷ ︸
shrunk inverse covariance matrix

Ē[F ] (17)

be the f -spectral shrinkage estimator of the infeasible efficient portfolio E[FF ′]−1E[F ]. Then,

we can rewrite portfolio returns Rf (f) = R
π̄(f)
t of this portfolio as

Rt(f) = π̄(f)′Ft =
N∑
i=1

f(λi) R̄
PC
i︸ ︷︷ ︸

shrunk PC weights

RPC
i,t . (18)

We can now formally define the optimal spectral shrinkage estimator.

Definition 1 (Optimal Non-linear Shrinkage) Let FIS = {F1, · · · , FT} be the in-sample

factor returns. The optimal spectral shrinkage estimator is a function f : R× RN×T → R,
such that f(λ;FIS) solves the OOS utility maximization problem

max
f

E [U (Rt(f))] , t > T . (19)
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The key aspect of the optimal spectral shrinkage is the dependency of the non-linear

function f on the in-sample observations FIS. Thus, while the actual function f(·;FIS)
applied to the eigenvalues of Ē[FF ′] has only one argument λ ∈ R, the eigenvalues of the

empirical second-moment matrix, the shrinkage operator, f , has, in fact, NT+1 arguments.9

With i.i.d. data, in the low complexity regime when N/T → 0, Lemma 6 implies that

shrinkage is sub-optimal and, hence, f(λ;FIS) = λ is independent of the in-sample data.

However, as we show below, even when N/T is only slightly different from zero (e.g., when

N/T ∼ 0.1), the benefits of shrinkage are significant.

To approach the problem of finding the optimal shrinkage, we first need to compute

the expected OOS utility in (19), which seems impossible because neither E[F ] nor E[FF ′]

are observable. To overcome this issue, we follow an indirect approach and compute an

approximation based on a classical technique known as Leave-One-Out (LOO). LOO is

based on a simple observation that when Ft are independent and identically distributed, one

can compute an unbiased estimate of the OOS performance of a portfolio by dropping any

observation t and then evaluating OOS performance on that removed observation. For any

t, define the LOO moment estimators of the empirical moments as follows:

ĒT,t[FF
′] =

1

T

∑
τ ̸=t,1≤τ≤T

FτF
′
τ

ĒT,t[F ] =
1

T

∑
τ ̸=t,1≤τ≤T

Fτ .
(20)

Given these LOO estimators of the empirical moments, we can define the analog of the

spectral shrinkage estimator (17):

π̄T,t(f) = f(ĒT,t[FF
′])ĒT,t[F ] . (21)

The dropping of the observation Ft allows us to evaluate the OOS performance π̄T,t(f)
′Ft

while staying within the in-sample data Fτ , τ ∈ [1, T ]. Our ultimate objective is to mea-

sure the expected OOS performance of π̄(f). To achieve this goal, we can build unbiased

estimators of OOS moments of Rt(f) = π̄(f)′Ft by averaging the realized performance of

π̄T,t(f)
′Ft across t, as is shown in the following lemma.

9(Stein, 1986) introduced the infeasible optimal spectral shrinkage for the Frobenius norm objective. This
infeasible estimator depends on both the in-sample data and the true, unobservable covariance matrix of
F . In the online Appendix, we derive an analog of Stein’s infeasible estimator for the portfolio optimization
problem (19).
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Lemma 1 Suppose that Ft are interchangeable/exchangeable sequence. Let

RT,t(f) = π̄T,t(f)
′Ft , t = 1, · · · , T . (22)

Then,

UOOS
LOO (f) =

1

T

T∑
τ=1

U(RT,τ (f)) (23)

is an unbiased estimator of OOS expected utility:

E[U(Rt(f))] = E
[
UOOS
LOO (f)

]
, (24)

where, t > T. The formula (24) motivates the following feasible version of the infeasible

problem (19).10

Definition 2 (Optimal Non-linear Feasible Shrinkage) The optimal feasible spectral

shrinkage estimator is a function f solving the utility maximization problem

max
f

UOOS
LOO (f) . (25)

The formula (25) defines a feasible, directly observable objective for optimal shrinkage.

However, at first sight, the maximization problem (25) still looks complex. Indeed, even

computing the objective requires evaluating the function f on the eigenvalues of T different

matrices ĒT,t[FF
′], t = 1, · · · , T. The main theoretical result of our paper is an explicit,

tractable, analytical solution to (25) that we derive in the next section.

4 Universal Portfolio Shrinkage Approximator

We start our analysis in this section by investigating the behavior of the simple ridge

shrinkage operator, corresponding to fz(λ) = 1
z+λ

. The following formula plays an important

role in our analysis.

10An important theoretical question is whether the estimator UOOS
LOO (f) is consistent: Is it true that, as T →

∞, UOOS
LOO (f) → E[U(RT (f))] in probability. Such a result would imply that maximizing UOOS

LOO (f) directly
is equivalent to maximizing the true out-of-sample expected performance. The literature has established
such a result for LOO estimators for the linear regression problem. See, e.g., (Hastie et al., 2019) and (Patil
et al., 2021). Establishing it for the utility maximization problem in our setting is technically more involved
but can be achieved using the results from (Didisheim et al., 2023). We leave this important question for
future research.
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Our first key insight is that one can rewrite the feasible OOS expected utility estimator

(24) for fz(λ) =
1

z+λ
in terms of the inverse of just one matrix, Ē[FF ′]. Let

π̄T,τ (fz) = (ĒT,τ [FF
′] + zI)−1ĒT,τ [F ]. (26)

be the (21) estimator for fz(λ) =
1

z+λ
and RT,τ (fz) the corresponding portfolio return (22).

Lemma 2 (LOO ridge Performance) Then we have

RT,τ (fz) =
1

1− ψτ (z)︸ ︷︷ ︸
complexity multiplier

(
Rτ (fz) − ψτ (z)︸ ︷︷ ︸

overfit

)
, (27)

where, Rτ (fz) is the in-sample return at time τ,

Rτ (fz) = π̄(fz)
′Fτ , τ ≤ T, (28)

and

ψτ (z) =
1

T
F ′
τ (zI + Ē[FF ′])−1Fτ . (29)

The quantity ψτ plays a key role in our analysis. It is responsible for complexity corrections,

originating in the high dimensionality of Ft. Complexity corrections manifest themselves

through the two terms in (27). The overfit term accounts for the fact that the in-sample

mean of the efficient portfolio return overestimates the true mean. The complexity multiplier

accounts for the fact that the in-sample covariance matrix underestimates the true amount

of risk in the portfolio. By a direct calculation based on the Sherman-Morrison formula,

we have that ψτ (z) ∈ (0, 1) and, hence, the multiplier 1
1−ψτ (z)

is always above one, showing

precisely by how much true out-of-sample variance is higher than the in-sample variance.11

One can derive the following bound for ψτ . This bound links the magnitude of overfitting

to model complexity. Indeed, Lemma 3 shows that for low values of complexity, there is no

overfit, and one can use IS performance.

Lemma 3 Let c = N/T be the model complexity. Assuming all factor returns, Ft, are

11We have

ψτ =
T−1F ′

τ (zI + ĒT,τ [FF
′])−1Fτ

1 + T−1F ′
τ (zI + ĒT,τ [FF ′])−1Fτ

(30)
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bounded by a constant K in absolute value. Then,

ψτ (z) < min{1, z−1 cK2} . (31)

In particular, ψτ vanishes when c is small.

The key insight from Lemmas 2 and 3 is that, when complexity is large, estimation errors

accumulate across N factors, leading to a breakdown of the law of large numbers: Even

when T is large, errors stay significant, proportional to N/T. The difference between the

fully in-sample return Rτ (fz) and the out-of-sample return RT,τ (fz) comes from two effects.

First, Rτ (fz) has a higher expected return than the OOS RT,τ (fz) because of the overfit

term in (27). Second, the in-sample return underestimates volatility due to the complexity

multiplier in (27). Both effects imply that, without accounting for complexity corrections,

the in-sample-based estimates might give a biased, overly optimistic view of the performance

of efficient portfolios and their risk-return tradeoffs. The bias and the underestimation of

risk can be severe when the complexity c = N/T is large.

Our next key observation in this paper is that the simple algebraic structure of (27)

allows us to compute all expressions analytically, only involving the full sample covariance

matrix Ē[FF ′]. It then seems natural to extend our analysis from the single ridge function

fz(λ) to functions representable as linear combinations of the simple ridge.

Definition 3 Let Z = (zi)
L
i=1 be a grid of ridge penalties, and W = (wi)

L
i=1 a collection of

weights.

fZ,W (λ) =
L∑
i=1

(zi + λ)−1︸ ︷︷ ︸
ridge

wi︸︷︷︸
weight

(32)

We refer to F(Z) = {fZ,W (λ) : W ∈ RL} as the ridge ensemble, and to FC(Z) =

{fZ,W (λ) : W ∈ SL+} as the constrained ridge ensemble, where SL+ = {W ∈ RL
+,
∑N

i=1wi =

1} is the L-dimensional simplex.

The ridge ensemble is a rich, parametric family of functions. Since the functions f from

this ensemble are linear in W , the OOS utility estimator (25) is quadratic in these weights,

as is shown by the following result.
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Lemma 4 Let

µ̄(Z) =

(
1

T

T∑
t=1

RT,t(fzi)

)L

i=1

∈ RL

Σ̄(Z) =

(
1

T

T∑
t=1

RT,t(fzi)RT,t(fzj)

)L

i,j=1

∈ RL×L

(33)

to be the LOO-based estimators of the OOS means and covariances of the ridge components

of the ridge ensemble. Then, we have

RT,τ (fZ,W ) =
L∑
i=1

wiRT,τ (fz). (34)

Therefore, the feasible estimator (25) of the OOS utility is given by

UOOS
LOO (fZ,W ) = W ′µ̄(Z) − 0.5W ′ Σ̄(Z)W . (35)

Lemma 4 shows how the OOS utility can be computed explicitly in terms of the estimated

OOS moments (33). As a result, Lemma 4 implies that finding the optimal spectral shrinkage

inside the ridge ensemble amounts to solving the OOS (based on Leave-One-Out) Markowitz

problem, with the original N -dimensional vector of asset returns Ft replaced with the

L-dimensional vector of shrunk LOO returns, (RT,t(fzi))
L
i=1, i = 1, · · · , L. This simple

asset space transformation implies that the optimization problem (25) admits an explicit,

interpretable, closed-form solution if we restrict the class of functions f in (25) to F(Z).

