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Abstract 

We propose generative artificial intelligence to measure systemic risk in the global markets of 

sovereign debt and foreign exchange. Through a comparative analysis, we explore three novel 

models to the economics literature and integrate them with traditional factor models. These 

models are: Time Variational Autoencoders, Time Generative Adversarial Networks, and 

Transformer-based Time-series Generative Adversarial Networks. Our empirical results provide 

evidence in support of the Variational Autoencoder. Results here indicate that both the Credit 

Default Swaps and foreign exchange markets are susceptible to systemic risk, with a historically 

high probability of distress observed by the end of 2022, as measured by both the Joint 

Probability of Distress and the Expected Proportion of Markets in Distress. Our results provide 

insights for governments in both developed and developing countries, since the realistic 

counterfactual scenarios generated by the AI, yet to occur in global markets, underscore the 

potential worst-case scenarios that may unfold if systemic risk materializes. Considering such 

scenarios is crucial when designing macroprudential policies aimed at preserving financial 

stability and when modeling the effectiveness of the implemented policies. 

 

Keywords: Twin Ds, Sovereign Debt, Credit Risk, TimeGANs, Transformers, TimeVAEs, 

Autoencoders, Variational Inference,  
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1. Introduction 

 

We use sate-of-the-art generative Artificial Intelligence (AI) to assess time-varying systemic risk in 

global markets for sovereign debt and foreign exchange, both of which are susceptible to what the 

literature identifies as the “Twin Ds - Default and Devaluation” risks.1. We model the time series of 

sovereign Credit Default Swaps (CDS) spreads and foreign exchange rates against the US dollar 

(FX) of 35 countries. These two markets have become a top priority for central banks and regulators 

due to concerns about sustainability of historically high levels of debt in emerging and low-income 

countries, coupled with rising interest rates and inflation above its long-run target, as well as 

currency depreciation against the US dollar driven by market expectations of further monetary 

policy tightening.  

It is crucial to gain a deeper economic understanding of currencies and sovereign debt markets, as 

current global financial conditions affecting large financial intermediaries in advanced economies 

might nonlinearly translate to the dynamics of both markets (Gilchrist et al., 2022). This may lead 

to systemic risk episodes with global reach, potentially triggering contagion and spillovers not only 

within sovereign debt markets (e.g., Longstaff et al, 2011; Yacine Ait-Sahalia et al., 2014; Wu et al, 

2016; Arellano et al., 2017; Dawood et al., 2017; Augustin et al., 2022) or FX markets (e.g., Chuliá 

et al., 2018), but also between the two markets (e.g., Du and Schreger, 2016). The existing literature 

lacks a comprehensive empirical framework that enables policymakers to effectively monitor risks 

in these two global markets, which we address with our contribution. 

Importantly though, we approach this research question from a systemic-risk point of view. This 

means that although our research is clearly related to the large literature on covered and uncovered 

interest rate parity (e.g. Lustig and Verdelhan, 2007; Kalemli-Özcan and Varela, 2021; Borio et al., 

2016; Du et al., 2018) and asset pricing approaches to the joint risks (Duffie et al., 2003; Carr et al. 

2007;  Lettau et al., 2014; Na et al., 2018; Augustin et al., 2018; Augustin et al., 2020; Chernov et 

al., 2023), the main analytical toolkit here is innovative; in the sense that it acknowledges an 

overlooked fact by the past literature: debt and currency markets cannot be fully understood in 

isolation or within a linear framework. They interact in complex and nonlinear systems that need to 

be correctly modeled if one wants to accurately predict the probability of systemic risk realizations.  

 
1 Starting with Garcia and Lowenkros (2005), other authors have also referred to the combined risk of currency and 
default as 'cousin risks.' 
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To this end, we resort to three cutting-edge AI models: Time-series-Generative Adversarial 

Networks (GANs), Transformers GANs, and Variational Autoencoders (VAEs), as well as 

traditional factor models in econometrics, in a two-step approach that is inspired by Fan et al. 

(2021) and Fan et al. (2022). Our objective is to generate realistic scenarios of the markets on a high 

frequency basis, for both CDS and FX markets, and for the two markets combined.  

In the first step, we use Principal Component Analysis (PCA) to model the linear factors underlying 

the time series variation of all the series in our relatively large set of prices in each market. In the 

second step, we apply generative AI to the idiosyncratic components of the series to generate joint 

market scenarios. These simulations allow us to calculate statistics of systemic risk, in line with 

prior literature, such as the Joint Probability of Markets in Distress (JPD) and Expected Proportion 

of Markets in Distress (EPD). See, for instance, Hartmann et al. (2006) and Oh and Patton (2018).  

In essence, we surpass the limitations of modeling sovereign debt and currency markets individually 

within a linear paradigm, a practice common in previous literature. Moreover, we pioneer the 

integration of these two markets within a comprehensive multivariate framework. The limitations 

that we overcome are particularly relevant in the twin markets where nonlinearities play a crucial 

role. For example, debt thresholds for safe government deficits, sudden stops, currency crises, 

interactions between market and funding liquidity of global intermediaries, margin-calls above 

certain risk thresholds, and fiscal crises are all expected to produce nonlinearities in the dynamics of 

these markets.  

Our overall contribution is twofold: we propose a new method for tracking systemic risk on a high-

frequency and accurate basis using a new generation of AI models, which have produced 

impressive advancements not only within traditional AI subfields like computer vision and natural 

language processing but also in entire fields such as medicine and biochemistry, yet remain 

uncharted in the field. Secondly, we present the first estimates in the literature of systemic risk in 

the Twin markets for policy assessment, which emphasize the historically high vulnerability in 

these markets, especially in the emerging world. 

Our findings highlight significant increases in sovereign risk and currency markets during periods 

following the European debt crisis in 2016, the Covid-19 pandemic in 2020, and global monetary 

policy tightening in 2022. These instances notably influenced the probability of distress in both 

markets, evident in our indicators. Indeed, according to the TimeVAE, our preferred model, the 

joint probability of distress in the CDS market peaks during the Covid-19 pandemic and remains 

historically high by the end of our sample period. The record-high JPD in 2020 for CDS markets 
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aligns with a similarly elevated JPD in FX markets, underscoring the interconnectedness between 

default and depreciation risk in the global markets. 

Section 2 provides an overview of generative AI. In Section 3, we describe our methodology, 

including the minimax game that forms the basis of GANs and the VAE frameworks, in the context 

of multivariate time series generation. Section 4 covers our data sources and their description. The 

main results are presented in Section 5 and Section 6 concludes. 

 

2. Generative AI  

Generative AI is a set of models used to produce realistic synthetic samples of data given a large set 

of actual data samples. It was first developed in the field of computer vision, where it started as a 

way to generate synthetic images by training on a large set of images. These images share general 

abstract features that can be learned by the models, e.g., they are images of people, cats, dogs, 

cartoons, handwritten digits etc. The original challenge was to produce synthetic images that could 

not be distinguished from the real ones. One of the most successful models in this field is 

Generative Adversarial Networks (GANs), which was introduced in DL by Goodfellow et al. 

(2014). 

GANs consist of two neural networks - a generator and a discriminator. The generator’s objective is 

to create synthetic data samples (e.g., images), while the discriminator aims to differentiate between 

real and synthetic samples. These objectives are opposing each other since the better the generator’s 

output, the harder it becomes for the discriminator to distinguish it from real data. Conversely, as 

the discriminator becomes better at identifying synthetic data, it becomes increasingly difficult for 

the generator to create realistic data that can fool it. Adversarial training, where the two networks’ 

parameters are estimated simultaneously, is used to achieve this goal. GANs have been successful 

in generating high-quality images (Richardson et al., 2021) and have expanded to generate other 

types of data, such as text, audio, and video frames (Pascual et al., 2017; Engel et al., 2019; 

Skorokhodov et al., 2022). GANs have also been extended recently to generate multivariate time 

series, which is of particular interest to macroeconomists (Yoon et al., 2019). 

Another type of generative AI model that competes with GANs in unsupervised learning is 

Variational Autoencoders (VAEs), as proposed by Kingma and Welling (2019). While the original 

autoencoders were a generalization of Principal Component Analysis (PCA) to a nonlinear setting 

(Hinton and Salakhutdinov, 2006), they lacked the ability to generate random synthetic samples. In 
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contrast, VAEs can generate synthetic samples that are as realistic as those produced by GANs. In 

finance, autoencoders have been applied to asset pricing, specifically to estimate factors underlying 

the cross-section of returns (e.g., Gu et al., 2020). This is an area where PCA has traditionally been 

used for a long time (Connor and Korajczyk, 1988). With VAEs, the incorporation of a sampling 

distribution enables the generation of synthetic data samples. 

