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Abstract

We propose a novel approach to marked Hawkes kernel inference which we name the moment-based
neural Hawkes estimation method. Hawkes processes are fully characterized by their first and second
order statistics through a Fredholm integral equation of the second kind. Using recent advances in
solving partial differential equations with physics-informed neural networks, we provide a numerical
procedure to solve this integral equation in high dimension. Together with an adapted training
pipeline, we give a generic set of hyperparameters that produces robust results across a wide range of
kernel shapes. We conduct an extensive numerical validation on simulated data. We finally propose
two applications of the method to the analysis of the microstructure of cryptocurrency markets. In
a first application we extract the influence of volume on the arrival rate of BTC-USD trades and in
a second application we analyze the causality relationships and their directions amongst a universe
of 15 cryptocurrency pairs in a centralized exchange.

Keywords – Hawkes process, Non-parametric estimation, Physics-informed neural network, Cryp-
tocurrency
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1 Introduction
Hawkes processes are a class of point process that models a sequence of arrivals of events that can cluster
over time. Their properties can display self-exciting or self-inhibiting behaviors in the unidimensional
case, and mutual-exciting or mutual-inhibiting behaviors for multidimensional processes. In the recent
years, their application has been explored in many areas such as earthquakes (Wang et al., 2012; Kwon
et al., 2023), neuroscience (Reynaud-Bouret et al., 2013), criminality (Olinde and Short, 2020) and in
finance (Muni Toke and Pomponio, 2012; Bacry et al., 2013, 2015; Rambaldi et al., 2017; Gao et al., 2018;
Jusselin and Rosenbaum, 2020). A D-variate linear Hawkes process N = (N1, . . . , ND) is a counting
process with conditional intensity vector λt = (λ1t , . . . , λ

D
t ) such that for any i = 1, . . . , D,

λit = µi +

D∑
j=1

∫
(−∞,t)

ϕij(t− s) dN j
s , (1)

where µ = (µ1, . . . , µD) is the baseline intensity which corresponds to the exogenous component and
Φ = (ϕij)1≤i,j≤D is the kernel matrix. For any i = 1, . . . , D, j = 1, . . . , D, the element ϕij is a function
that gives the impact each past event has over the instantaneous probability of observing a new event
at time t. This interpretability of Hawkes processes justifies their widespread use especially in causality
analysis (Xu et al., 2016; Achab et al., 2017). In the common framework where ϕ is positive we say
that the processes N1, . . . , ND are self- and mutually exciting. The use of Hawkes processes that exhibit
kernels with negative parts provides more flexibility and better fits to inhibitory behaviors that are often
observed in the data, at the price of a lesser mathematical tractability (Lu and Abergel, 2018; Duval
et al., 2022).

In general the estimation of such processes is carried on by specifying a parametric form of the influence
kernel and then calibrating the parameters via likelihood maximization (Lee and Seo, 2017; Lu and
Abergel, 2018; Bonnet et al., 2023, among recent contributions). Specifying an exponentially decreasing
kernel preserves the Markovian property and is therefore a common choice. But even the estimation
of exponential kernels can sometimes be tricky — especially in large dimension — since the likelihood
is strongly non-convex. Moreover, much more specific forms of Hawkes kernels are required to fit the
data in practice. For example, latency effects may cause the kernel to be non-monotonic when dealing
with high-frequency financial data. Furthermore, the dynamic of the point process may depend on an
additional component such as the past realizations of marks which makes the kernel even more complex
to specify. The application of a non-parametric method is thus essential in this case.

1.1 Literature review of non-parametric estimation methods
Non-parametric inference has been explored through different methodologies. An expectation-maximization
(EM) algorithm was designed using the cluster representation of Hawkes and Oakes (1974) for univariate
kernel estimation (Lewis and Mohler, 2011) and was later extended to the multivariate case (Zhou et al.,
2013). Nevertheless this method has three drawbacks which are particularly exacerbated in the context
of high-frequency financial data, as outlined in Bacry and Muzy (2016):

- high computational cost: the evaluation of the log-likelihood has a quadratic time complexity in
the number of observations ;

- tail-modulated speed of convergence: the EM algorithm slowly converges when the kernel is power-
law decaying, and such kernels are often observed in financial data ;

- removal of inhibition effects: as the kernel is constrained to take positive values, inhibitory effects
cannot be quantified.