We refer to this solution as (Constrained) Universal Portfolio Shrinkage Approximator,

(C)UPSA. Formally, we define the UPSA and CUPSA estimators as solutions to the following

constrained versions of (25):

fUPSA = arg max
f∈F(Z)

UOOS
LOO (f)

fCUPSA = arg max
f∈FC(Z)

UOOS
LOO (f)

(36)

The key implication of the above discussion is that the non-parametric optimization over

functions in (36) is equivalent to a closed form, explicit optimization over weight vectors W .
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Theorem 1 (UPSA and CUPSA) We have

fUPSA(λ) = fZ,WUPSA
(λ),

fCUPSA(λ) = fZ,WCUPSA
(λ)

(37)

with

WUPSA = Σ̄(Z)−1µ̄(Z)

WCUPSA = arg max
W∈SL

+

(W ′µ̄(Z) − 0.5W ′ Σ̄(Z)W ) .
(38)

The name “Universal Approximation” naturally leads us to the question: How rich is

the ridge ensemble? What kind of non-linear functions can be approximated with functions

from F(Z) and FC(Z)? It turns out that these ensembles have a universal approximation

property, as is shown by the following lemma.

Lemma 5 Any continuous function f(x) on a compact interval can be uniformly approxi-

mated by a function f ∈ F(Z) if the grid Z is sufficiently large and dense.

Furthermore, any matrix monotone-decreasing function12 f(λ) satisfying the normaliza-

tion limλ→∞ f(λ)λ = 1 can be uniformly approximated by a function f ∈ FC(Z) if the grid

Z is sufficiently large and dense.

Lemma 5 justifies the term “Universal Approximation.” Since any non-linear shrinkage f

can be approximated by a ridge ensemble, the economic agent maximizing any utility function

can achieve approximately optimal performance by using a combination of shrinkages from

the ridge ensemble.

Corollary 2 (The Universal Approximation Property) Let

f ∗(λ) = argmax{UOOS
LOO (f) : f is continuous}

f ∗
C(λ) = argmax{UOOS

LOO (f) : f is matrix monotone and lim
λ→∞

f(λ)λ = 1}
(39)

Then, for any ε > 0, we can make the grid Z sufficiently large and dense, so that

UOOS
LOO (fUPSA) ≥ UOOS

LOO (f
∗) − ε

UOOS
LOO (fCUPSA) ≥ UOOS

LOO (f
∗
C) − ε

(40)

12A function f is called matrix monotone decreasing if f(A)−f(B) is positive semi-definite whenever B−A
is positive semi-definite. It is known that any function f ∈ FC(Z) is matrix monotone decreasing. The fact
that the converse is true is highly non-trivial and follows from the celebrated (Löwner, 1934) theorem.
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Simply put, the Universal Approximation Property implies that the simple ridge shrink-

age functions can serve as a basis for approximating arbitrary, non-linear shrinkage estima-

tors. The result for CUPSA is particularly important. Indeed, requiring that the shrinkage

function belong to the class of matrix monotone functions imposes natural, economic risk-

taking constraints on the shrinkage estimator. Effectively, it requires that any increase in the

realized risk Ē[FF ′] should be associated with lower risk-taking, represented by f(Ē[FF ′]) .

The normalization
∑

iwi = 1 ensures that CUPSA shrinks eigenvalues by building a convex

combination of simple ridge shrinkages. Furthermore, the condition limλ→∞ f(λ)λ = 1 of

Lemma 5 implies that, for very large λ, f(λ) behaves like 1/λ. This ensures that very large

eigenvalues are not shrunk too much. Since fCUPSA is always positive and monotone increas-

ing in λ, it preserves positivity and the order of the empirical eigenvalues. Economically,

this means that estimated PCs with high in-sample risk are assigned a higher, positive

denominator in their “shrunk” risk-return tradeoffs in the decomposition (18).

The closed-form solution of Theorem 1 provides a tractable characterization of the

solution in terms of the variability in performance among the individual components of the

ridge ensemble. Namely, non-linear shrinkage is only optimal when the ridge portfolio returns

Rt(fzi), i = 1, · · · , L exhibit a sufficient amount of variability in risk-return tradeoffs across

zi. It is this variability that produced potential diversification gains, implying that combining

multiple ridge penalties is beneficial. We will discuss these issues in the next subsection.

4.1 Implications of Complexity

The gain from using the ridge ensemble is determined by the diversification benefits from

using the optimal ridge weights in (38). To understand these benefits, we use the formula

(27) and derive the overfit for the estimated means and covariances in (33). The following

is true. Although the overfit ψt(z) typically varies with t, it is possible to apply asymptotic

principles from Random Matrix Theory to remove this time dependence. We will need the

following result from (Didisheim et al., 2023) to achieve this.

Proposition 3 (Didisheim et al. (2023)) Suppose that Ft = λ + Ψ1/2Xt, where Xt are

i.i.d. mean zero, unit-variance variables with uniformly bounded forth moments, and the

eigenvalue distribution of Ψ ∈ RN×N converges as N → ∞. Then, the limits

m(−z; c) = lim
N,T→∞, N/T→c

N−1 tr((Ē[FF ′] + zI)−1)

ψ(z; c) = lim
N,T→∞, N/T→c

ψt(z)
(41)

exist in probability and are independent of t and of the expected risk premia vector λ.
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Furthermore, the asymptotic overfit is given by

ψ(z; c) = c(1− zm(−z; c)) . (42)

4.1.1 Optimality of Non-Linear Shrinkage

Proposition 3 allows us to drastically simplify the calculations of (33) and highlight explicitly

how complexity impacts the optimal non-linear shrinkage. The first consequence is that we

can now show the following Corollary:

Corollary 4 (Non-Zero Shrinkage is Always Optimal) we have

sup
z>0

UOOS
LOO (fz) > UOOS

LOO (f0) , (43)

and the supremum is always achieved for some z∗ > 0.

Suppose now that, under the hypothesis of Proposition 3, we multiply the vector of risk

premia λ by a constant α > 0. Then, z∗(α) is monotone decreasing in α. Thus, larger

shrinkage is needed when the size of λ is smaller.

Corollary 4 establishes optimality of ridge shrinkage, contingent upon a non-zero overfit

ψ(z; c). By Lemma 3, the magnitude of the overfit is controlled by the complexity c = N
T
> 0.

In scenarios where ψ(z; c) is close to zero, the benefits of shrinkage evaporate.

The second part of the Lemma emphasizes a subtle link between optimal shrinkage and

the size of factor risk premia.13 When factor risk premia are large, the complexity-driven

estimation noise and the inherent overfit have a marginally negative impact on performance.

By contrast, when factor risk premia are low, estimated portfolio weights are dominated by

noise, making efficient shrinkage vital for OOS portfolio performance.

4.1.2 Two Fund Separation

Corollary 4 shows that some form of shrinkage is always optimal. This raises the question:

Do we really need the whole ridge ensemble to construct UPSA, or is a single, optimally

chosen z∗ sufficient? The following Theorem provides an answer to this question, deriving

the optimal UPSA weights.

Theorem 5 (Two Fund Separation) Under the hypothesis of Proposition 3, suppose that

z0 = z (so that ridgeless, (14), is the first element of the ridge ensemble). Let ψ(Z) =

13See, also, Kelly et al. (2022) who show that the optimal shrinkage is inversely proportional to the
signal-to-noise ratio in a regression setting.
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(ψ(zi))
L
i=1 be the vector of overfits and ΣIS(Z) = (Ē[R(fzi)R(fzj)])

L
i,j=1 the in-sample ridge

covariance matrix. Let also δz0 = (1, 0, · · · , 0) ∈ RL, and let D(Z) = diag( 1
1−ψ(Z)) ∈ RL×L,

be the complexity multiplier. Then, for some explicit constants α, β > 0 :

WUPSA = α δz0 + β D(Z)−1ΣIS(Z)
−1ψ(Z), (44)

so that the UPSA efficient portfolio return is given by

π̄(fUPSA) = α π̄(f0)︸ ︷︷ ︸
Markowitz

+ β π̄ψ︸︷︷︸
complexity correction

, (45)

where

π̄ψ =
∑
z∈Z

π̄(fz)︸ ︷︷ ︸
ridge portfolio (12)

(D(Z)−1ΣIS(Z)
−1ψ(Z))(z) . (46)

Theorem 5 implies a surprising result: Even in a fully stationary, i.i.d. environment

with constant risk premia, complexity leads to a systematic deviation from the conventional

efficient portfolio theory, with a closed-form correction defined by the vector of overfits, ψ(Z).

By Proposition 3, these overfits depend exclusively on the eigenvalue distribution of the true

(unobservable) asset covariance matrix, E[FF ′]. The extent of this adjustment is critically

linked to the magnitude of the overfit and the corresponding complexity of corrections (see

Lemma 2). Greater complexity necessitates a more substantial adjustment to the in-sample

Markowitz portfolio. In the high complexity regime when c = N/T is large, π̄ψ in (45)

dominates, tilting the optimal portfolio further away from the naive, in-sample estimator.

4.2 Economic Interpretations of CUPSA

CUPSA, the constrained version of UPSA, imposes discipline on the individual ridge weights,

minimizing instabilities due to potential degeneracies in the ridge covariance matrix Σ̄(Z)

in (33). As we now explain, the constraint of nonnegative weights summing up to one (see

Definition 3) implies an important interpretation of CUPSA as a form of Bayesian posterior,

aggregating a dispersed prior.