In macroeconomics and finance, understanding the cross-sectional dependence of a large number of 

variables and their joint dynamics over time is crucial. This is particularly important in forecasting 

applications where dynamic factor models (DFMs) have been used with relative success in recent 

times (see Bai and Ng (2008) and Bai and Wang (2015) for reviews). DFMs explicitly consider 

both dimensions and can be easily applied to a large number of series in a panel-like structure. More 

recently, researchers have expanded DFMs to generate realistic counterfactual scenarios of the 

series being studied, which have not yet occurred (Cahan et al., 2023; Xiong and Pelger, 2023). One 

way to interpret the factors generated by DFMs is by associating them with the series within the 

sample set that were used in the DFM’s estimation. This can be done by conducting pair-regressions 

between each factor and each series and analyzing the factor loads (McCracken and Ng, 2016; 

2021).  

While DFMs have attractive features such as simplicity and well-studied properties, they are linear 

models and thus cannot capture the nonlinear dynamics in the system—an area where artificial 

intelligence, particularly machine learning (ML), excels.  

Indeed, ML has become part of the toolbox for empirical research among economists and policy 

makers.  It has been applied for various purposes such as forecasting (e.g., Medeiros et al., 2021; 

Easley et al., 2021; Bianchi et al., 2021; Bianchi et al., 2022; Lee et al., 2022; Dong et al., 2022; 

Klein et al.,2023), nowcasting (e.g., Babii, et al., 2021), classification and scoring (e.g., Chen et al., 

2019; Bandiera et al., 2020; Burke et al., 2022), estimation of latent factors of asset prices (e.g., 

Kozak et al., 2020; Gu et al., 2021; Leippold et al., 2022), and evaluation of causal effects for 

policy purposes (e.g., Deryugina et al., 2019; Chiang et al., 2021; Chernozhukov, et al., 2022a,b) 

including causal mediation (e.g., Farbmacher et al., 2022a). Furthermore, text analysis of sentiments 

and intentions (e.g., Angelico et al., 2022; Farbmacher et al., 2022b) and, even computer vision for 

market assessment (e.g., Bose et al., 2022; Obaid and Pukthuanthong, 2022) have been explored2.  

 
2 See Athey and Imbens (2019) and Athey (2019) for a review of the earlier applications.  
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However, generative AI as implemented here, an active area of Deep Learning (DL), has been 

largely overlooked in the field, despite its direct and multiple applications for informing macro-

prudential policies and for systemic risk monitoring by central banks and market regulators3. 

 

3. Methodology 

Our methodology involves a dynamic factor model to capture the conditional mean of the series, 

generative AI to create synthetic market scenarios using the residuals of the dynamic factor model 

and, lastly, systemic risk statistics to condense all the generated information into an easily 

interpretable indicator.  

 

3.1. Factor Models 

Let 𝑁 be the number of cross-sectional units and 𝑇 be the number of time series observations. For 

𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇, a dynamic factor model can be defined as: 

𝑦௜௧ =  𝜆௜(𝐿)𝑓௧ + 𝑥௜௧,     (1) 

where 𝜆௜(𝐿) = (1 −  𝜆௜ଵ𝐿−, … , −𝜆௜௦𝐿ௌ) is a vector of dynamic factor loadings of order 𝑠. When 𝑠 is 

finite, we refer to it as a DFM. In contrast, a Generalized-DFM allows 𝑠 to be infinite. Stock and 

Watson (2011, 2012) provide examples of the former and Forni and Reichlin (1998) and Forni et al. 

(2000, 2005) introduce the latter. In both cases, the (dynamic) factors 𝑓௧ evolve according to:  

𝑓௧ =  𝐶(𝐿)𝜀௧,     (2) 

where 𝜀௧ are 𝑖𝑖𝑑 errors. The dimension of 𝑓௧, denoted 𝑞, is the same as that of 𝜀௧ and it refers to the 

number of dynamic or primitive factors (Bai and Ng, 2007). 

The model stated in (2) can be rewritten in static form, simply by redefining the vector of factors to 

contain the dynamic factors and their lags, and the matrix of loads accordingly, as: 

𝑌
(𝑁 × 𝑇)

=
  Λ 𝐹

(𝑁 × 𝑟)(𝑟 × 𝑇)
+

𝑋
(𝑁 × 𝑇)

,    (3) 

where 𝑌 = (𝑌ଵ, … , 𝑌ே) and 𝐹 = (𝐹ଵ, … . , 𝐹்). Clearly, 𝐹  and Λ are not separately identifiable. For 

any arbitrary (𝑟 × 𝑟)  invertible matrix 𝐻 , 𝐹Λᇱ = 𝐹𝐻𝐻ିଵ𝛬ᇱ = 𝐹∗Λᇱ∗ , where 𝐹∗ = 𝐹𝐻  and 𝛬∗ =

 
3 Chen et al. (2023) recently used a generative adversarial network to identify portfolio states with unexplained pricing 
information in an asset pricing application unrelated to ours. 
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𝛬𝐻ିଵ, the factor model is observationally equivalent to 𝑌 = 𝐹∗𝛬ᇱ∗ + 𝑋. Therefore 𝑟ଶ restrictions 

are required to uniquely fix 𝐹 and 𝛬 (Bai and Wang, 2015). Note that the estimation of the factors 

by principal components or singular value decomposition imposes the normalization that 
ஃᇲஃ

ே
= 𝐼௥ 

and 𝐹ᇱ𝐹 is diagonal, which is sufficient to guarantee identification (up to a column sign change).  

The model above can be extended as to incorporate lagged values of the predicted variable in the 

following way: 

𝑦௜௧ = 𝛽଴ + 𝛽௜(𝐿)𝑦௜௧ + 𝜆௜(𝐿)𝑓௧ + 𝑥௜௧   ,                (4) 

where the lag-polynomial in front of 𝑦௜௧ and 𝑓௧  do not necessarily have the same order. 

 

3.2. Synthetic data generation 

We generate 𝐷 = 10,000 simulations using TimeVAEs (Desai et al., 2021), TimeGANs (Yoon et 

al., 2019), and TTS GANs (Li et al., 2022) based on the residual series from equation 4. Then, we 

add the synthetic residuals to the fitted values of the model, resulting in 10,000 simulations for the 

𝑁 series at each of the 𝑇 periods. To evaluate the accuracy of the synthetic residuals generated by 

these models, we use visual metrics such as t-SNE (Maaten and Hinton, 2008) and PCA, as well as 

quantitative metrics such as the discriminative and predictive score calculated by a 2-layer Long-

Short-Term-Memory (LSTM) post-hoc time-series classification model (Yoon et al., 2019). 

Additionally, we visually compare the distribution of the actual residuals to that of the generated 

residuals. Our goal is to determine how closely the distribution of the generated residuals resembles 

the sample distribution of the actual residuals. 

 

3.3. Generative models  

 

i. Time Variational Autoencoders  

Starting from a raw (unlabelled) dataset 𝑥 consisting of FX or spread series, the goal is to estimate 

𝑥෤, which is the reconstruction of the units in the original dataset. The reconstruction can be done by 

minimizing the reconstruction error ℒ(𝑥, 𝑥ො), which measures the difference between the original 

data and the reconstructed units. The hidden layers in the middle of Figure 1 (which can be a single 

layer or a group of layers, three in this case) are fundamental for knowledge representation because 

they force the system to discard non-essential information and represent the data in a lower-
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dimensional latent vector. This latent vector, commonly referred to as the bottleneck and 

represented by z in the figure, captures the essential structure of the data.   

A good AEN must balance sensitivity and insensitivity, which depends on the choice of the 

dimensionality of latent space. In other words, it should accurately describe the inputs to reconstruct 

the original data, but also it must be insensitive enough to filter out noise and avoid overfitting to 

the training data. 

 

 Figure 1. Generic Autoencoder, AEN 

 

     Source: Own elaboration. 

 

VAEs are a generalization of AENs (Kingma and Welling, 2019). They provide 

a probabilistic framework to describe observations in a latent space. Thus, instead of estimating an 

encoder that generates a unique value that describes each latent attribute (as shown in Figure 1), the 

VAE model consists of an encoder that describes a probability distribution for each latent attribute. 

Figure 2 presents a generic VAE. It can be observed that instead of directly producing values for the 

latent state as it would be the case in a standard AEN, the encoder model of a VAE, generates 

parameters that describe a distribution for each dimension in the latent space (in our example in 

Figure 2, it is a Normal distribution with a vector of means (𝜇) and a vector of variances (𝜎)). 

Thus, the encoder network generates a hidden vector of z by sampling from these predefined 
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distributions and only then the decoder proceeds to reconstruct the original input units, essentially 

enforcing a continuous, smooth latent space representation of the original data. 

 

     Figure 2. Generic Variational Autoencoder, VAE 

 

              Source: Own elaboration. 