The exploitation of an infinite autoregressive representation has been proposed as well in Eichler et al.
(2017). Similarly, the INAR representation of Hawkes processes is used in Kirchner (2017). Note that
other kernel estimation methods have been proposed in the literature and either explore least squares
estimation (Bacry et al., 2020) or Bayesian inference perspectives (Zhang et al., 2018; Rousseau et al.,
2018; Sulem et al., 2021). However, these methods are unsuitable to general multivariate marked kernels.
Other methods focus on the estimation of the norm of the kernels rather than their shape as in Achab
et al. (2017).

The use of neural networks has been explored in Joseph et al. (2020); Joseph and Jain (2023). The authors
train a neural network model that outputs the kernel matrix and aims at maximizing the associated log-
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likelihood over event time observations. This procedure solves the problem of high dimension but shares
the drawbacks that are directly linked to a Hawkes likelihood optimization, i.e. the potentially large
number of local minima and a high computational cost.

To overcome these disadvantages, another class of non-parametric methods encompassing moment-based
procedures has been made popular in the literature. Based on the Laplace transform of the autocovariance
function, the inference of symmetric kernels is developed in Bacry et al. (2012). This methodology is
extended in Bacry and Muzy (2016) by relaxing the symmetry assumption. The authors demonstrate
a characterization equation that links the kernel matrix of any stationary linear Hawkes process to its
second order statistics. The resulting system of equations involves Fredholm integral equations of the
second kind that are numerically solved as a Wiener-Hopf system by discretizing the time domain with
quadratures.

Although the Wiener-Hopf (WH) method of Bacry and Muzy (2016) seems to provide a convenient
framework as both power-laws and inhibitory effects, as well as marked kernels are inferred, its practical
application can be laborious as it is prone to the curse of dimensionality when D increases. Solving such
a system involves the inversion of a matrix that can be arbitrarily large depending on the dimension of
the Hawkes process, on the size of the support of the mark process and on the number of quadrature
points. Moreover estimation issues involving oscillatory behaviours have been reported — see for example
Cartea et al. (2021) — and the optimal number of quadratures might be highly problem-dependent.

The problem of the Wiener-Hopf approach does not lie in the methodology itself since solving the char-
acterization equation should lead to the desired solution, but rather in the numerical solving procedure.
Supported by recent advances in the literature about physics-informed neural networks (PINNs), we pro-
pose in this work to infer the solution by training a neural network to solve the characterization integral
equation. Originally developed in Psichogios and Ungar (1992); Dissanayake and Phan-Thien (1994);
Lagaris et al. (1998) for differential equations and initial/boundary value problems that arise in physics,
this idea has gained much more attention in the past years due to the rising availability of computational
resources.

1.2 Contribution and organization of the paper
Our main contributions are the following.

- We introduce a novel non-parametric estimation method for the kernel of marked Hawkes processes
in high dimension. Our method leverages some of the latest advances in PINNs training to train a
robust kernel learner that solves the characterization equation of Bacry and Muzy (2016).

- We provide a general configuration of hyperparameters and network architecture that approximates
the solution with excellent accuracy with respect to the characterization equation residual.

- Using our estimation method on high-frequency cryptocurrency data, we extract the impact of
volume over the arrival rate of BTC-USD trades and we analyze spillover effects within a high-
dimensional universe of cryptocurrency pairs. We define two ratios that quantify the direction of
causal relationships.

The structure of this paper is as follows. Section 2 first defines our framework and notations, then in-
troduces the characterization equation of Bacry and Muzy (2016) and finally presents the neural Hawkes
non-parametric estimation method. A fully detailed training procedure is provided. Section 3 validates
the estimation method on simulated data and provides insights about hyperparameter tuning and ro-
bustness. Section 4 finally applies the estimation method to high-frequency cryptocurrency data.