We follow (Kozak et al., 2020) and note that the ridge-penalized optimal portfolio is, in

fact, optimal for an economic agent who (irrationally) believes that the estimated covariance

matrix Ē[FF ′]− Ē[F ]Ē[F ]′ is correct (that is, the agent believes that Ē[FF ′]− Ē[F ]Ē[F ]′ =
E[FF ′] − E[F ]E[F ]′), but is uncertain about the mean vector E[F ]. Here, we extend this

observation to the case of the FC(Z) ensemble.
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Lemma 6 Consider an economic agent who (irrationally) believes that Σ = Ē[FF ′] −
Ē[F ]Ē[F ]′ = E[FF ′] − E[F ]E[F ]′, and only cares about the mean, building a portfolio

proportional to the posterior mean estimate, πmean = E[FT+1|FIS] . The agent believes

that Ft = µ+ εt where εt ∼ N(0,Σ) is i.i.d., and the prior on µ is a Gaussian mixture: µ is

sampled from N(0, ziI) distribution with probability (wi/zi)/w̄, where w̄ =
∑

j(wj/zj). Then,

E[µ|FIS] = w̄−1
∑

wi(ziI + Σ)−1Ē[F ] . (47)

The Gaussian mixture prior from Lemma 6 can be viewed as an extension of the simpler,

single−z prior in (Kozak et al., 2020). It is intuitive to expect that a typical market

participant does not have a strong view of the exact degree of uncertainty about the mean

vector µ. Alternatively, CUPSA can also be interpreted as an aggregation of beliefs of market

participants with diverse degrees of uncertainty. One could imagine that an over-confident

hedge fund manager who believes in outperforming the market would use a small z reflecting

a tight prior, while a risk-averse retail investor might have a more dispersed prior. In

equilibrium, (47) might represent the “true” expected returns aggregating these diverse

priors and reflecting the strong heterogeneity of market participants.

5 Empirics

5.1 Data

We utilize the daily frequency dataset from (Jensen et al., 2023)14. This comprehensive

dataset contains daily returns for N = 153 factors, which are constructed from publicly

traded stocks in the United States, covering the period from 1963 to 202015. Each factor

represents a long-short portfolio that is based on a distinctive characteristic16, such as mo-

mentum, value, or reversal. To fulfill the requirement of sample interchangeability necessary

for leave-one-out and Lemma 1, we use volatility management in the style of (Moreira and

Muir, 2017). Specifically, this means that for every factor, Fi, we compute the preceding

14The data is accessible online at jkpfactors.
15Our findings are robust across different datasets and size stratifications. For robustness checks, refer to

the online appendix.
16The exhaustive list of these 153 characteristics is detailed online in jkpfactors.
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30-day realized volatility17:

σFi
(t− 30, t) =

√√√√ 30∑
j=1

F 2
i,j (48)

and normalize the factor returns in the next period by this amount:

F̃i,t+1 =
Fi,t+1

σFi
(t− 30, t)

. (49)

For the rest of the empirics section, we continue to work with the notation Ft instead of F̃t

for convenience. By volatility managing factor returns, we aim to eliminate the effects of

heteroskedasticity and make our data closer to interchangeable.

5.2 Methodology

We estimate portfolio weights using a rolling window of T days and rebalance every 30 days.

Thus, we end up constructing portfolios and SDFs for pricing monthly stock returns.18 We

fix the grid of ridge penalties,19 z = [10i : i ∈ {3, 2, · · · ,−3}] and construct ridge shrunk

Markowitz portfolio weights with Z = (zi)
L
i=1 :

π̄t(fZ) = (π̄t(zi))
L
i=1,

π̄t(fzi) = (Ē[FF ′](t− T, t) + ziI)
−1Ē[F ](t− T, t),

(50)

where Ē[F ](t − T, t), Ē[FF ′](t − T, t) are sample means (5) estimated with the rolling

window [t − T, t]. Given a vector of weights W = (wi)
L
i=1, we construct the ridge shrinkage

approximator from Lemma 4:

π̄t(fZ,W ) =
L∑
i=1

wiπ̄t(fzi). (51)

With the estimates Ē[F ](t− T, t), Ē[FF ′](t− T, t) in our hands, we compute leave-one-out

returns using formula (27), and use these LOO returns to compute µ̄(Z)(t− T, t), Σ̄(Z)(t−
T, t) from Lemma 4, and then recover the optimal weight vectors WCUPSA(t − T, t) and

17results are very similar if we instead use standard deviations.
18Since most of the characteristics underlying our factors are updated at a monthly frequency, it is natural

to use them for pricing stock returns at the monthly horizon. This is the conventional approach to asset
pricing. The only reason we use daily data is to get better estimates of factor covariance matrices. (Kozak
et al., 2020) follow the same approach.

19Our results are robust to the choice of the grid Z. Results for alternative choices of the grid are available
upon request.
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WUPSA(t−T, t) using Theorem 1. Everywhere in the sequel, we focus exclusively on CUPSA.

While UPSA also achieves performance superior to that of classical shrinkage methodologies

(such as those of (Ledoit and Wolf, 2020), as well as the simple ridge), we find that CUPSA

strictly dominates UPSA in almost every experiment we run.20 The superiority of CUPSA

is consistent with the intuitive, economic interpretation of the positivity and normalization

constraints that CUPSA imposes on the weights W. Indeed, as we explain above, these

constraints are equivalent to imposing monotonicity in risk (more risk = larger estimated

covariance matrix) and “minimal shrinkage for large eigenvalues” for the shrunk covariance

matrix. See the discussion after Corollary 2.

Given our estimated weight vectorWCUPSA(t−T, t) for the window [t−T, t], we calculate
the out-of-sample return as

Rt+1(fZ,WCUPSA(t−T,t)) = π̄t(fZ,WCUPSA(t−T,t))
′Ft+1. (52)

By construction, π̄t(fZ,WCUPSA(t−T,t)) only depends on factor returns during the [t−T, t] time

interval and, hence, portfolio returns (52) are indeed OOS. We compare the performance of

(52) with that of three main benchmarks

• Best z: Rt+1(fz∗(t−T,t)), the best LOO-based ridge shrinkage utilizing the optimal

penalty z∗(t− T, t) computed in Corollary 4 computed using the data in the [t− T, t]

time interval.21

• LW (Ledoit-Wolf): Rt+1(fLW (t − T, t)), where fLW (t − T, t) is the optimal non-

parametric non-linear shrinkage from (Ledoit and Wolf, 2020), computed using the

data in the [t− T, t] time interval.22

• Ridgeless: Rt+1(f0), where f0(λ) = λ. While the ridgeless limit is commonly defined

as limz→0(zI + Ē[FF ′](t − T, t))−1, in practice, we just use the smallest value of the

z-grid Z.23
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Figure 1: The plot compares the out-of-sample Sharpe ratio of our different bench-
marks across different rolling windows T. Annualized Sharpe ratios are computed with
monthly rebalancing, for the period 1977-11-22 to 2022-12-30. “Sum” reports the Sharpe
ratios of summed returns across all different rolling windows. E.g., for CUPSA it is∑

T∈{25,50,...,1500}Rt+1(fZ,WCUPSA(t−T,t)).



5.3 The Performance of CUPSA

Figure 1 depicts the Sharpe ratios of the different benchmarks, for various rolling windows,

starting from one month (25 days) to six years (1500 days). We see that CUPSA beats all

other benchmarks by a significant margin, for every single rolling window. The gains are

larger for shorter windows, consistent with the complexity-based interpretation advocated in

Section 4.1: When T is small, complexity corrections in Lemma 2 need to be accounted for,

and CUPSA does so successfully.

Interestingly, the percentage gain in the Sharpe ratio from using CUPSA is inverse-U-

shaped with respect to the size of the training window, achieving its maximum for T around

one year. The picture shows a clear hierarchy in performance,

LW < ridgeless < Best z < CUPSA . (53)

This is particularly surprising given that the LW non-parametric shrinkage is a close relative

of CUPSA. The underperformance of LW supports our intuition underlying the construction

of CUPSA: The objective used for selecting the optimal shrinkage matters a lot, and simply

minimizing the distance to the true covariance matrix (as does the LW estimator) might

lead to highly sub-optimal shrinkage estimators. If we want to maximize the Sharpe ratio,

we should pick shrinkage that maximizes the Sharpe ratio.

Figure 1 naturally raises two important questions:

(1) Why do we even need shorter rolling windows if the Sharpe ratio is monotone increasing

in T?

(2) What is the statistical significance of the gain from using CUPSA?

Indeed, if the data is stationary, then using the possible longest window should be

the preferred choice. However, the non-monotonic performance of Best z with respect

to T suggests that there might be significant non-stationarity in the data. In this case,

shorter rolling windows might capture some fast-changing market regimes at the cost of

higher statistical errors produced by higher complexity (indeed, with N = 153, we have

c = 153/T is high for shorter rolling windows). To test the potential gains of exploiting

20Results for UPSA are available upon request.
21In practice, we just directly compute z∗ = argmaxz∈Z U

OOS
LOO (fz).

22This algorithm minimizes the distance between the true and empirical covariance matrix. Distance is
defined by using the Frobenius norm. We use the analytical version of this algorithm, available in (Ledoit
and Wolf, 2020). (Ledoit and Wolf, 2017) discuss an application of a similar algorithm for minimum variance
portfolios of stock returns.

23The ridgeless limit is theoretically optimal in the frictionless, zero complexity limit as N/T → 0. in
reality, Ē[FF ′] is highly degenerate, and using very small z often leads to instabilities.
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shorter rolling windows, we report in the “Sum” column of Figure 1 the Sharpe ratio of∑
T∈{25,50,...,1500}Rt+1(fZ,WCUPSA(t−T,t)) as well as the corresponding Sharpe ratios for other

three shrinkage methodologies. As one can see, the gains from using shorter rolling windows

are significant (the Sharpe ratio increases from 3.2 to 3.7), suggesting that CUPSA based on

shorter rolling windows is indeed able to capture some non-stationary patterns in the data,

leading to superior performance.