 

TimeVAE, as implemented by Desai et al. (2021) combines a traditional VAE with some 

interpretable temporal series components, namely, level, trend and seasonality. The objective 

function of a VAE is derived from the following minimization problem where the aim is to estimate 

a posterior distribution 𝑞(𝑧|𝑥) which is close to the true posterior distribution 𝑝(𝑧|𝑥)) by finding:  

 𝑎𝑟𝑔𝑚𝑖𝑛௤ 𝐷௄௅(𝑞ఝ(𝑧|𝑥)||𝑝ఏ(𝑧|𝑥)) =  𝐸௤ക(௭|௫)[ln(𝑞ఝ(𝑧|𝑥)/𝑝ఏ(𝑧|𝑥)].  (5) 

Here 𝑥 represents the data we are trying to reconstruct by learning its underlying latent 

representation 𝑧. 𝜑 and 𝜃 the parameters of the posterior distribution, which we omit for now from 

the equation, alongside the subscripts. Since the true posterior distribution is usually intractable as 

the marginal likelihood of 𝑥  is intractable, Kingma and Welling (2013) suggests rearranging 

equation 5 in the following way:  

ln𝑝(𝑥)  =  𝐷௄௅(𝑞(𝑧|𝑥)|𝑝(𝑧|𝑥))  −  𝐸௤(௭|௫)[ln𝑞(𝑧|𝑥)] + 𝐸௤(௭|௫)[ln𝑝(𝑧, 𝑥)] ,  (6) 

since KL divergence in equation 6 is always non-negative and the term on the Left-Hand-Side 

(LHS) is at most 0, the following holds true: 
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ln𝑝(𝑥)  ≥  − 𝐸௤(௭|௫)[ln𝑞(𝑧|𝑥)] + 𝐸௤(௭|௫)[ln𝑝(𝑧, 𝑥)] ,     (7) 

Right-Hand-Side, RHS, of equation 7 defines the Evidence Lower Bound (ELBO) or  𝐿஘,஦ . By 

maximizing ELBO, we can minimize the KL divergence in equation 5. ELBO could be expressed in 

the following way, where we have changed the signs to present it as a minimization problem:  

𝐿஘,஦ =  −𝐸௤ಞ(୸|୶)[ln𝑝஘(x|z)]  +  𝐷௅(𝑞஦(z|x)||𝑝஘(z)) .    (8) 

Here, the first term on the RHS represents the negative log-likelihood of the reconstructed data 

given samples from the latent space z or the reconstruction loss, while the second term on the RHS 

represents the KL divergence or a regularizer term. 𝑞஦(z|x) represents an approximate posterior 

distribution - the probabilistic encoder in VAE, where φ are trained parameters – weights and 

biases, 𝑝஘(x|z) is the probabilistic decoder of VAE whose trained weight and bias parameters are 

denoted by θ . 𝑝஘(z) is the prior distribution of the latent space, which is chosen to be Gaussian.  

Since ELBO is not differentiable with respect to φ  and using Monte Carlo simulations is 

impractical due to high variance of the gradient of L, Kingma and Welling (2013) propose to use a 

reparameterization trick. This involves redefining 𝑞஦(z|x)  as a multivariate Gaussian with a 

diagonal covariance structure, where the mean and the variance are the outputs of an encoder 

network and function of x and φ, as follows: 

ln𝑞(𝑧|𝑥) = 𝑙𝑛𝒩(𝑧, 𝜇, 𝜎ଶ𝜤), 

                                where z =  𝜇 +  𝜎⨀ 𝜖 ,         (9) 

𝜖 ~ 𝒩(0, 𝜤)  , 

This allows the loss function to be differentiable with respect to φ , with the following 

representation: 

𝐿஘,஦ =  − 
ଵ

ଶ
 (1 + ln(𝜎ଶ) − 𝜇ଶ − 𝜎ଶ)  +   𝐸௤ಞ(୸|୶)[ln𝑝஘(x|z)].   (10) 

Depending on the type of the data, one can use any differentiable equation to calculate the 

reconstruction loss -the second term on the RHS of equation 10.  We are using mean squared error 

since the task of data generation involves continuous time series data.  

The parameters of the encoder are trained using a 3-layer one-dimensional convolutional network 

and a dense layer with Rectified-Linear-Unit (RELU) activation function. Time-VAE, as 
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implemented by Desai et al. (2021) combines a traditional VAE with some interpretable temporal 

series components, namely, level, trend and seasonality by adding parallel blocks to the decoder 

network. This is particularly useful in time series applications, and it is what we refer to as 

TimeVAEs. Their model does it by training a different set of 𝜃 s for each of these blocks, 

simultaneously, and summing up the values obtained at each block, to get reconstructed series 𝑥. 

Particularly, the level block measures the average of the series, while the trend block calculates the 

trend as a polynomial function up to degree p which is defined as a hyper-parameter. In addition to 

these interpretable layers, TimeVAE could be used to generate a residual component which learns 

the representation of the part of the data unexplained by the interpretable layers. Two dense layers 

at each of the interpretable decoder blocks are used to train the parameters of the decoder. The 

residual block uses a 3-layer one-dimensional convolutional network and a dense layer with RELU 

activation function to deconvolve and reconstruct the decoder outputs.  

In our empirical results, we only activate trend and residual blocks in addition to the default level 

block, as we already have modeled the conditional mean of the series using the DFM.  The final 

reconstructed series have the following form: 

𝑥௥௘௖௢௡௦ᇩᇭᇪᇭᇫ
்×ௌ×ே

= 𝜃௟௘௩௘௟
ᇩᇪᇫ
்×ଵ×ே

⊗ 𝑱⏞
ଵ×ௌ×ଵ

+  ൭𝜃௧௥௘௡ௗ
ᇩᇪᇫ
்×ே×௉

𝑅⏞
௉×ௌ

൱

ᇱ

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
்×ௌ×஽

 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙ᇩᇭᇭᇪᇭᇭᇫ
்×ௌ×ே

 .  (11) 

For 𝑇  samples with sequence length 𝑆  and number of features 𝑁 , 𝜃௟௘௩௘௟  represents parameters 

trained by the neural network for the level block. The tensor product of 𝜃௟௘௩௘௟ with a matrix of ones 

J is the output of the level block. The second term on the RHS represents the output of the trend 

block, which consists of the transpose of the dot product of the trend parameters 𝜃௧௥௘௡ௗ with the 

matrix R. The rows of 𝑅 include linear time vectors of 𝑟 raised to power of 1 to 𝑃, where each of 

𝑟 has the form [0, 1, 2. . . 𝑆 −  1]/𝑆.  

The data are scaled to the interval 0 to 1 using min-max scaler as in equation 12, as the model uses a 

RELU activation in its convolutional networks, which assumes any input value less than or equal to 

zero is zero. A small value is added to the denominator to avoid division by zero: 

𝑥௦௖௔௟௘ௗ  =  
௫ ି ௠௜௡(௫)

௠௔௫(௫)ି௠௜௡(௫) ା ଴.଴଴଴଴଴ଵ
 ,     (12) 
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ii. Alternative models for data generation - GANs 

Although our main model is the TimeVAEs, we also implemented GANs for comparison purposes. 

GANs consist of a generator and a discriminator. The generator generates fake data samples that 

resemble real data, while the discriminator tries to differentiate between real and fake samples. 

During training, both the generator and the discriminator are optimized in an adversarial manner. 

The generator produces samples that the discriminator cannot distinguish from real data, and the 

discriminator tries to become better at distinguishing fake from real samples. GANs can also be 

structured using the same principles of cross encoder-decoder architectures explained above. We 

use TimeGAN by Yoon et al. (2019), a recent adaptation of GANs, in this section. 

TimeGAN is designed to generate sequences of data. It extends the standard GAN framework to 

deal with sequences of data by incorporating the time dimension. The basic architecture of a 

TimeGAN consists of two components: a generator network and a discriminator network. The 

generator network takes a random noise vector, 𝑧, as input and produces a generated sequence of 

data, 𝐺(𝑧).  The discriminator network takes either a real sequence of data, 𝑥 , or a generated 

sequence of data, 𝐺(𝑧), as input and outputs a scalar representing the probability that the input 

sequence is real. 

The objective of the TimeGAN is to find the optimal generator network that can produce sequences 

of data that are similar to the real data, and to find the optimal discriminator network that can 

distinguish between real and generated sequences. This can be formulated as a minimax game 

between the generator and the discriminator: 

𝑚𝑖𝑛ீ  𝑚𝑎𝑥஽ 𝑉(𝐷, 𝐺)  =  𝐸௫[𝑙𝑜𝑔 𝐷(𝑥)]  + 𝐸௭[𝑙𝑜𝑔(1 −  𝐷(𝐺(𝑧)))] ,  (13) 

where 𝑉(𝐷, 𝐺) is the value function, 𝐷(𝑥) is the output of the discriminator for a real sequence of 

data, 𝑥, and 𝐷(𝐺(𝑧)) is the output of the discriminator for a generated sequence of data, 𝐺(𝑧). In a 

TimeGAN, the discriminator network is designed to incorporate information over the time by using 

recurrent neural networks (RNNs), such as LSTM networks, which can process sequences of data. 