2 Moment-based non-parametric neural Hawkes estimation

2.1 Framework and notations
Let N be a D-multidimensional linear marked Hawkes process such that for i ∈ {1, . . . , D}, (N i

t )t≥0 has
the intensity process (λit)t≥0 and mark process (ξit)t≥0. We assume the non-zero marks are i.i.d. and
{t, ξit ̸= 0} = {t,N i

t −N i
t− = 1}. We denote by pi the probability density function of the random variable

ξit conditionally on {N i
t −N i

t− = 1}. We furthermore denote by Xi ⊂ (0,+∞) the domain of pi.
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We denote by Φ := (ϕij)(i,j)∈{1,...,D} the kernel matrix of N and by µi its baseline intensity and we
assume that for any i = 1, . . . , D, j = 1, . . . , D, ϕij takes values in R+. For any i ∈ {1, . . . , D}, the
arrival intensity of events of type i at time t ≥ 0 is

λit = µi +

D∑
j=1

∫
(−∞,t)

ϕij(t− s, ξjs) dN j
s . (2)

Let ∥Φ∥ :=
(
∥ϕij∥

)
(i,j)∈{1,...,D}2 be the matrix of L1-norms of the kernel components, i.e. for all (i, j) ∈

{1, . . . , D}2,
∥ϕij∥ :=

∫∫
(0,+∞)×Xj

ϕij(s, z) pj(z)dsdz. (3)

The endogeneity ratio of the process N is

R := max
λ∈S(Φ)

|λ|, (4)

where S(Φ) is the spectrum of the matrix ∥Φ∥. The condition R < 1 ensures the stationarity of N and
consequently, the vector of first order statistics Λ := E(λt) = (Λi)i∈{1,...,D} writes

Λ = (I− ∥Φ∥)−1 µ, (5)

where I is the identity matrix of size D.

Let us now define two quantities that will be of interest in our paper. For all (i, j) ∈ {1, . . . , D}2, we call
aggregated time kernel, denoted φij , the expectation of the kernel component (i, j) with respect to the
mark distribution :

φij(t) := E
(
ϕij
(
t, ξj

))
=

∫
Xj

ϕij(t, z) pj(z)dz. (6)

Similarly, we call aggregated mark kernel, denoted f ij , the norm of the kernel component (i, j) along the
time coordinate

f ij(x) :=
1

∥ϕij∥

∫
(0,+∞)

ϕij(s, x)ds. (7)

Note the normalization such that E
(
f ij(ξj)

)
= 1. The aggregated kernels are such that if the kernel is

multiplicative in the sense that ϕij(t, x) = ψ(t)h(x) for some functions ψ and h with E(h(ξ)) = 1, then
ψ ≡ φij and h ≡ f ij .
The second-order statistics characterization equation of a point process N with intensity defined in
Equation (2) is given by the following result.

Theorem 1 (Bacry and Muzy (2016)) If G is the second-order statistics matrix defined by

Gij(t, x)dtdx := E
[
dN i

t

∣∣∣ dN j
0 = 1, ξj0 ∈ [x, x+ dx]

]
− 1{i=j, t=0}dx− Λidtdx, (8)

then for all i ∈ {1, . . . , D}, the cross-excitation kernels of the i-th event type ϕi. := (ϕij)j∈{1,...,D} are the
solutions of the following D-system of equations

Gij(t, x) = ϕij(t, x) +

D∑
k=1

∫∫
(0,+∞)×Xk

ϕik(s, z)Hkj(t− s, x, z)pk(z) dsdz, 1 ≤ j ≤ D (9)

where

Hkj(t, x, z) := Gkj(t, x)1{t>0} +
Λk

Λj
Gjk(−t, z)1{t<0}. (10)

The process is fully characterized by this result in the sense that once the kernel matrix is obtained from
Equation (9), the baseline intensity µ is deduced using Equation (5).

In practice the mark universe is discretized which turns Equation (9) into a Fredholm equation of the
second kind. The Wiener-Hopf method consists in discretizing the time domain using quadratures and
inverting the corresponding matrix to deduce the values taken by the solution at the quadrature points.
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Thus, the entire kernel matrix Φ is obtained by proceeding to the inversion ofD matrices of sizeQ×M×D,
where Q is the number of quadratures and M the size of the discretized mark universe. For a large Q —
100 to 1000 points —, a reasonably large M — 3 to 10 points — and a large dimension — 10 event types
— the inversion becomes both computationally costly and noisy with a potentially high approximation
error.

Note that depending on the sign of the second order statistics, inhibitory effects can be observed, i.e.
a kernel that explores negative values. As discussed in Bacry and Muzy (2016); Rambaldi et al. (2017)
this does not invalidate the non-parametric estimation method as long as P

(
λit < 0

)
is negligible for any

i = 1, . . . , D. In this case, the authors have shown the method leads to reliable results.