To answer the question (2) above and evaluate the statistical significance of non-linear

shrinkage, we run the following regression

Rt+1(fZ,WCUPSA(t−T,t)) = α + βz∗Rt+1(fz∗(t−T,t)) + βz0Rt+1(f0(t− T, t)) + βz∞Rt+1(f∞(t− T, t))

+ Rt+1(fLW (t− T, t)) + βMKTMKTt+1 + βSMBSMBt+1 + βHMLHMLt+1

+ βCMACMAt+1 + βRMARMAt+1 + βMOMMOMt+1 + εt+1,

(54)

where Rt+1(fz∗) is the “Best z” portfolio return, Rt+1(f0) is the “ridgeless” portfolio return,

and Rt+1(fLW (t − T, t)) is the LW (Ledoit and Wolf, 2020) shrinkage portfolio return. In

addition, we use the returns of the five Fama-French factors, (Fama and French, 2015),

and momentum, (Jegadeesh and Titman, 1993), as controls.24 Their returns are denoted

by MKTt+1, SMBt+1, HMLt+1, CMAt+1, RMAt+1, and MOMt+1, respectively. Finally, we

add one more control, Rt+1(f∞) corresponding to the limiting ridge portfolio as z → ∞. By

(15), this is a simple factor momentum portfolio (Arnott et al., 2023), (Gupta and Kelly,

2019), investing proportionally to realized mean returns of the factors.

Figure 2 reports the (heteroskedasticity-adjusted) t-statistics of α in (54). As one can

clearly see, the t-statistics are large and significant for every single T , as well as for the

sum across T ’s. We observe the same inverse-U-shaped pattern in the alpha t-statistic

as for the gain in the Sharpe ratio (Figure 1): For Short windows, statistical estimation

errors due to complexity are so large that even CUPSA has a hard time reducing them.

Around T = 250 (corresponding to complexity c = 153/250,) the gains from CUPSA saturate

(enough observations to estimate optimal shrinkage; enough complexity for shrinkage to be

valuable). Finally, summing up across all windows once again produces very large gains,

suggesting significant non-stationarity in the data.

24The data is from the website of Kenneth French.
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Figure 2: Heteroskedasticity-adjusted (with five lags) t-statistics of α from the regression
(54) for different rolling windows. t-stats are computed for the period 1977-11-22 to 2022-
12-30. “Sum” corresponds to summed returns across all different rolling windows. E.g., for
CUPSA it is

∑
T∈{25,50,...,1500}Rt+1(fZ,WCUPSA(t−T,t)).



Figure 3: Correlation of out-of-sample returns of efficient portfolios with different levels
of ridge shrinkage, Corr(Rt+1(fZ), Rt+1(fZ)). Correlations are computed over the period
1972-12-08 to 2022-12-30. Portfolios are estimated with a rolling window of T = 250 days,
and re-balanced monthly.

5.4 Uderstanding the Dynamics of CUPSA

Everywhere in the sequel, we focus on T = 25025. Drawing on the insights from Theorem

1, we know that CUPSA generates alpha by efficiently combining various “simple ridge”

portfolios. Thus, the superior performance of CUPSA documented in the previous section

suggests significant diversification gains (i.e., low correlations) across ridge portfolios. Figure

3 confirms this intuition: average correlations between low-z (i.e., Markowitz) and high-z

(i.e., factor momentum (15)) are indeed low.

How does CUPSA achieve its performance? How does it select the optimal weights

25Results are very similar for different rolling windows
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Figure 4: Weights for each ridge portfolio associated with the CUPSA strategy,WCUPSA(t−
T, t). The weights are determined using Theorem 1 and computed over the period 1972-12-
08 to 2022-12-30. Portfolios are estimated with a rolling window of T = 250 days, and
re-balanced monthly.

WCUPSA? To answer these questions, we report in Figures 4 and 5 the dynamics of the

weight vector, WCUPSA(t− T, t) and the optimal ridge penalty z∗(t− T, t) over time.

Both figures reveal consistent patterns. First, there was a clear regime shift around

2008 (after the Great Financial Crisis). Prior to 2008, both z∗ and the shrinkage values

z ∈ Z with non-zero WCUPSA weights are lower and relatively stable over time: While z∗

oscillated between 1 and 0.1, CUPSA selected an optimal convex combination of these two

ridge portfolios. As we argue in Section 4.2, this behavior is consistent with a time-varying

degree of uncertainty about factor risk premia that CUPSA is able to capture by efficiently

blending the two together. These effects become particularly apparent in Figure 7 showing

the histogram of the number of times a given ridge penalty has been chosen over the whole

period. As one can see, this histogram is almost identical to the CUPSA weight box plot

of 6 prior to 2008, suggesting that, on average, non-linear and linear shrinkage exhibit very

similar behavior. The critical distinction, however, lies in the fact that non-linear shrinkage

can strategically navigate through different levels of z to secure diversification benefits. In

contrast, the optimal z∗ is confined to a single shrinkage level, resulting in going back and

forth between different shrinkages in the vain hope of finding the ideal one.
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Figure 5: The figure shows the time series of optimal ridge shrinkage, z∗(t− T, t). Optimal
ridge shrinkage is chosen using Corollary 4 and computed over the period 1972-12-08 to
2022-12-30. Portfolios are estimated with a rolling window of T = 250 days, and re-balanced
monthly.



Figure 6: Box plot of ridge weights for the CUPSA strategy,WCUPSA(t−T, t). The weights
are determined using Theorem 1 and computed over the period 1972-12-08 to 2022-12-30.
Portfolios are estimated with a rolling window of T = 250 days, and re-balanced monthly.

Second, post-2008, the behavior of both WCUPSA and z∗ changed drastically. First, both

objects became extremely unstable. Second, z∗ fluctuates over a much wider range, often

jumping all the way to 1000, and WCUPSA behaves similarly, assigning significant weights to

very large shrinkage levels in that period. See also Figure 6 that shows the distribution of

CUPSA weights assigned to different ridge penalties across time: The three values, 0.1, 1.,

and 1000, clearly stand out.

Why is such large shrinkage necessary post-2008? As we show in Corollary 4, larger

shrinkage is necessary when the size of factor risk premia drops and, hence, the optimality

of large z is perfectly consistent with the significant drop in factor performance post-2008,

documented, for example, in (Chordia et al., 2014).

Having understood the average behavior of CUPSA, we now turn to its dynamic prop-

erties. One of the most common arguments against the Markowitz portfolio (the ridgeless

portfolio in our notation) is its instability. Small changes in the data often lead to huge

jumps in portfolio weights, making it impractical to use in real-world applications. One way
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Figure 7: Histogram of the number of times a given ridge penalty has been chosen as
z∗(t − T, t). Optimal ridge is chosen using Corollary 4 and computed over the period 1972-
12-08 to 2022-12-30. Portfolios are estimated with a rolling window of T = 250 days, and
re-balanced monthly.



to measure these instabilities is by looking at portfolio turnover, defined as

turnt = Ē

[
|π̄t,i − π̄t−1,i|

|π̄t−1,i|

]
, (55)

where π̄t, i represents the portfolio weight allocated to factor i at time t.

We start by comparing average portfolio weights π̄i in 8. As one can see, CUPSA portfolio

weights are significantly less extreme than those of Best z : Diversification across multiple z

smoothes the portfolio weight distribution.

The regularization effects of CUPSA are even more striking when we look at the turnover

depicted in Figure 9. We see a remarkable difference between CUPSA and “Best z” ap-

proaches, whereby CUPSA reduced factor portfolio turnover by a factor of 5 to 8 for every

single factor theme.26 This drastic improvement in weight stability has major implications for

the applicability of the general Markowitz methodology and the negative sentiment towards

it in the finance profession. CUPSA results show that the Markowitz portfolio can be made

stable, useful, robust, and effective out-of-sample when an optimal (albeit sophisticated)

non-linear shrinkage methodology is applied.

5.5 Asset Pricing Implications: The CUPSA-SDF

Classic asset pricing theory (see, e.g., (Hansen and Jagannathan, 1991)) establishes an

important connection between efficient portfolios and the tradable stochastic discount factor.

By direct calculation, the infeasible portfolio π∗ = E[FF ′]−1E[F ] (see (3)) can be used to

define the unique tradable SDF

M∗
t+1 = 1 − π′

∗Ft+1 (56)

satisfying the zero pricing errors condition

E[Fi,t+1Mt+1] = 0, i = 1, · · · , N . (57)

Mechanically, the same calculation implies that the naive IS Markowitz portfolio π̄(f0) =

Ē[FF ′]−1Ē[F ] gives zero IS pricing errors: With Mt+1(f0) = 1− π̄(f0)
′Ft+1, we have

Ē[Fi,t+1Mt+1(f0)] = 0, i = 1, · · · , N . (58)

26We group 153 factors into 13 themes following the classification in (Jensen et al., 2023). See Section 5.5
for details.
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Figure 8: This figure shows average factor loadings, Ē[π], for CUPSA (Theorem 1),“Best
z” (z∗ of Corollary 4), ridgeless (z → 0), and LW (Ledoit and Wolf, 2020) over the period
1972-12-08 to 2022-12-30. For any given factor theme (see (Jensen et al., 2023)), we take the
average of loading across all factors in that theme. Portfolios are estimated with a rolling
window of T = 250 days, and re-balanced monthly.



Figure 9: This figure shows average turnover, (55), for CUPSA (Theorem 1),“Best z” (z∗ of
Corollary 4), ridgeless (z → 0), and LW (Ledoit and Wolf, 2020) over the period 1972-12-08
to 2022-12-30. Turnover is computed per theme, whereby, for any given factor theme (see
(Jensen et al., 2023)), we take the average of turnover (55) across all factors in that theme.
Portfolios are estimated with a rolling window of T = 250 days, and re-balanced monthly.



However, complexity implies that the OOS pricing errors are non-zero when c > 0. To

minimize OOS pricing errors, we need to build portfolios π̄ that work OOS. Given that

CUPSA is our best feasible counter-part for the efficient portfolio that is specifically trained

to optimize OOS performance, we can build the corresponding SDF:

Mt+1(CUPSA) = 1 − π̄(fCUPSA)
′Ft+1 . (59)

Intuitively, we expect CUPSA to produce small OOS pricing errors (while at the same time

severely failing the IS pricing equation (58)). The goal of this section is to test this prediction.