This allows the discriminator to take into account the temporal relationships between the elements 

in the sequence, and to make a decision based on the entire sequence, rather than just individual 

cross-sections. 

TimeGAN consists of four components: an embedding function, a recovery function, a sequence 

generator, and a sequence discriminator. The auto-encoding components (embedding and recovery) 

are trained together with the adversarial components (generator and discriminator), so that 
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TimeGAN learns features encoding, representations generation, and simultaneously, iterates in 

time. The embedding network creates the latent space where the adversarial network works. A 

supervised loss synchronizes the latent dynamics of synthetic and real data (Yoon et al., 2019).  

 

iii. Time GANs with Attention 

Transformer-based Time-Series Generative Adversarial Network by Li et al. (2022) is the first 

GANs model replacing the RNN network with a transformer network to be applied in time series 

and sequential data. The authors combine the ideas used for image and Natural Language 

Processing (NLP) for time series data by redefining width of an image as the number of sequences 

in a time series sample and by defining channels, which are normally used for RGB color scheme, 

as features of time series data. 

 

3.4. Systemic risk indicators 

After adding the 𝐷 synthetic error series generated by the DL models described above to the output 

of the model in equation 4, we end up with 𝑁 matrices of 𝐷 × 𝑇  for each market, where 𝐷 =

10,000 is the number of simulations. The simulated series are used to construct the systemic risk 

statistics adapted from the work of Oh and Patton (2018). First, we identify that a given instrument 

signals distress if the simulated series at day  𝑡  is higher than a selected critical value in the 

following way: 

S୧,୲ାଶହ଴ ≡ 𝟏൛x୧,୲ାଶହ଴ > c୧,୲ାଶହ଴
∗ ൟ.    (14) 

For every original CDS or currency return, the first year (250 days) is taken to define the 95th 

percentile. This is the level of distress above which the return is in the most extreme 5% on the right 

tail. 𝑐∗ is dynamic and calculated using a moving window of one day. Then, for every series of 

returns a threshold series as in equation 14 is constructed.  Once we calculate the distress signal for 

the selected threshold, we end up with a matrix of zeros and ones for each instrument, where the 

value 1 for date 𝑡 and simulation 𝑗 indicates the simulated series is above the threshold or, in other 

words, is signaling distress, while 0 indicates no distress. 

 

 



 
 

15

 

i. Joint probability of distress 

We use the probability that a large proportion of markets are in distress as a measure of systemic 

risk. Following Oh and Patton (2018) we define the joint probability of distress (JPD) as follows: 

JPD୲,୩ ≡ Pr୲ ቂቀ
ଵ

୒
∑  ୒

୧ୀଵ S୧,୲ାଶହ଴ቁ ≥
ୡ

୒
ቃ,    (15) 

where 𝑐 is an arbitrary threshold of a large proportion of the series. To calculate the index, we add 

all ones and zeros in the matrices, obtaining a matrix where every element is the number of markets 

in distress on simulation 𝑖 on day 𝑗. After defining a critical value of distress, we convert the values 

in the matrix to ones and zeros if the number of instruments in distress is greater or equal than the 

threshold. Then, by column, we sum the number of ones and divide by 𝐷 , the number of 

simulations. We end up with an estimate of the probability of distress given 𝑐, i.e., the probability 

that at least 𝑐 𝑜𝑓 𝑁 instruments in the market are in distress. 

 

ii. Expected proportion in distress 

EPD୧,୲ ≡ E୲ ቂ
ଵ

୒
∑  ୒

୨ୀଵ S୨,୲ାଶହ଴ ∣ S୧,୲ାଶହ଴ = 1ቃ.   (16) 

Equation 16 shows the expected proportion in distress (EPD). EPD is the proportion of the markets 

in distress given that one of the markets is in distress. We estimate this proportion not only for the 

markets of sovereign debt and currencies but also between sub-groups, e.g., emerging market versus 

advanced markets, FX versus CDS markets, etc. For each instrument i and for each time t, we 

calculate the proportion of market in distress at time 𝑡 + 250  for the simulation, given the 

instrument i signals distress at time 𝑡 + 250. In continuation, we calculate the average of these 

proportions by dividing them by the number of cases where the instrument 𝑖 signals distress at time 

𝑡 + 250. The EPD values lay between 1/N and 1, since the instrument 𝑖 is included in the sum. EPD 

may take a value of 0 for the selected instrument for date 𝑡 only if that instrument doesn’t signal 

distress in any simulation for that date. Once we get the EPD for each instrument, we plot the 

median, 20 and 80 percentiles for each day for each market. In section A.1 of the Appendix we 

describe some additional practical considerations useful for replication of our results. 
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The EPD allows us to identify which instruments and markets are the most systemic, that is, which 

house higher spillovers to the rest of the markets. The dynamic nature of the model allows us to 

observe how the systemic relationship among the participants of the market changes over time by 

comparing EPD estimates at different time periods. We put a special emphasis on crisis periods and 

demonstrate snapshots of three crisis periods with highest EPDs. Thus, we augment the findings of 

Greenwood-Nimmo et al. (2023), not only by considering FX markets in addition to sovereign CDS 

instruments but also, because these authors primary focus is on bivariate relationships, while our 

EPD values capture the influence of an instrument on the entire market. 

We may also draw parallels for the estimates of EPD with centrality estimates of Le et al. (2022), 

particularly outdegree centrality (Coutdegree) which measures the ratio of the number of countries 

affected by each market in the sample to the total number of countries. Unlike these authors’ 

approach based on Granger causality and VARs, our approach allows us to fully consider non-

linearities in the propagation of shocks. 

 

4. Data  

The frequency of our data is daily, spanning the period January 1, 2011 – October 27, 2022, for a 

total of 3,083 business days. We work with two datasets: sovereign CDS spreads and foreign 

exchange rates.  

Sovereign CDS are financial contracts where a protection seller takes regular premium fees from an 

investor and compensates them for the face value of a reference obligation in case the sovereign 

entity defaults its debt obligations (Packer and Suthiphongchai, 2003). The spread is measured as 

the percentage of the obligation, provided in basis points (bp), and represents the difference 

between yield and risk-free rate, i.e. the US Treasury rate in the sovereign debt market. We have 

retrieved the CDS spread data from Refinitiv for 35 countries spanning 5-year CDS contracts based 

on senior unsecured sovereign debt instruments. The maturity is selected as 5 years as the CDS 

contracts with this maturity are considered the most liquid for many countries (Mihai and Neagu, 

2011; Oh and Patton, 2018). Exchange rate data are all in local currency per the US dollar such that 

an increase in the level refers to depreciation of the local currency. FX data are retrieved from 

Refinitiv as well.  

FX and CDS data each include instruments for 35 economic entities including Euro for Eurozone as 

a single entity. The list of entities for the FX market was constructed based on the flexibility of a 
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country’s exchange rate regime. We follow Ilzetzki et al (2019) to select the currencies with flexible 

regimes at least at the level that can be classified as “pre-announced crawling band that is wider 

than or equal to +/-2%”. The list of countries for CDS spreads has been made based on data 

availability, i.e. we have interpolated a few missing points as long as the sequence of missing points 

was not more than two months and linear interpolation seemed as a reasonable choice given the 

pattern of the series before and after the missing data points. There is no missing data for the FX 

market.  

Finally, for the estimation of our systemic risk statistics we use the IMF classification of countries 

in three categories: advanced economies (AE), emerging markets (EM) and low-income developing 

countries (LDC) (see People and Back, 2022). The CDS market data include 15 advanced 

economies, 18 emerging market economies and 2 low-income developing countries. The FX market 

data include 12 advanced economies (including the Eurozone as a single entity), 16 emerging 

market economies and 7 low-income developing countries. See Table A1 in the appendix for a list 

of all CDS instruments and currencies used. 

Figure 3a shows that at the beginning of the sample, the CDS spreads for advanced economies were 

hovering at around 300 bp, on average. This is consistent with the Euro area crisis gaining 

momentum, in the aftermaths of the global financial crisis, as discussed for instance by Heinz and 

Sun (2014). Later, we observe that the average CDS spread has decreased towards 50 bp and spiked 

to 100 bp during COVID-19 pandemic and again in 2022 with the increased risk perceptions 

following the war in Ukraine and expectations towards an upcoming global recession.  