2.2 Physics-Informed Neural Networks
Assume f : [0, T ]× Ω→ R is a solution to a partial differential equation (PDE) with representation

∂tf +Df = 0, t ∈ [0, T ], x ∈ Ω ⊂ R, (11)

where D is a differential operator, T the time horizon and Ω the spatial domain. Suppose that some
initial and boundary conditions ensure the uniqueness of solution f :

f(0, x) = g(x), x ∈ Ω, (12)

Bf(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω, (13)

where B is the boundary operator associated to Equation (11) and ∂Ω is the boundary of Ω.

A data-driven approach to solve this PDE is to specify the solution f as a neural network fθ where
θ is the set of trainable parameters. Since f is assumed continuous on [0, T ] × Ω, the existence of this
approximation is guaranteed by the universal approximation theorem (Hornik et al., 1989) provided there
are enough hidden units and the activation function is continuous, unbounded. This physics-informed
neural network (PINN) specification was formulated in Raissi et al. (2019) and have motivated many
researchers in the past years. The idea is to train fθ such that it minimizes the following loss function

L(θ, E) := 1

N c

Nc∑
n=1

|∂tfθ(tn, xn) +Dfθ(tn, xn)|2+
1

N i

Ni∑
n=1

∣∣fθ(0, xin)− g(xin)∣∣2+ 1

N b

Nb∑
n=1

Bfθ(tbn, xbn)2, (14)

where E := {{(tn, xn)}1≤n≤Nc , {xin}1≤n≤Ni , {(tbn, xbn)}1≤n≤Nb} are either a reference grid used for valida-
tion or randomly generated data points at each iteration of a gradient descent algorithm. The notations
N c, N i and N b hold respectively for the number of collocation points, initial condition points and bound-
ary condition points. The gradients and other derivatives are computed via automatic differentiation.

At the beginning of its development, the method presented a lot of training issues that have been tackled
since, encompassing unbalanced gradients (Wang et al., 2021; Deguchi and Asai, 2023), the reproduction
of time causality (Wang et al., 2022b), the complexity of the PINNs loss landscapes (Krishnapriyan et al.,
2021) and the difficulty of optimizing the sum of multiple competitive loss functions (Bischof and Kraus,
2021). Although the literature about PINNs is still burgeoning, several good practices have already
emerged and now allow researchers to train robust models.

This data-driven approach can be transposed from PDEs to integral equations (IEs). If f is a solution
to an integral equation with representation

f + If = 0, t ∈ [0, T ], x ∈ Ω ⊂ R, (15)

where I is an integral operator, T the time horizon and Ω the spatial domain, then the loss function of
the associated PINN fθ is written

L(θ, E) := 1

N

N∑
n=1

|fθ(tn, xn) + Ifθ(tn, xn)|2 . (16)

For example, if f is the solution of the following Fredholm integral equation of the second kind

g(t) = f(t) +

∫ T

0

g(t− s)f(s)ds, t ∈ [0, T ], (17)
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where g is a continuous function satisfying sup
0≤t≤T

∫ T

0
|g(t− s)|ds < 1 which ensures the uniqueness of the

solution, we write for all t ∈ [0, T ]

If(t) := −g(t) +
∫ T

0

g(t− s)f(s)ds. (18)

This time, the training of a PINN fθ that approximates the solution of Equation (15) does not involve the
estimation of gradients, but the computation of an integral via a quadrature method. The exploitation of
neural networks in such frameworks has been proposed e.g. in Effati and Buzhabadi (2012); Zappala et al.
(2022); Guan et al. (2022); Yuan et al. (2022). Inspired by the best practices from the literature concerning
PINNs applied to PDEs and IEs, we now design a PINN model to solve the Hawkes characterization
equation.

2.3 Moment-based neural Hawkes estimation procedure
Let uθ : (t, x) 7→ (uijθ (t, x))1≤i,j≤D be a physics-informed neural network with trainable parameters θ.
Our goal is to find θ∗ that minimizes a loss function L over the domain of Equation (9). We truncate the
time domain and define the kernels for t ∈ [0, T ] instead of [0,+∞). Without any loss of generality we
assume that for all i, Xi = X ⊂ (0,+∞) and that X is bounded. In practice, it simplifies the computation
of the loss function and we can always extend the sets Xi such that all D probability density functions
pi share the same domain X .