Following (Hansen and Jagannathan, 1991), we use the Hansen-Jagannathan distance as

a test statistic for measuring the OOS performance of SDFs. This distance is computed as

follows. Given the out-of-sample period27 of size TOOS, we define

ĒOOS[X] =
1

TOOS

TOOS∑
t=T+1

Xt , (60)

and then the OOS pricing errors are defined as

PEOOS(i) = ĒOOS[Fi,t+1Mt+1] , PEOOS = (PEOOS(i))
N
i=1 . (61)

The Hansen-Jagannathan distance is then defined using a weight matrix A (judiciously

chosen by the researcher) as

DHJ
OOS(A) = (PEOOS)

′A(PEOOS) . (62)

If our goal is to price all asset returns Ft+1 jointly, (Hansen and Jagannathan, 1991) advocate

the use of of the weight matrix A = E[FF ′]−1. However, since the latter is not observable,

the computation of a correct HJ distance depends in a very subtle fashion on the choice of

the matrix A.

As (Didisheim et al., 2023) argue, with non-zero complexity c = N/T, the most intuitive

choice of A is the OOS error matrix A = ĒOOS[FF
′]−1. Indeed, given a candidate estimator

πt of the infeasible portfolio π∗, we can define the estimated SDF, Mt+1 = 1 − π′
tFt+1 ,

and evaluate its performance by computing DHJ
OOS. In this case, as (Didisheim et al., 2023)

show, the distance DHJ
OOS with A = ĒOOS[FF

′]−1 coincides with a constant minus the

squared Sharpe ratio of the π′
tFt+1 portfolio. Thus, the best-performing portfolio OOS also

automatically achieves the lowest OOS pricing errors.

27In the complex regime where c = N/T > 0, it is crucial to work only with OOS quantities.
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This result of (Didisheim et al., 2023) implies that the large gains in the Sharpe ratio

produced by CUPSA (see Figure 1) should translate directly into significantly lower pricing

errors. In other words, CUPSA-SDF should be better able to price the cross-section of factor

returns. We now take a deeper look into the precise nature of these pricing error reductions.

Our goal is to understand how CUPSA achieves it and where the improvements are most

noticeable. To do this, we use the (Jensen et al., 2023) approach and aggregate the 153 factors

into 13 intuitive themes: Skewness, Profitability, Low Risk, Value, Investment, Seasonality,

Debt Issuance, Size, Accruals, Low Leverage, Profit Growth, Momentum, and Quality. We

follow this approach and compute theme-specific pricing errors for the CUPSA-SDF and its

competitors, defined as

Mt+1(f(t− T, t)) = 1− αfRt+1(f(t− T, t)), (63)

where f ∈ {CUPSA, Best z, ridgeless, LW} and the optimal scaling28 αf is

αf =
ĒOOS[Rt+1(f(t− T, t))]

ĒOOS[Rt+1(f(t− T, t))2]
. (64)

For factors i ∈ themej, we define the OOS pricing error vector for themej as

PEj(f) = (ĒOOS[Fi,t+1Mt+1(f(t− T, t))])i∈themej , (65)

where ĒOOS is the expectation over the full OOS sample period. Next, we aggregate pricing

errors using the OOS factor covariance matrix of themej as weights

DHJ
themej

(f) = PEj(f)
′ĒOOS[FthemejF

′
themej

]−1PEj(f), (66)

where,

Fthemej = (Fi)i∈themej . (67)

Figure 10 reports these errors for all themes. We make several observations. First,

the pricing error reductions achieved by shrinkage are very large: For most themes, using

either z∗ from Corollary 4 or CUPSA attains a very large reduction in pricing errors,

sometimes by an order of magnitude. While the performance of the ridgeless portfolio is

unsurprisingly dreadful, the magnitude of the gain from shrinkage is still surprising. While

CUPSA dominates all alternatives for every single theme, shrinking with the “Best z” does

28The optimal calling is derived in (Didisheim et al., 2023)
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Figure 10: This figure shows the OOS HJ distance, (66), using SDFs from (63), for CUPSA
(Theorem 1), “Best z” (z∗ of Corollary 4), ridgeless (z → 0), and LW (Ledoit and Wolf, 2020)
over the period 1972-12-08 to 2022-12-30. Pricing errors are aggregated over themes as in
(Jensen et al., 2023). Portfolios are estimated with a rolling window of T = 250 days, and
re-balanced monthly.

achieve decent pricing errors for all themes, and its performance is comparable with that of

CUPSA for all themes except profit growth, momentum, and quality. Given the discussion

above, these findings suggest that factor risk premia for these three themes fluctuate a lot over

time. For the latter two themes, there is indeed strong evidence for very large fluctuations

in the corresponding risk premia. See, (Daniel and Moskowitz, 2016) and (Asness et al.,

2019). We finally note that the low-risk and momentum factors are commonly viewed as

being difficult to price because they are “anomalies” and do not reflect compensation for

risk. Figure 10 suggests that these results might be driven by inefficient shrinkage: With

optimal shrinkage, pricing errors for momentum and low-risk “anomalies” are comparable

to those of other themes.

5.6 Non-Linearly Shrinking The Cross Section

The emergence of the factor zoo (Cochrane, 2011), (Harvey et al., 2016) and the failure of

the attempts to find a characteristics-sparse representation of the SDF (Bryzgalova et al.,
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2023a) has led many researchers to look for other forms of sparsity. Based on the ideas of

APT, several papers proposed to look for a PC-sparse representation of the SDF constructed

from a few (typically, less than six) principal components of factors. In particular, (Kozak

et al., 2020) argue that both PC-sparsity (annihilation of low-variance PCs) and shrinkage

of the estimated eigenvalues of the remaining PCs is necessary to construct efficient SDFs.

In this section, we provide evidence of a significant virtue of complexity of the CUPSA-SDF

in the space of PCs: The OOS performance of the CUPSA-SDF is monotone increasing

in the number of PCs and keeps increasing even when we add very low-variance PCs. By

contrast, Best z-SDF is indeed PC-sparse. Based on these surprising findings, we argue that

the existing evidence for PC-sparse SDFs is likely an artifact of inefficient shrinkage.

Following the above approach, we compute PCs by decomposing factor returns covariance

matrix Ē[FF ′](t− T, t):29

Ē[FF ′](t− T, t) = Ū(t− T, t) diag(λ̄(t− T, t))Ū(t− T, t)′ , (68)

where the eigenvalues λ̄ are ordered to be decreasing: λ̄1 ≥ · · · ≥ λ̄N . Denoting by Ūi(t−T, t)
the i-th column of Ū(t−T, t), we define the OOS returns on the i−th IS principle component

as

RPC
i,τ (t− T, t) = Ūi(t− T, t)′Fτ . (69)

Subsequently, we apply the CUPSA and optimal ridge shrinkage methods to an incrementally

expanding subset of PCs. Namely, for each I = 1, · · · , N, we define RPC
τ (I) = (RPC

i,τ (t −
T, t))Ii=1 compute the in-sample ridge portfolios based on the in-sample covariance matrix

RPC
τ (I) (computed using τ ∈ [t − T, t]).30 We then apply all our shrinkage methodologies

(CUPSA, ridgeless, Best z, and LW) to these returns and study their out-of-sample behavior,

defined as

RPC
t+1(I, f(t− T, t)) = πPC(I)(f)′RPC

τ (I) (70)

where f ∈ {CUPSA, Best z, ridgeless, LW}. Importantly, all these portfolio returns are

computed purely out-of-sample.

Figure 11 illustrates the resulting OOS Sharpe ratios. Our first observation is that, on our

29It is crucial that we perform the eigenvalue decomposition in-sample and use them to construct the SDF
OOS: Using the infeasible OOS PCs would drastically boost performance due to the look-ahead bias. The
reason in a high-complexity regime, in-sample PCs are severely corrupted by noise. See, e.g., (Lettau and
Pelger, 2020).

30Note that this matrix can also be computed directly through Ū(t− T, t) and diag(λ̄(t− T, t)).
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Figure 11: The figures show the Sharpe Ratio of PCs for CUPSA (Theorem 1), “Best
z” (z∗ of Corollary 4), ridgeless (z → 0), and LW (Ledoit and Wolf, 2020) over the period
1972-12-08 to 2022-12-30, as the number of PCs grows. This is done by using (69). Portfolios
are estimated with a rolling window of T = 250 days and re-balanced monthly.

dataset, all three “simpler” shrinkage methods (Best z, ridgeless, LW) saturate at around

20 PCs 31. This implies that, even from the point of view of these shrinkage methods, there

are at least 20 “factors” important for the cross-section of returns. This number is much

higher than that for the SDF constructed in (Kozak et al., 2020), who argue that 5-10 PCs

are sufficient to span the SDF.32

The most important implication of Figure 11 is the remarkable ability of CUPSA to

capitalize on the virtue of complexity:33 The fact that the OOS performance of CUPSA

is monotonically increasing as we keep adding low-variance PCs. Another surprising im-

plication of Figure 11 is the divergence between the performance of the simpler shrinkage

estimators (LW, Best z, and ridgeless) that happens after the inclusion of top 10 PCs. This

31Figure 14 in the appendix illustrates that, across all rolling windows, this saturation point for Best z
remains consistently lower than what is nominally observed with CUPSA Shrinkage

32(Kozak et al., 2020) use a different (much smaller) set of factors, but also get much lower Sharpe ratios.
This suggests that our paper’s larger set of factors from (Jensen et al., 2023) spans quantitatively important,
additional risk premia.

33The virtue of complexity (Kelly et al., 2022; Didisheim et al., 2023) is the fact that the cost of statistical
estimation error for complex models is lower than the gains from their better expressive ability. Formally, it
states that more complex models work better OOS.
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divergence illustrates that a key power of CUPSA lies in its ability to efficiently weigh low-

variance PCs based on their estimated OOS risk-return tradeoff. This optimal weighting

allows CUPSA to exploit the diversification benefits in these PCs. By contrast, neither

the Best z (which is too rigid and shrinks all low eigenvalues proportionally) nor the LW

shrinkage (that completely ignores the risk-return tradeoffs and simply tries to minimize the

estimation error of the covariance) are able to benefit from the low-variance PCs.