In Figure 3b, CDS data are shown for emerging markets. Both levels and dynamics are greatly 

dissimilar in the two cases, as expected. In particular, spreads in EM are around 150 bp, on average, 

except during high volatile periods, for instance some months of 2012, 2016, 2020 and the end of 

2022, when the spread averaged more than 200 bp, and the 90th percentiles reached 400 bp. Spikes 

in the spread of EM are much more frequently observed than in AE, and are linked to turmoil in 

traditional financial markets and in commodity markets, which EM economies often export.  

In Figures 3c and 3d we show the series of exchange rates. These are converted to natural logarithm 

and standardized to 100 at the initial point of the sample, which eases comparisons. All exchange 

rates are in local currency (LCY) per the US dollar (USD) such that an increase in value implies 

depreciation. We observe that the exchange rates of almost all emerging market economies with 

flexible regimes have their currencies depreciating faster during 2020 and 2022 as well as during 

the commodity price crisis of 2016 compared with other periods. 
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Figure 3a: The CDS spreads, Advanced Economies (basis points) 

 
Note: Mean, 10%, 25%, 75%, and 90% quantiles of the CDS 
spreads for advanced economies: January 2011- October 2022. 

 

Figure 3b: The CDS spreads, Emerging Markets (basis points) 
 

 
Note: Mean, 10%, 25%, 75%, and 90% quantiles of the CDS 
spreads for emerging markets: January 2011- October 2022 

 

Although advanced economies also depreciate on average against the US dollar during the crisis 

periods, the patterns in AE and EM are contrasting. Interestingly, while in AE the 10th and 90th 

percentiles move in opposite directions, this is not the case for EM. This is consistent with the fact 

that depreciation is more of a risk concern for emerging and low-income developing countries than 

it is for advanced economies. 
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In our estimations we use log-differences of the series to remove the unit roots present in the data, 

as it is standard practice in the factor models literature. Indeed, augmented-Dickey-Fuller tests 

applied to the original series suggest the presence of a unit root in 31 out of 35 series for CDS 

market data and all 35 series in FX, at 5% significance level.  

 

Figure 3c: The exchange rates, AE (LCY per USD, 100*log) 

 

Note: Mean, 10, 25, 75, and 90 percentiles of advanced economies exchange rates 
against the US Dollar from January 2011 (=100) to October 2022.  

Figure 3d: The exchange rates, EM (LCY per USD, 100*log) 

 

Note: Mean and 10, 25, 75, and 90 percentiles across emerging markets exchange 
rates from January 2011 (=100) to October 2022.  
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The summary statistics of the log-differences series are presented in Tables 1a and 1b. CDS spreads 

seem to be more volatile and to be more autocorrelated than FX returns series. Furthermore, CDS 

series house heavier tails than FX series and are right-skewed, while the distribution of FX series is 

more symmetric and leptokurtic.  

 

 
Table 1a. Summary statistics for log-differences of daily CDS spreads 

 

 
Mean 5% 25% Median 75% 95% 

Mean -1.024 -295.318 -96.746 0.755 93.941 287.173 
Std dev 172.333 263.992 170.972 147.555 193.874 308.514 

1st-order autocorrel 0.267 0.334 0.251 0.217 0.327 0.397 
Skewness 1.810 -2.444 -1.162 2.752 3.968 2.928 
Kurtosis 19.113 14.766 19.827 32.438 30.53 15.912 

5% -220.238 -748.035 -380.178 -184.276 -33.365 2.151 
25% -74.309 -397.912 -160.429 -25.585 0 86.795 

Median -11.030 -248.071 -58.649 0.000 25.085 206.551 
75% 53.786 -125.401 -1.921 7.670 126.726 389.759 
95% 248.823 -3.178 41.147 198.820 429.847 819.885 

 

Note: Summary statistics of the log-diffs of daily CDS spreads, in basis points.  Columns 2 to 7 represent the 
mean and quantiles of the cross-sectional distribution of the measures in the first row. 

 
Table 1b. Summary statistics for log-differences of daily exchange rates 

 

 
Mean 5% 25% Median 75% 95% 

Mean 1.549 -94.932 -26.108 1.224 29.174 99.214 
Std dev 22.090 49.714 23.094 18.116 25.612 54.552 

1st-order autocor 0.049 0.258 0.118 0.081 0.189 0.234 
Skewness 0.275 -1.573 -1.724 0.330 2.017 1.753 
Kurtosis 1.615 5.377 5.527 4.392 7.252 5.697 

5% -32.743 -188.843 -71.645 -26.830 0.573 36.679 
25% -12.099 -118.255 -36.510 -7.036 12.056 62.410 

Median 0.664 -84.415 -20.898 0.000 23.045 86.147 
75% 14.148 -60.134 -10.115 8.994 39.087 123.977 
95% 37.704 -35.680 0.000 30.847 77.112 198.956 

 

Note: Summary statistics of the log-diffs of daily exchange rates measured, in basis points. Columns 2 to 7 
represent the mean and quantiles of the cross-sectional distribution of the measures in the first row. 
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5. Results 

Our results consist of three parts. In the first part, we describe our linear factor model estimates, in 

the second part we compare the accuracy of the simulation by the three generative AI models we 

employ and, in the third part, we show our systemic risk statistics and interpret them.  

 

5.1. Linear Factor Model 

We estimate three models as described in equation 4, using 5 lags for the outcome variable, for 

CDS, for FX and for both datasets. All the series were converted to log-diffs and were standardized 

to zero mean and unit variance before estimation. Latent factors were retrieved through PCA.  

We use the 𝐼𝐶௣ criteria of Bai and Ng (2002) to decide the number of static factors to include in the 

model. The maximum number of factors was set as Schwert (1989), who suggested using 8 ×

 𝑟𝑜𝑢𝑛𝑑 ൜ቂ
௠௜௡(்,ே)

ଵ଴଴
ቃ

ଵ ସ⁄

ൠ. Information criteria suggest using 4 factors to model the conditional mean 

of the CDS, FX and the two markets combined, which explain around 61.99%, 43.07% and 45.14% 

of the total variation, respectively.  

 In Tables 2a-2c we present the main results of our linear factor model. We have regressed each 

original series on each of the four estimated factors, and report the marginal R-squared, 

𝑚𝑅2(#factor), of the regressions in the second row of each table. Then we report the largest factor 

loads on each factor, aiming to identify what series are better represented by what factors. As can be 

observed, the first factors in the CDS market represent medium-size and large emerging markets 

like Colombia (CO5Y), Paraguay (PA5Y), India (ID5Y) and South Africa (ZA5Y); the second 

factor represent spread co-movements in advanced economies such as Belgium (BE5Y) or Austria 

(AT5Y).  

Regarding the FX market, the first factor is mainly associated with strong currencies like those of 

Singapur (SGD), Australian Dollar (AUD or Norway Crown (NOK). When the two markets are 

combined, the first factor is dominated by CDS series, while only Australian Dollar and the 

Norwegian Crown make it to the top 10 according to the factor loads.  

In Figures 4a-4d we present box-plots of the factor loads in the model of CDS and FX markets, 

distinguishing between advanced economies and emerging market economies. As can be observed, 

regarding the CDS market (Figures a and b) there is a larger heterogeneity between emerging 

markets than between advanced economies. This heterogeneity is even larger regarding FX markets. 
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Table 2a. CDS Factors: Total Variation Explained, 0.6199 

 Factor 1 Factor 2 Factor 3 Factor 4 

 mR2(1) 0.37 mR2(2) 0.11 mR2(3) 0.09 mR2(4) 0.05 

F
ac

to
r 

L
oa

d 
CO5Y 0.55 BE5Y 0.26 MX5Y 0.28 PL5Y 0.32 

PA5Y 0.54 AT5Y 0.23 PE5Y 0.26 HU5Y 0.27 

ID5Y 0.53 IE5Y 0.22 BR5Y 0.26 RO5Y 0.27 

ZA5Y 0.52 DE5Y 0.22 CO5Y 0.24 KZ5Y 0.15 

PE5Y 0.51 FR5Y 0.21 PA5Y 0.24 PT5Y 0.15 

MX5Y 0.50 NL5Y 0.21 MY5Y 0.23 ES5Y 0.15 

MY5Y 0.50 DK5Y 0.18 TH5Y 0.23 IT5Y 0.14 

CL5Y 0.49 SE5Y 0.17 CL5Y 0.22 IE5Y 0.02 

PH5Y 0.49 GB5Y 0.17 PH5Y 0.22 SE5Y 0.02 

CN5Y 0.45 FI5Y 0.15 CN5Y 0.21 FR5Y 0.02 

Table 2b. Factor Estimates from FX: Total Variation Explained, 0.4307 

 mR2(1) 0.30 mR2(2) 0.06 mR2(3) 0.04 mR2(4) 0.03 

F
ac

to
r 

L
oa

d 

SGD 0.77 EUR 0.28 MYR 0.34 UGX 0.24 

BND 0.72 ISK 0.22 PHP 0.17 UYU 0.12 

AUD 0.68 COP 0.20 THB 0.10 ZMW 0.09 

NOK 0.63 JPY 0.19 MXN 0.10 JPY 0.09 

NZD 0.61 STN 0.12 JPY 0.07 MGA 0.09 

SEK 0.59 SEK 0.12 BRL 0.07 PYG 0.08 

HUF 0.57 MYR 0.11 KRW 0.07 RUB 0.07 

EUR 0.56 CLP 0.11 RUB 0.05 BND 0.04 

CAD 0.54 HUF 0.10 ZAR 0.04 ISK 0.04 

ZAR 0.53 MXN 0.09 VUV 0.04 SGD 0.03 

         