In the language of (Ledoit and Wolf, 2017), CUPSA follows the “Goldilocks rule,”

shrinking each principal component “just right,” based on its unique ability to effectively

identify and leverage the risk premiums embedded within the low-variance PCs. These

findings have important implications for our general understanding of factor structure and

the search for PC-sparse SDFs motivated by the APT of (Ross, 1976). Namely, Figure 11

suggests that the SDF might be driven by many orthogonal PCs, with risk premia that

spread much more uniformly than conventional wisdom suggests. This uniform distribution

of risk premia is a hallmark of the CUPSA approach.

To demonstrate this, we analyze the risk-return tradeoffs implied by each shrinkage

method, as depicted in equation (18). Figure 12 illustrates the time series averages of these

tradeoffs:

1

TOOS

T+TOOS∑
t=T+1

R̄PC
i (t− T, t) f(λi)(t− T, t) . (71)

These quantities are crucial for evaluating how different shrinkage methods value each PC.

Notably, the no-shrinkage strategy disproportionately favors smaller PC factors due to their

minimal variance by choosing naive weights

R̄PC
i

λi
, (72)

effectively treating them as near-arbitrage opportunities. In contrast, the Ridge method opts

for an average optimal shrinkage level, but this often leads to significant and unpredictable

swings in the weights for low-variance PCs. By contrast, CUPSA adopts a more balanced

approach, assigning almost equal importance to all PC factors. This equitable allocation

aligns perfectly with our key intuition: CUPSA views all PC factors as having similar risk-

return tradeoffs, emphasizing the importance of complexity where each PC is important. It

is this uniform weighting of PCs that makes CUPSA an ideal shrinkage methodology for

exploiting the high complexity of the SDF.

To strengthen our main message, we repeat the regression exercise (54) for the PC-based

41



Figure 12: The figures show the average risk-return tradeoffs (factor loadings) for CUPSA
(Theorem 1), “Best z” (z∗ of Corollary 4), ridgeless (z → 0), and LW (Ledoit and Wolf,
2020) over the period 1972-12-08 to 2022-12-30, for different PC factors. This is done by
using (18). Portfolios are estimated with a rolling window of T = 250 days and re-balanced
monthly.



Figure 13: We plot the Heteroskedasticity-adjusted (with five lags) t-statistics of α of PC
portfolios as the number of PCs grows. The regression is done using (54). PC portfolio
returns are derived from (69). Portfolios are estimated with a rolling window of T = 250
days and rebalanced monthly.Please note that since LW and Ridgless exhibit similar risk-
return tradeoffs, they are superimposed in the plot.

CUPSA portfolio returns (see (69)), gradually increasing the number of PCs used 34. as

set out in Equation (69). The results of this regression are reported in Figure 13. The

t-statistics of alpha reveal a clear virtue of complexity and keep increasing as we add PCs,

even beyond the PC number 100. This striking statistical pattern is consistent with our

theoretical results, suggesting that the benefits of non-linear shrinkage are particularly large

in high-dimensional settings when complexity corrections (Theorem 5) become particularly

significant.

6 Conclusions

The problem of finding an efficient portfolio and the problem of finding a stochastic discount

factor (SDF) that correctly prices all securities face the same, purely statistical, hurdle:

34Figure 15 in the appendix demonstrates that, throughout various rolling windows, the inclusion of the
saturation point for Best z as a control variable in regression (54) does not diminish the notable performance
effectiveness of CUPSA Shrinkage.
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Complexity. Whether we deal with thousands of single stocks in an unconditional setting or

with hundreds of factors to construct conditional SDF, we need to estimate the number of

parameters (the vector of means and the covariance) that drastically exceed the number of

observations. Conventional ways of dealing with this statistical complexity involve imposing

a form of sparsity on the data-generating process, reducing the dimensionality of the problem.

While the characteristics-based sparsity has largely failed in capturing the complex predictive

relationships in economic and financial variables (Giannone et al., 2021; Jensen et al., 2023;

Kelly et al., 2022), several papers (see, e.g., (Kozak et al., 2018, 2020)) argue that the

cross-section of asset returns can be characterized using an SDF that is sparse in the

space of Principal Components: A PC-sparse SDF obtained through an extreme form of

shrinkage, annihilating all but a few top PCs of the hundreds of factors discovered in

the asset pricing literature. In this paper, we introduce a novel, non-linear, constrained

universal portfolio shrinkage approximator (CUPSA) that, instead of completely removing

low-variance PCs, optimally weights them, taking into account their estimated out-of-sample

risk-return tradeoffs. We empirically evaluate CUPSA by using it to construct the conditional

SDF from a large set of factors (characteristics-based portfolios from (Jensen et al., 2023)).

We find that (1) CUPSA significantly outperforms other portfolio shrinkage methodologies;

(2) exhibits a very large virtue of complexity, with its performance monotonically increasing

in the number of PCs used for the SDF construction. The ability of CUPSA to exploit

low-variance PCs depends on its capacity to weight these PCs optimally, adjusting to their

risk-return tradeoffs. While standard shrinkage estimators (e.g., ridge) suggest that the

optimal SDF should be PC-sparse, our results imply that sparsity is an artifact of inefficient

shrinkage.
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A Proofs

Proof of Lemma 1. Interchangeability implies that the joint distributions ((Fi)i ̸=τ,1≤i≤T , Fτ )

and ((Fi)i,1≤i≤T , (Ft)t>T are the same. Hence, the joint distributions of (π̄T,τ (f), Fτ ) and

(π̄(f), (Ft)t>T ) are also the same. Therefore,

E[U(RT,τ (f))] = E[U(π̄T,τ (f)
′Fτ )]

= E[U(π̄(f)′Ft)]

= E[U(Rt(f)]

(73)

and,

E
[
UOOS
LOO (f)

]
= E[

1

T

T∑
τ=1

U(RT,τ (f))]

=
1

T

T∑
τ=1

E[U(RT (f)]

= E[U(Rt(f)].

(74)

This concludes the proof of Lemma 1. □

Proof of Lemma 2.

RT,τ (fz) = F ′
τ π̄T,t(fz) = F ′

τ (zI + ĒT,τ [FF
′])−1ĒT,τ [Ft]. (75)

Therefore, it suffices to calculate

F ′
τ (zI + ĒT,τ [FF

′])−1ĒT,τ [Ft] =
1

T

T∑
t̸=τ

F ′
τ (zI + ĒT,τ [FF

′])−1Ft. (76)

Placing A = Ē[FF ′] + zI, u = Fτ , and v = − 1
T
Fτ in Lemma 8 gives us:

(zI + ĒT,τ [FF
′])−1 = (zI + Ē[FF ′])−1+

1

T

(zI + Ē[FF ′])−1FτF
′
τ (zI + Ē[FF ′])−1

1− 1
T
F ′
τ (zI + Ē[FF ′])−1Fτ

(77)
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Multiplying Fτ to both sides gives

F ′
τ (zI + ĒT,τ [FF

′])−1 = F ′
τ (zI + Ē[FF ′])−1 +

1

T

F ′
τ (zI + Ē[FF ′])−1FτF

′
τ (zI + Ē[FF ′])−1

1− 1
T
F ′
τ (zI + Ē[FF ′])−1Fτ

=
F ′
τ (zI + Ē[FF ′])−1

1− 1
T
F ′
τ (zI + Ē[FF ′])−1Fτ

.

(78)

Combining (76) and (77), we get

1

T

T∑
t̸=τ

F ′
τ (zI + ĒT,τ [FF

′])−1Ft =
1

T

T∑
t̸=τ

F ′
τ (zI + Ē[FF ′])−1Ft

1− 1
T
F ′
τ (zI + Ē[FF ′])−1Fτ

(79)

If we define ψτ (z) =
1
T
F ′
τ (zI + Ē[FF ′])−1Fτ , this concludes the proof of Lemma 2. □

Proof of Lemma 3.

ψτ (z) =
1

T
F ′
τ (zI + Ē[FF ′])−1Fτ

≤ 1

T
∥F ′

τ∥2∥(zI + Ē[FF ′])−1∥

≤ 1

T
F ′
τFτz

−1

≤ 1

T
K2Pz−1

≤ cK2z−1

(80)

and

ψτ (z) =
1

T
F ′
τ (zI + Ē[FF ′])−1Fτ

=︸︷︷︸
Lemma 8

T−1F ′
τ (zI + ĒT,τ [FF

′])−1Fτ
1 + T−1F ′

τ (zI + ĒT,τ [FF ′])−1Fτ

≤ 1

(81)

The proof of Lemma 3 is complete. □
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Proof of Lemma 4. We optimize directly on UOOS
LOO (fZ,W ) (Lemma 1), hence

UOOS
LOO (fZ,W ) =

1

T

T∑
τ=1

U(RT,τ (fZ,W ))

=
1

T

T∑
τ=1

(RT,τ (fZ,W )− 1

2
RT,τ (fZ,W )2)

=
1

T

T∑
τ=1

(W ′RT,τ (fZ)−
1

2
W ′RT,τ (fZ)RT,τ (fZ)

′W )

= W ′( 1
T

T∑
τ=1

RT,τ (fZ)
)
− 1

2
W ′( 1

T

T∑
τ=1

RT,τ (fZ)RT,τ (fZ)
′)W

= W ′µ̄(Z)− 1

2
W ′Σ̄(Z)W

(82)

This completes the proof of Lemma 4. □

Proof of Lemma 5. The proof relies on an application of the Stone-Weierstrass Theorem

(Rudin, 1976). Consider the algebra of functions generated by the ridge ensemble {Θz : z >

0}. Using the identity

Θz1(x)−Θz2(x) = (z2 − z1)Θz1(x)Θz2(x), (83)

it follows that the linear span of the ridge ensemble is dense in the algebra generated by the

ridge ensemble. Moreover, it is easy to see that the ridge ensemble separates points on [a, b]

and vanishes nowhere. As a consequence, the algebra generated by the ridge ensemble is

dense in C(a, b) – by the Stone-Weierstrass Theorem – and the claim follows.

The next part of the proof is for the matrix monotone decreasing functions f. Suppose

first

f(λ) =
∑

wi(λ+ zi)
−1, wi ≥ 0,

∑
i

wi = 1 .