Table 2c. Factor Estimates from CDS & FX: Total Variation Explained, 0. 4514 

 mR2(1) 0.24 mR2(2) 0.10 mR2(3) 0.06 mR2(4) 0.04 

F
ac

to
r 

L
oa

d 

CO5Y 0.58 SGD 0.36 BE5Y 0.27 MX5Y 0.19 

PA5Y 0.56 EUR 0.35 AT5Y 0.22 PH5Y 0.17 

MX5Y 0.56 BND 0.33 DE5Y 0.22 PE5Y 0.17 

PE5Y 0.54 NZD 0.29 IE5Y 0.22 CO5Y 0.17 

ZA5Y 0.54 AUD 0.28 FR5Y 0.21 MY5Y 0.16 

CL5Y 0.52 SEK 0.27 NL5Y 0.21 BR5Y 0.16 

BR5Y 0.50 HUF 0.26 SE5Y 0.18 TH5Y 0.15 

TR5Y 0.42 MY5Y 0.26 DK5Y 0.17 PA5Y 0.15 

NOK 0.41 TH5Y 0.25 GB5Y 0.17 CL5Y 0.15 

AUD 0.39 PH5Y 0.23 FI5Y 0.15 CN5Y 0.15 

Note: The table report the marginal R-squared, 𝑚𝑅2(#factor) and the highest factor loads on each factor 
from the second row on. See Table A1 in the appendix for a description of the CDS contracts and currencies 
in the first column of the tables. 
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Figure 4a: The CDS factor loadings, AE 

 

Figure 4b: The CDS factor loadings, EM 

 

 

Figure 4c: The FX factor loadings, AE 

 

Figure 4d: The FX factor loadings, EM 

 

Note: Box plots of estimated factor loadings corresponding to the first and second common factors in both 
CDS (top) and FX (bottom) markets, and for Advanced (left) and Emerging (right) market economies. 

 

5.2. Comparison of Generative models to simulate idiosyncratic components 

Table 3 shows the comparative performance of three generative models: TimeVAE, TimeGAN and 

TTSGAN, for different choices of hyper-parameters. Interestingly, the discriminative score (Table 

3a) does not suggest a significant difference between the models, with similar values ranging 

between 0.4987 and 0.5 for different number of hidden layers (i.e., 50-300 for the TimeVAE and 

using GRU, LSTM and LSTMLN for the TimeGAN) and different latent space dimensions (i.e. 15 

or 30), for the three models. On the other hand, the predictive score (Table 3b) provides evidence in 

favor of the TimeVAE. In this case, there is a reduction in the score value amounting to about 0.1, 

when we compare TimeVAE with the second-best model, irrespective of using CDS, FX or the 

combined markets data. 
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When we set the latent space dimension to 30, model performance increases in most of the cases, 

except for TimeGAN and TTSGAN for FX markets. Based on the results shown in Tables 3a and 

3b, we set hyper-parameters to maximize the model’s performance in all three cases.  

Finally, visual metrics (Figure A1 in the Appendix) suggest that TimeGAN and TTSGAN perform 

similarly, although TimeVAEs is the only one that seems to extract visible patterns from the 

original data, providing further evidence in favor of TimeVAEs. 

 

Table 3a. Discriminative Score 

  CDS FX CDS & FX 

Model Type Latent Dimension 

 15 30 15 30 15 30 

TimeVAE       

Hidden Layer Sizes       

50,100,200 0.4998 0.4992 0.4997 0.4998 0.5 0.4998 

150,250,300 0.4997 0.4995 0.5 0.4997 0.5 0.5 

TimeGAN       

Hidden Layer Types      

gru 0.4984 0.4987 0.4993 0.4997 0.4995 0.5 

lstm 0.4995 0.498 0.4995 0.499 0.4998 0.5 

lstmLN 0.4987 0.5 0.4996 0.4989 0.4995 0.5 

TTSGAN       

  0.485 0.4962 0.4845 0.4923 0.5 0.4993 

Note: Performance of generative models evaluated by a 2-layer LSTM post-hoc time-series 
classification network. The discriminative score shows classification accuracy minus 0.5 (lower the 
better). 

 

As the TimeVAE removes noise while generating synthetic data (Desai et al, 2021), it is important 

to note that the variance of the generated synthetic series is smaller than that of the actual series. 

This may not be true for TimeGAN or TTSGAN since these models do not include separate blocks 

in their structure for noise reduction, as in Denoising GAN (Chen et al, 2020), for instance. The 

variance of synthetic residuals generated by GANs is indeed very close to the variance of actual 

residuals while the variance of VAE generated residuals is much lower. We expect that the noise 

constitutes a significant portion of the total variance in the residuals obtained from the regression, 

thus TimeVAE scores a better predictive accuracy than GAN models in this specific exercise by 

simply performing better noise reduction.  
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Table 3b. Predictive Score 

  CDS FX CDS & FX 

Model Type Latent Dimension 

 15 30 15 30 15 30 

TimeVAE       

Hidden Layer Sizes       

50,100,200 0.4103 0.3835 0.4704 0.4698 0.4208 0.4011 

150,250,300 0.3941 0.3847 0.4698 0.4825 0.4297 0.3988 

TimeGAN       

Hidden Layer Types       

gru 0.4927 0.4475 0.5544 0.5808 0.4876 0.4649 

lstm 0.5219 0.4629 0.5173 0.5534 0.5512 0.5079 

lstmLN 0.4079 0.3853 0.5366 0.5748 0.4883 0.4386 

TTSGAN       

 0.6534 0.5954 0.7698 0.7633 0.8699 0.6123 

Original       

 0.3494 0.3494 0.3494 0.3494 0.3494 0.3494 

Note: Performance comparison of generative models as evaluated by a 2-layer LSTM post-hoc time-
series classification model. The predictive score represents mean absolute error (lower the better). As a 
benchmark, we present the predictive score of the classification model, where the original data is used 
to calculate the metrics.  

 

5.3. Systemic risk indicators 

Estimated Joint Probabilities of Distress are presented in Figures 5a and 5b for CDS and FX market, 

respectively. We show the results for all models setting to 50% the threshold that defines a systemic 

risk situation (i.e. a large proportion of the markets in distress).  

The results with TimeGAN and TTSGAN resemble each other, as expected, since they both belong 

to the GANs family. For both CDS and FX markets, JPD estimated according to all three models, 

appears to capture instances of widespread market turmoil. Notably, these instances include the 

periods following the European debt crisis in 2016, the Covid-19 pandemic in 2020, and the global 

monetary policy tightening in 2022. These three situations clearly affected the probability of 

distress in the two markets, and this was reflected by pronounced increases in the JPD indicators.  
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Figure 5a: Joint probability of distress, CDS 

 

Note: JPD of the CDS markets for the threshold=0.5. The simulations combine PCA and 
generative models: TimeVAE (left axis), TimeGAN and TTSGAN (right axis). 

 
 

Figure 5b: Joint probability of distress, FX 

 

Note: JPD of the FX markets for the threshold=0.5. The simulations combine PCA and 
generative models: TimeVAE (left axis), TimeGAN and TTSGAN (right axis). 

 

In summary, TimeVAE seems to better capture the overall temporal dynamics of systemic distress 

in both markets, as it shows clearer and more differentiated dynamics over the time compared to 

GANs.  Indeed, according to the TimeVAE, the joint probability of distress in the market for CDS 
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reaches the peak during the Covid19 pandemic, and remains at historically high levels by the end of 

our sample period. The record high JPD in 2020 for the CDS markets coincides with a record high 

JPD in the FX markets, which emphasizes the relationship between default and depreciation of the 

Twin markets.  

Figure 6a and 6b show the Expected Proportion in Distress given one of the markets is in distress. 

EPD is presented alongside 20% and 80% quantiles for CDS and FX markets in top and bottom 

panels of the figure, respectively. For CDS markets, the narrow band around the average value 

suggests low uncertainty in the estimate of the average value of markets in distress, which suggests 

a large commonality between the series of CDS spreads.  

 

Figure 6a: CDS expected proportion in distress, given one economy in distress 

 

Note: Expected proportion (in percent) of CDS market in distress given one market is in 
distress, averaged out across markets. 

 

Regarding the FX market on the other hand, a more heterogeneous dependence structure is 

observed, which could already be foreseen from the raw distribution of exchange rate variations 

provided in the data section. We can observe for both markets the band became narrower in the 

wake of the Covid19 crisis in 2020, when all the economies faced lockdowns, and fears for sudden 

stops and fiscal instabilities plagued debt markets in emerging and low income countries (Kose et 

al. 2021). A more heterogeneous dependence structure allows us to see more visibly the changes in 

densities of EPD estimates. The results confirm the pattern we observe at the CDS market as the 

mean of EPD estimates move up while its density concentrates more around the mean. For global 
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events which should affect both markets in a similar way such as the economic crisis induced by 

COVID-19 lockdowns, we see EPD estimates and its density move following the same pattern.  

 

Figure 6b: FX expected proportion in distress, given one economy in distress 

 

Note: Expected proportion (in percent) of FX market in distress given one market is in 
distress, averaged out across markets. 

 

Tables 4a and 4b present individual estimates of systemic risk for the economies with the largest 

and lowest EPDs, at three selected dates, which in turn, correspond to the highest average EPDs 

across all the markets over the sample. As for CDS instruments, Turkey, South Africa and Qatar 

appear at least twice among the most systemic markets for the selected dates. This indicates that one 

of these economies being in distress signals a high distress risk in the market as a whole. On the 

other hand, Ireland and Romania are among the least systemic in our sample, as the low EPD for 

these economies implies the realization of distress in these economies being more of idiosyncratic 

phenomena than a realization of systemic risk. Nonetheless, the difference between the highest and 

lowest statistics is relatively small, which once again points out to high commonality between CDS 

markets, which is in line with the previous literature (Gomez-Gonzalez et al. 2023).  

As for FX markets, the difference between the most systemic and the least systemic currencies is 

higher at around 5 pp, even during crisis periods. The currencies of Japan and Great Britain are 

among the most systemic ones. SCR and SGD are also on the list since the relevant monetary 

authorities allow them to move within a certain band against major currencies like USD and EUR, 
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thus the systemic relation should be attributed more to these major currencies. On the other hand, 

the currencies of Philippine, Ghana and Korea are among the least systemic.  

All in all, our systemic risk statistics provide a precise quantification of the intuitive result that 

currencies of less developed countries would not necessarily signal distress for the whole global FX 

market, while distress in strong currencies would indeed signal a distress for the entire FX market, 

mainly consisting of emerging market economies. 

 

 
Table 4a. Estimates of systematic risk, CDS 

  11 February 2016  23 March 2020  07 March 2022 

  EPD Instrument EPD Instrument EPD Instrument 

Most Systemic 57.33 ZA5Y 64.13 QA5Y 58.08 ZA5Y 

2 57.33 TR5Y 63.54 TR5Y 57.82 SA5Y 

3 57.12 IT5Y 63.35 TH5Y 57.75 QA5Y 

33 55.29 RO5Y 61.84 RO5Y 56.32 BR5Y 

34 55.12 DE5Y 61.8 MY5Y 56.2 IE5Y 

Least Systemic 55.12 IE5Y 61.4 IE5Y 55.84 DE5Y 

Note: The table presents three instruments in the CDS market with the largest and smallest 
expected proportion in distress (in percent) for three select dates with the highest expected 
proportion of distress estimates. See Table A1 in the appendix for a description of the full lists 
of CDS contracts and currencies in the table. 

 
 

Table 4b. Estimates of systematic risk, FX 

   20 January 2016  23 March 2020   26 September 2022 

  EPD Instrument EPD Instrument EPD Instrument 

Most Systemic 55.19 JPY 60.08 SCR 56.69 SGD 

2 54.47 ZAR 60.08 GBP 56.64 SCR 

3 54.46 MGA 59.79 AUD 56.42 GBP 

33 51.16 KRW 57.23 KRW 53.67 GHS 

34 51.01 GHS 57.15 GHS 53.61 PHP 

Least Systemic 50.38 PHP 57.13 PHP 53.36 KRW 

Note: This table presents three instruments in the CDS market with the largest and smallest 
expected proportion in distress (in percent) for three select dates with the highest expected 
proportion of distress estimates. See Table A1 in the appendix for a description of the full list of 
CDS contracts and currencies in the table. 

 

Figures 7a and 7b divide the results regarding the expected proportion of markets in distress 

between advanced economies and emerging markets. In this way, we evidence the existing 



 
 

30

interdependence between the two groups, which help to understand how market spillovers occur. 

Results indicate that spillover effects within groups are stronger than between groups for both 

advanced and emerging market economies. This confirms the findings of Le et al. (2022) which 

suggests that countries in the same economic groupings have stronger connectedness in the 

sovereign credit market. In our study, we demonstrate that the same is true for the FX market as 

well where the difference is more highlighted.   

 

Figure 7a: CDS expected proportion in distress, given an AE or EM in distress 

 

Note: CDS expected proportion in distress given one market is in distress  

 

Figure 7b: FX expected proportion in distress, given an AE or EM  is in distress 

 

Note: FX expected proportion in distress given one market is in distress. 
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Interestingly, in the case of FX markets, results clearly suggest asymmetric effects from AE to EM 

compared to spillovers from EM to AE, being the former clearly stronger than the latter. For the 

CDS markets, the view is more balanced, as spillovers seem to transit with equal strength in both 

directions, although with a slightly higher effect from AE to EM. Dovern & Roye (2014) provide 

evidence for stronger transmission mechanisms from AE to EM. Our EPD estimates support those 

findings and yet claim that the transmission in the opposite direction is not negligible either.  

Figure 7c displays spillovers between the CDS and FX markets, as measured by the crossed EPD 

using the model that incorporates all the series of CDS and FX. Notably, EPD in both markets has 

consistently increased over time, peaking at the beginning of 2020 and currently sitting at a record 

high. This highlights the potential occurrence of the Twin Ds given the current scenario of high debt 

and monetary policy tightening. The significant monetary easing observed globally during 2021 

appeared to have temporarily reduced the expected proportion in distress in the two markets when 

one market is in distress, but it did not have a significant impact on reducing the EPD in each 

market separately. However, both EPDs remain at very high levels, especially in the CDS markets. 

 
Figure 7c: CDS and FX EPD given one CDS or FX market in distress 

 

Note: CDS or FX expected proportion of market in distress given one CDS or FX market 
is in distress. The results are based on a model that combines the CDS-FX datasets. 
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6. Conclusions and Policy Implications 

Recent advances in deep learning for artificial intelligence provide rich possibilities for simulating 

market scenarios with multivariate time series that exhibit intricate patterns. In this study, we 

demonstrate the potential of generative AI in estimating systemic risk statistics, comparing the 

performance of two GAN-based models with Variational Autoencoders, and provide evidence in 

favor of the latter, as VAE achieves higher predictive accuracy by performing better noise 

reduction. 

Our work contributes to the estimation of the probability of distress in the FX and CDS markets, 

which has not been previously estimated. Our results indicate that by the end of our sample period, 

both the joint probability of distress and the expected proportion of markets in distress for the two 

markets are at historically record highs. This highlights the real possibility of a systemic risk event 

occurring in these markets. 

Our systemic risk statistics can be employed to track the impact of monetary and macro-prudential 

policies in real-time. For example, we observe a positive effect of monetary policy easing following 

the pandemic, as reflected in the reduction of the crossed EPDs of the markets during that period. 

However, this effect was temporary, as the EPD rebounded when policies tightened by the end of 

2022. 

Our findings provide valuable insights for monetary policy in developed economies, where the 

potential for spillover effects to create global instability exists, despite historical insensitivity of 

monetary policy in these economies to market instability in emerging market and low-income 

developing economies. Furthermore, our results are particularly important for central banks in 

emerging market and low-income developing economies, where macro-prudential regulations can 

be employed to mitigate the negative spillovers generated by policies in central economies. 

We find that spillovers within economic groups are stronger than in-between these groups. 

Additionally, the transmission is stronger from advanced economies to emerging and developing 

market economies than the opposite. This is true for both the CDS and FX markets. 

Our results underscore significant upticks in both sovereign risk and currency risk following the 

European debt crisis in 2016, the Covid-19 pandemic in 2020, and the tightening of global 

monetary policy in 2022. These occurrences notably impacted the likelihood of distress in these 

markets, as evidenced by substantial increases in our JPD indicators. 
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As per the TimeVAE analysis, the joint probability of distress in the CDS market reaches its peak 

during the Covid-19 pandemic and maintains historically high levels at the conclusion of our 

sample period. The peak JPD in 2020 for CDS markets connects with a similarly heightened JPD in 

FX markets, highlighting the interconnected nature of default and depreciation in the twin markets. 