Then, f(λ) is matrix monotone decreasing by Löwner’s theorem (Löwner, 1934), and

lim
λ→∞

λf(λ) = lim
λ→∞

∑
wiλ(λ+ zi)

−1 =
∑

wi = 1 .

Conversely, let f be a matrix monotone increasing function satisfying the technical condition
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f(λ)λ→ 1 as λ→ ∞. Our goal is to show that there exists a sequence of functions

fj(λ) =

nj∑
i=1

wi,j(λ+ zi)
−1

that uniformly converges to f(λ) on compact intervals.

We define g = −f. Now g is matrix monotone increasing. By Löwner’s theorem (Löwner,

1934), any matrix monotone increasing function on (0,∞) can be written as

g(λ) = aλ+ b+

∫ ∞

0

λ

λ+ z
dµ(z)

= aλ+ b+

∫ ∞

0

λ+ z − z

λ+ z
dµ(z)

= aλ+ b+

∫ ∞

0

dµ(z)−
∫ ∞

0

z

λ+ z
dµ(z).

(84)

for some a ∈ R+, b ∈ R and some positive, finite measure µ. By assumption, we have that

limλ→∞ g(λ)λ = −1. In other words,

lim
λ→∞

g(λ)λ = lim
λ→∞

aλ2 + lim
λ→∞

(b+

∫ ∞

0

dµ(z))λ− lim
λ→∞

∫ ∞

0

zλ

λ+ z
dµ(z). (85)

Since µ is a finite measure, we have

lim
λ→∞

∫ ∞

0

zλ

λ+ z
dµ(z) =

∫ ∞

0

zdµ(z) .

If a ̸= 0 or b+
∫∞
0
dµ(z) ̸= 0 then limλ→∞ g(λ)λ will not converge. Therefore,

a = 0

b+

∫ ∞

0

dµ(z) = 0,
(86)

and

f(λ) =

∫ ∞

0

z

λ+ z
dµ(z). (87)

with ∫ ∞

0

zdµ(z) = 1 .
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Let us define dµ̃(z) = zdµ(z) so that

f(λ) =

∫ ∞

0

(λ+ z)−1dµ̃(z) .

Let {∆j}
nj

j=1 be a partition of [0,∞) such that the Rieman-Stieltjes sums converges to the

integral:

f(λ) = lim
nj→∞

(λ+ zj)
−1wj, wj = µ̃(∆j) . (88)

Clearly, the weights wj sum up to one, and the proof is complete.

□

Proof of Theorem 5. Note that Ē[R(fZ)] = Ē[F ]′(ZI + Ē[FF ′])−1Ē[F ] while

Ē[R(fZ)R(fZ)
′] = Ē[F ]′(Z1I + Ē[FF ′])−1Ē[FF ′](Z2I + Ē[FF ′])−1Ē[F ] (89)

Thus, if Z0 = 0, we have

(Ē[R(fZ)R(fZ)
′]e0)i = Ē[F ]′(ziI + Ē[FF ′])−1Ē[FF ′](0I + Ē[FF ′])−1Ē[F ]

= Ē[F ]′(ziI + Ē[FF ′])−1Ē[F ] = µ̄IS(zi),
(90)

implying that

Σ̄IS(Z)
−1µ̄IS(Z) = e0, (91)

so that no shrinkage is optimal.

Σ̄(Z)−1µ̄(Z) = D(Z)−1
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

(µ̄IS(z)− ψ(Z))

= D(Z)−1
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

µ̄IS(z)

− D(Z)−1
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

ψ(Z)

= D(Z)−1term1 − D(Z)−1term2

(92)
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For term2 we have

term2 =
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

ψ(Z)

=︸︷︷︸
Lemma 8

(
Σ̄IS(Z) − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

ψ(Z)

1 + ψ(Z)′
(
Σ̄IS(Z) − (µ̄IS(z)ψ(Z)′ + ψ(Z)µ̄IS(z)′)

)−1
ψ(Z)

=
1

d2,1

(
Σ̄IS(Z) − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

ψ(Z).

(93)

Then (
Σ̄IS(Z) − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

ψ(Z)

=︸︷︷︸
Lemma 8

(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)

′)−1
ψ(Z)

+

(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)

′)−1
ψ(Z)µ̄IS(z)

′(Σ̄IS(Z) − µ̄IS(z)ψ(Z)
′)−1

ψ(Z)

1− µIS(z)′
(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)′

)−1
ψ(Z)

=

(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)

′)−1
ψ(Z)

1− µIS(z)′
(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)′

)−1
ψ(Z)

=
1

d2,2

(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)

′)−1
ψ(Z).

(94)

Finally,(
Σ̄IS(Z) − µ̄IS(z)ψ(Z)

′)−1
ψ(Z)

=︸︷︷︸
Lemma 8

Σ̄IS(Z)
−1ψ(Z)

+
Σ̄IS(Z)

−1µ̄IS(z)ψ(Z)
′Σ̄IS(Z)

−1ψ(Z)

1− ψ(Z)′Σ̄IS(Z)−1µ̄IS(z)

= Σ̄IS(Z)
−1ψ(Z) +

e0ψ(Z)
′Σ̄IS(Z)

−1ψ(Z)

1− ψ(Z)′e0

= Σ̄IS(Z)
−1ψ(Z) + e0

ψ(Z)′Σ̄IS(Z)
−1ψ(Z)

1− ψ(0)
.

(95)

Therefore,

term2 =
1

d2,1d2,2

(
Σ̄IS(Z)

−1ψ(Z) + e0
ψ(Z)′Σ̄IS(Z)

−1ψ(Z)

1− ψ(0)

)
= α2e0 + β2Σ̄IS(Z)

−1ψ(Z)

(96)
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For term1 the calculations will be slightly more involved:

term1 =
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − (µ̄IS(z)ψ(Z)

′ + ψ(Z)µ̄IS(z)
′)
)−1

µ̄IS(z)

=︸︷︷︸
Lemma 8

(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

+

(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)ψ(Z)

′(Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)
′)−1

µ̄IS(z)

1− ψ(Z)′
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)′

)−1
µ̄IS(z)

=

(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

1− ψ(Z)′
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)′

)−1
µ̄IS(z)

=
1

d1

(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z).

(97)

Next (
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

=︸︷︷︸
Lemma 8

(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

−
(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)

′)−1
ψ(Z)ψ(Z)′

(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

1 + ψ(Z)′
(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)′

)−1
ψ(Z)

= term11 − term12

(98)

Note that

(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)

′)−1
ψ(Z) =︸︷︷︸

Lemma 8

Σ̄IS(Z)
−1ψ(Z)

1− ψ(Z)′Σ̄IS(Z)−1µ̄IS(z)

=
Σ̄IS(Z)

−1ψ(Z)

1− ψ(Z)′e0

=
Σ̄IS(Z)

−1ψ(Z)

1− ψ(0)
.

(99)
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Plugging back

term12 =

Σ̄IS(Z)
−1ψ(Z)ψ(Z)′Σ̄IS(Z)

−1µ̄IS(z)
(1−ψ(0))2

1 + ψ(Z)′Σ̄IS(Z)−1ψ(Z)
1−ψ(0)

=
Σ̄IS(Z)

−1ψ(Z)ψ(Z)′Σ̄IS(Z)
−1µ̄IS(z)

(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)

=
Σ̄IS(Z)

−1ψ(Z)ψ(Z)′e0
(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)

=
Σ̄IS(Z)

−1ψ(Z)ψ(0)

(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)
.

(100)

Furthermore

term11 =
(
Σ̄IS(Z) − ψ(Z)µ̄IS(z)

′)−1
µ̄IS(z)

=︸︷︷︸
Lemma 8

Σ̄IS(Z)
−1µ̄IS(z) +

Σ̄IS(Z)
−1ψ(Z)µ̄IS(z)

′Σ̄IS(Z)
−1µ̄IS(z)

1− ψ(Z)′Σ̄IS(Z)−1µ̄IS(z)

= e0 +
Σ̄IS(Z)

−1ψ(Z)

1− ψ(0)
.

(101)

Note that d1 is just 1− ψ(Z)′(term11 + term12). This means

d1 = 1− ψ(Z)′e0 +
ψ(Z)′Σ̄IS(Z)

−1ψ(Z)

1− ψ(0)
− ψ(Z)′Σ̄IS(Z)

−1ψ(Z)ψ(0)

(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)

= 1− ψ(0) +
ψ(Z)′Σ̄IS(Z)

−1ψ(Z)

1− ψ(0)
− ψ(Z)′Σ̄IS(Z)

−1ψ(Z)ψ(0)

(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)

= 1− ψ(0) +
qf

1− ψ(0)
− qfψ(0)

(1− ψ(0))2 + (1− ψ(0))qf

= 1− ψ(0) +
qf

1− ψ(0)
(1− ψ(0)

1− ψ(0) + qf
)

= 1− ψ(0) +
qf

1− ψ(0)
(
1− 2ψ(0) + qf

1− ψ(0) + qf
)

(102)

Hence

term1 =
1

d1

(
e0 +

Σ̄IS(Z)
−1ψ(Z)

1− ψ(0)
− Σ̄IS(Z)

−1ψ(Z)ψ(0)

(1− ψ(0))2 + (1− ψ(0))ψ(Z)′Σ̄IS(Z)−1ψ(Z)

)
= α1e0 + β1Σ̄IS(Z)

−1ψ(Z)

(103)
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Σ̄(Z)−1µ̄(Z) = D(Z)−1(term1 − term2)

= D(Z)−1(αe0 + βΣ̄IS(Z)
−1ψ(Z))

(104)

This concludes the proof of Theorem 5 □

Lemma 7 Let D(Z) = diag( 1
1−ψ(Z)), be the complexity multiplier. Under the hypothesis

of Proposition 3, we have

µ̄(Z) = D(Z)(µ̄IS(z)− ψ(Z)︸ ︷︷ ︸
overfit

)

Σ̄(Z) = D(Z)
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′︸ ︷︷ ︸

variance overfit

− (µ̄IS(z)ψ(Z)
′ + ψ(Z)µ̄IS(z)

′)︸ ︷︷ ︸
mean overfit

)
D(Z)

(105)

where,

µ̄IS(z) = Ē[R(fZ)],

Σ̄IS(Z) = Ē[R(fZ)R(fZ)
′]

(106)

are the in-sample mean and second moment of the ridge portfolios, respectively.