All in all, our generative models generate realistic counterfactual scenarios that are yet to occur in 

financial markets but are likely to materialize in worst-case scenarios.  
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Appendix 

A.1. Some additional practical consideration 

The residuals data consist of a  𝑇  by 𝑁  matrix, where 𝑁  represents the number of instruments 

present in the market and 𝑇 refers to the number of business days. Then, the data are separated in 

monthly blocks of cardinality 𝑆. To generate multiple samples, we use a moving window of 1 day 

and rearrange our data in a  (𝑇 − 𝑆) ×  𝑆 ×  𝑁 matrix. Based on the trained model on the data 

above, we then generate 𝐷/𝑆 random samples, each as a 𝑆 ×  𝑁 matrix. The purpose of augmenting 

samples in this way is to preserve sequential features extracted from the trained data.  

Selecting hyper-parameters  

The main hyperparameters in the TimeVAE are: the size of latent space dimension, the number of 

iterations, batch size, number of trend polynomials and size of hidden layers. For the TimeGAN, the 

list includes the size of latent space, selected module (gru, lstm, lstmLN), number of layers, batch 

size and number of iterations. For TTSGAN, we adjust the hyperparameters of the latent space 

dimension, number of iterations and batch size.  

We explain below the reasoning behind the choice of all the major hyperparameters. We keep 

unchanged hyperparameters such as the learning rate for discriminator and generator and beta 

values for Adam optimizer, since they have already been tuned to optimal values in benchmark 

results and we consider them as a part of the model itself. Overall, the grounds for making the 

choices are very similar, thus we tend to apply the same choices for the same hyperparameters for 

all models to keep the results more comparable across our implementations. The performance 

metrics, however, demonstrate that the choice of model matters more than the choice of 

hyperparameters in most of the cases.  

To select the optimal size of the latent space, we generate data using different latent sizes up to the 

sequence length, i.e. the number of days in each sample. Yoon et al. (2019) recommend using latent 

space equal to half of the size of input features or equal to the sequence length as mentioned in the 

published source code. In terms of the prediction score for TimeVAE, the difference between 

selecting a high number of dimension sizes at 30 versus a low number of dimension sizes at 2 is 

very small, around 0.005 in favor of the higher dimension size. However, visual metrics suggest 

better performance with a higher dimension size, thus we end up using a latent space equal to 30.  

Smith (2018) shows in their tests of different batch sizes that at larger the batch size may improve 

the result until a certain size, but the impact becomes negligible thereafter. However, increasing 
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batch size would increase the number of epochs for the same number of iterations and this would 

make the computational burden on memory much higher. We cannot freely test different batch sizes 

for all the models due to different hardware requirements of each model. For TimeVAE and 

TimeGAN, this is less of an issue, however, TTSGAN, which heavily relies on image processing 

structure of transformer models, requires much more memory and it becomes infeasible beyond a 

certain level while keeping the number of iterations above 10,000. Another drawback of financial 

time series for the batch size selection is the number of samples being relatively small. Our database 

includes 3,077 samples which already suggests we may not simply divide our data to higher batches 

similar to the datasets with hundreds of thousands of samples. For our dataset, we could test all the 

models with batch size equal to 64 or less. The metrics suggest that the benefit of having batch size 

of 16 vs 64 is very little for TimeVAE, and almost non-existent for TTSGAN and TimeGAN.   

We keep the number of iterations at 10,000, as it is large enough for all the models since the change 

in losses already becomes zero or close to zero after a few hundred iterations. The hidden layer 

sizes, i.e. the number of filters in TimeVAE is unchanged for CDS and FX at default values, but we 

adjust them to make the number of layers of the first layer bigger than the feature size (i.e. number 

of instruments) and incrementally increase thereafter. It is standard design in Variational encoders 

with convolutional layers that hidden layer sizes increase in the encoder level, while the dimension 

of original data is reduced in each layer. For CDS and FX separately, we use 3 hidden layers with 

the number filters equal to 50, 100, 200, for the mixed dataset, we set them equal to 150 (about 

twice the number of instruments), 250, 350. Increasing the number of filters in hidden layers 

slightly improves the results. For TimeGAN, we use three layers and show the metrics results for 

all types of layers.  

The number of polynomials for TimeVAE is set to 5 to capture polynomial trends up to degree 5. 

Prediction score shows an improvement of 0.02 from 0 trend polynomials to 5 polynomials and the 

improvement thereafter is negligible.  
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Table A1. List of currencies and CDS contracts 
 

Country Short Name Group CDS Currency Currency Name 

Australia AU Advanced - AUD Australian dollar 

Austria AT Advanced AT5Y EUR Euro 

Belgium BE Advanced BE5Y EUR Euro 

Brazil BR Emerging Market BR5Y BRL Brazilian real 

Brunei BN Emerging Market - BND Brunei dollar 

Canada CA Advanced - CAD Canadian dollar 

Chile CL Emerging Market CL5Y CLP Chilean peso 

China CN Emerging Market CN5Y - - 

Colombia CO Emerging Market CO5Y COP Colombian peso 

Denmark DK Advanced DK5Y - - 

Finland FI Advanced FI5Y EUR Euro 

France FR Advanced FR5Y EUR Euro 

Germany DE Advanced DE5Y EUR Euro 

Ghana GH Least Developed Economy - GHS Ghanaian cedi 

Hungary HU Emerging Market HU5Y HUF Hungarian forint 

Iceland IS Advanced - ISK Icelandic króna 

Indonesia ID Emerging Market ID5Y - - 

Ireland IE Advanced IE5Y EUR Euro 

Israel IL Advanced - ILS Israeli new shekel 

Italy IT Advanced IT5Y EUR Euro 

Japan JP Advanced JP5Y JPY Japanese yen 

Kazakhstan KZ Emerging Market KZ5Y - - 

Madagascar MG Least Developed Economy - MGA Malagasy ariary 

Malaysia MY Emerging Market MY5Y MYR Malaysian ringgit 

Mexico MX Emerging Market MX5Y MXN Mexican peso 

Netherlands NL Advanced NL5Y EUR Euro 

New Zealand NZ Advanced - NZD New Zealand dollar 

Norway NO Advanced - NOK Norwegian krone 

Panama PA Emerging Market PA5Y - - 

Paraguay PY Emerging Market - PYG Paraguayan guaraní 

Peru PE Emerging Market PE5Y - - 

Philippines PH Emerging Market PH5Y PHP Philippine peso 

Poland PL Emerging Market PL5Y - - 

Portugal PT Advanced PT5Y EUR Euro 

Qatar QA Emerging Market QA5Y - - 
Republic of 
Korea KR Advanced KR5Y KRW South Korean won 

Romania RO Emerging Market RO5Y - - 

Russia RU Emerging Market - RUB Russian ruble 
São Tomé and 
Príncipe ST Least Developed Economy - STN São Tomé and Príncipe dobra 

Saudi Arabia SA Emerging Market SA5Y - - 
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Seychelles SC Emerging Market - SCR Seychellois rupee 

Singapore SG Advanced - SGD Singapore dollar 

South Africa ZA Emerging Market ZA5Y ZAR South African rand 

Spain ES Advanced ES5Y EUR Euro 

Sweden SE Advanced SE5Y SEK Swedish krona 

Thailand TH Emerging Market TH5Y THB Thai baht 

Tonga TO Emerging Market - TOP Tongan pa’anga 

Turkey TR Emerging Market TR5Y TRY Turkish lira 

Uganda UG Least Developed Economy - UGX Ugandan shilling 

United Kingdom GB Advanced GB5Y GBP Pound sterling 

Uruguay UY Emerging Market - UYU Uruguayan peso 

Vanuatu VU Emerging Market - VUV Vanuatu vatu 

Vietnam VN Least Developed Economy VN5Y - - 

Yemen YE Least Developed Economy - YER Yemeni rial 

Zambia ZM Least Developed Economy - ZMW Zambian kwacha 

Note: CDS and currencies used in the study.  



 
 

43

 
 
 
 
 
 
 
 

Figure A1a. Comparison of generative models by visual metrics (CDS market) 

Note: These charts show the comparison of performance of generative models by visual metrics PCA (left) and 
TSNE (right). The generative models are ordered from the first row to the last in the following fashion: 
TimeGAN, TimeVAE, TTSGAN 
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Figure A1b. Comparison of generative models by visual metrics (FX market) 

Note: These charts show the comparison of performance of generative models by visual metrics PCA (left) and 
TSNE (right). The generative models are ordered from the first row to the last in the following fashion: 
TimeGAN, TimeVAE, TTSGAN 
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Figure A1c. Comparison of generative models by visual metrics (CDS & FX combined market) 

Note: These charts show the comparison of performance of generative models by visual metrics PCA (left) and 
TSNE (right). The generative models are ordered from the first row to the last in the following fashion: 
TimeGAN, TimeVAE, TTSGAN 