Proof of Lemma 7. For the mean, using formula (27) and Proposition 3, we have

1

T

T∑
t=1

RT,t(fz) =
1

T

T∑
t=1

1

1− ψt(z)

(
Rt(fz) − ψt(z)

)
=

1

1− ψ(z)

( 1
T

T∑
t=1

Rt(fz) − ψ(z)
)

=
1

1− ψ(z)

(
µ̄IS(z) − ψ(z)

)
.

(107)

In matrix form

µ̄(Z) = diag(
1

1− ψ(Z)
)
(
µ̄IS(z) − ψ(Z)

)
(108)
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Similarly, for the second moment matrix

1

T

T∑
t=1

RT,t(fzi)RT,t(fzj) =
1

T

T∑
t=1

1

1− ψt(zi)

(
Rt(fzi) − ψt(zi)

) 1

1− ψt(zj)

(
Rt(fzj) − ψt(zj)

)
=

1

T

T∑
t=1

1

1− ψ(zi)

(
Rt(fzi) − ψ(zi)

) 1

1− ψ(zj)

(
Rt(fzj)− ψ(zj)

)
=

1

(1− ψ(zj))(1− ψ(zi))

1

T

T∑
t=1

(
Rt(fzi)Rt(fzj) + ψ(zi)ψ(zj)

)
− 1

(1− ψ(zj))(1− ψ(zi))

1

T

T∑
t=1

(
Rt(fzj)ψ(zi) + Rt(fzi)ψ(zj)

)
=

1

(1− ψ(zj))(1− ψ(zi))

(
Σ̄IS(zi, zj) + ψ(zi)ψ(zj)

)
− 1

(1− ψ(zj))(1− ψ(zi))

(
µ̄IS(zi)ψ(zi) + µ̄IS(zi)ψ(zj)

)
.

(109)

In matrix form

Σ̄(Z) = diag(
1

1− ψ(Z)
)
(
Σ̄IS(Z) + ψ(Z)ψ(Z)′ − µ̄IS(z)ψ(Z)

′ − ψ(Z)µ̄IS(z)
′) diag( 1

1− ψ(Z)
)

(110)

This concludes the proof of Lemma 7. □

Proposition 6 (In-Sample Shrinkage is Not Optimal) Assume Rτ (fz) is the in-sample

return at time τ,

Rτ (fz) = π̄(fz)
′Fτ , τ ≤ T. (111)

Suppose

µ̄IS(Z) = (Ē[Rτ (fzi)])
L
i=1 Σ̄IS(Z) = (Ē[Rτ (fzi)Rτ (fzi)

′])Li=1 (112)

are the IS mean and covariance of the ridge-shrunk portfolios, respectively. Now define

a(z) = µ̄IS(z)− 0.5Σ̄IS(z)− 0.5 (113)

to be the in-sample quadratic utility. a′(z) is negative for z > 0 and a′(0) = a′′(0) = 0.

Hence, a(z) obtains its maximum at z = 0.
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Proof of Lemma 6. Let

a(z) = µ̄IS(z)− 0.5Σ̄IS(z)− 0.5

= Ē[F ]′(zI + Ē[FF ′])−1Ē[F ]− 0.5

− 0.5Ē[F ]′(zI + Ē[FF ′])−1Ē[FF ′](zI + Ē[FF ′])−1Ē[F ]− 0.5

= Ē[F ]′(zI + Ē[FF ′])−2(zI + Ē[FF ′]− 0.5Ē[FF ′])Ē[F ]− 0.5

= Ē[F ]′(zI + Ē[FF ′])−2(zI + 0.5Ē[FF ′])Ē[F ]− 0.5.

(114)

We compute the derivative of a(z)

a′(z) = µ̄′
IS(z)− 0.5Σ̄′

IS(z)

= −zĒ[F ]′(zI + Ē[FF ′])−2Ē[F ]

+ zĒ[F ]′(zI + Ē[FF ′])−3Ē[FF ′]Ē[F ]

= zĒ[F ]′(zI + Ē[FF ′])−3(Ē[FF ′]− (zI + Ē[FF ′]))Ē[F ]

= −z2Ē[F ]′(zI + Ē[FF ′])−3Ē[F ].

(115)

Therefore, a′(z) is negative for z > 0 and a′(0) = a′′(0) = 0.

□

Proof of Corollary 4. We have

d

dz
(µ̄(z)− 0.5Σ̄(z)) =

d

dz
(
µ̄IS(z)− ψ(z)

1− ψ(z)
− 0.5

Σ̄IS(z) + ψ2(z)− 2µ̄IS(z)ψ(z)

(1− ψ(z))2
)

=
d

dz
(
µ̄IS(z)− ψ(z)− µ̄IS(z)ψ(z) + ψ(z)2

(1− ψ(z))2
− 0.5

Σ̄IS(z) + ψ2(z)− 2µ̄IS(z)ψ(z)

(1− ψ(z))2
)

=
d

dz
(
µ̄IS(z)− ψ(z)

(1− ψ(z))2
− 0.5

Σ̄IS(z)− ψ2(z)

(1− ψ(z))2
)

=
d

dz
(
µ̄IS(z)− 0.5Σ̄IS(z)− ψ(z) + 0.5ψ2(z)

(1− ψ(z))2
)

=
d

dz
(
µ̄IS(z)− 0.5Σ̄IS(z) + 0.5(1− ψ(z))2 − 0.5

(1− ψ(z))2
)

=
d

dz
(
µ̄IS(z)− 0.5Σ̄IS(z)− 0.5

(1− ψ(z))2
)

(116)

Note that from Lemma 6, a(z) is decreasing in z and a(z) < 0. Let also b(z) = (1−ψ(z))2.
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Therefore the OOS quadratic utility objective can be written as

(a(z)/b(z))′ =
a′(z)b(z)− a(z)b(z)′

b(z)2
(117)

If we show that the derivative is positive in z = 0 then that means there is a value in

shrinkage. Then it suffices to show b′(0)
b(0)

> a′(0)
a(0)

and b′(0) > 0.

b′(0) = −2ψ′(z)(1− ψ(z)) (118)

Lemma 8 will ensure that ψ(z) < 1. On the other hand, from the definition of ψ(z)

ψ(z) =
1

T
F ′
τ (zI + Ē[FF ′])−1Fτ (119)

hence increasing z will decrease ψ(z). This concludes the Proof of Corollary 4.

□

Lemma 8 (Sherman-Morrison Formula) Suppose A ∈ Rn×n is an invertible square

matrix and u, v ∈ Rn are column vectors. Then A + ũv′ is invertible if 1 + v′A−1u ̸= 0. In

this case,

(A+ uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u
(120)

Lemma 9 (PCs and Shrinkage) Assume Ē[FF ′] = UDU ′ and

π̄(z) = (Ē[FF ′])−1Ē[F ]. (121)

be the ridge-shrunk Markowitz portfolio. Define the PC portfolios, F PC = U ′F , then the

corresponding ridge shrunk Markowitz portfolio is

π̄PC(z) = (Ē[F PCF PC′
])−1Ē[F PC ]

= (U ′Ē[FF ′]U)−1U ′Ē[F ]

= (D)−1U ′Ē[F ]

(122)

The OOS performances of these two portfolios are equal

F ′
OOSπ̄(z) = F PC′

OOSπ̄
PC(z)

= F ′
OOSU(D)−1U ′Ē[F ]

= F ′
OOS(Ē[FF

′])−1Ē[F ]

(123)
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B Additional Results

We evaluate the efficacy of CUPSA against the best infeasible sparse model with optimal

ridge shrinkage, denoted as Sparse z. The model is defined as follows:

RSZ
t+1(z∗(t− T, t)) = RPC

t+1(I∗, z∗(t− T, t)),

I∗ = argmax
I

ĒOOS[U(R
PC
t+1(I, z∗(t− T, t)))].

(124)

Here, RPC
t+1(I, z(t−T, t)) represents the return on the top I PC factors, as detailed in Equation

(70). The term z∗(t − T, t) refers to the Best z shrinkage, derived from Corollary 4. In

essence, Sparse z (SZ) is selected to maximize the OOS Sharpe ratio from all possible PC

factor SDFs. For instance, if the optimal Sharpe ratio is achieved with the top 20 PC factors,

then the portfolio comprising these top 20 PCs will be designated as the efficient portfolio

and utilized in constructing the SDF. The infeasibility of the model arises because I⋆ in

Equation (124) is selected ex-post, affording us the advantage of hindsight in determining

the number of Principal Component (PC) factors that will yield the best Out-of-Sample

(OOS) performance. From Figure 14, it is evident that CUPSA outperforms all Sparse z

models. This implies that even with the advantage of knowing the best combination of

PC factors, ridge shrinkage still falls short of the non-linear shrinkage efficiency offered by

CUPSA. This observation holds true even when Sparse z is incorporated into regression

(54). The t-statistics remain large and statistically significant across all rolling windows.

It appears that even with this ’cheating’ approach, the elusive dream of sparsity cannot be

fully realized, suggesting that embracing the chaos of complexity might indeed be the more

prudent strategy
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Figure 14: The plot compares the out-of-sample Sharpe ratio of CUPSA (Theorem 1) and
Sparse z ((124)) across different rolling windows T. Annualized Sharpe ratios are computed
with monthly rebalancing, for the period 1977-11-22 to 2022-12-30. “Sum” reports the
Sharpe ratios of summed returns across all different rolling windows. E.g., for CUPSA it is∑

T∈{25,50,...,1500}Rt+1(fZ,WCUPSA(t−T,t)).



Figure 15: Heteroskedasticity-adjusted (with five lags) t-statistics of α from the regression
(54) with the addition of Sparse z ((124)) for different rolling windows. t-stats are computed
for the period 1977-11-22 to 2022-12-30. “Sum” corresponds to summed returns across all
different rolling windows. E.g., for CUPSA it is

∑
T∈{25,50,...,1500}Rt+1(fZ,WCUPSA(t−T,t)).
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