2.3.1 Loss function

Consider a set of data points E := {(tn, xn), 1 ≤ n ≤ N c} sampled over the domain (0, T ) × X . We
assume that the second-order statistics Gij(tn, xn) defined at Equation (8) are non-zero for all i, j and n.
From the characterization equation of Theorem 1, we define the (i, j)-equation residual at the n-th data
point by

εijn (θ) := Gij(tn, xn)− uijθ (tn, xn)−
D∑

k=1

∫∫
(0,T )×X

uikθ (s, z)Hkj(tn − s, xn, z)pk(z) dsdz, (19)

and define the quadratic loss function L with

L(θ, E) :=
Nc∑
n=1

∑
1≤i,j≤D

εijn (θ)
2. (20)

Following the recommendations of Wang et al. (2023) on the training of PINNs, we use a loss weighting
procedure to better infer the time causality of the kernel matrix. This weighting procedure was introduced
in Wang et al. (2022b). The authors noticed that neural networks may encounter issues in approximating
the solution of PDEs over the time component t due to the propensity of the model to minimize all loss
components at the same time. They proposed to create temporal weights that will not give importance to
a loss component evaluated at any time t unless all the previous components — for all time s < t — are
sufficiently small. This can be particularly relevant for Hawkes kernels when the accuracy of estimation
at short times is crucial.

We revisit this methodology by introducing a normalized weighting procedure that scales the loss and
controls the weights’ range of values. Assume the set E is built such that for all n ∈ {1, . . . , N c}, tn−1 < tn
and define the cumulative loss at time tn:

Sijn :=

n∑
k=1

εijk (θ)
2. (21)

We define the (i, j)-temporal weight evaluated at the n-th data point

ωij
n (θ) :=


1 if n = 1,

exp

{
−ϵS

ij
n−1

SijNc

}
otherwise,

(22)
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where ϵ is a a hyperparameter that controls the minimum value taken by the weights as they all take
values in ]e−ϵ, 1]. We finally define the weighted loss function as

Lω(θ, E) :=
Nc∑
n=1

Lω
n(θ), (23)

where
Lω
n(θ, E) :=

∑
1≤i,j≤D

ωij
n (θ) εijn (θ)

2. (24)

2.3.2 Sampling procedure

We now detail the sampling procedure of the set of data points E := {(tn, xn), 1 ≤ n ≤ N c}. Our
method uses a generic randomized sampling. The model did not show any significant improvement
by using residual-based adaptive sampling such as the ones described in Wu et al. (2023) as standard
sampling already provides accurate estimates of the kernel matrix.

As our practical applications are usually done for short time scales – such as high-frequency data –
we are particularly concerned by the inference of kernels that may have large variations for t < 10−3,
corresponding to a millisecond. Therefore we adapt the randomized time sampling by generating more
data points for small times. Let S be the proportion of time points taking values under a short-time scale
threshold h≪ T . For a training set of size N c, we sample ⌊SN c⌋ data points using a log-uniform law on
the interval (0, h), and N c − ⌊SN c⌋ data points using a uniform law on the interval (h, T ), ⌊.⌋ being the
floor function. In the rest of the paper, we set S = 0.3.

Finally, an integer uniform grid sampling is used for the mark data points.

2.3.3 Architecture and detailed training pipeline

The choice of the neural network architecture can be crucial when designing a PINN. For example in
Wang et al. (2021), the authors propose a novel architecture to help reducing gradient flow issues during
training. Furthermore, neural networks inspired from the long-short term memory cell may lead to better
performance as argued in Sirignano and Spiliopoulos (2018). In the rest of the paper, we use the Deep
Galerkin Method (DGM) network architecture introduced in Sirignano and Spiliopoulos (2018).

As discussed in Bacry and Muzy (2016), it is noteworthy that the system of D2 Fredholm integral
equations can be formulated as D independent systems of D Fredholm integral equations. Thus, the
approximated solution can be splitted into D neural networks each predicting an output of size D —
the kernels ϕi. or in over words, the i-th row of the kernel matrix Φ. This splitting procedure involves
the training of D models and presents two great benefits. The first one is the suitability to parallel
computing leading to a much faster training. Secondly, separately minimizing D loss functions instead
of minimizing their sum will much likely lead to an improved overall performance. To this extent, we use
this methodology to learn the entire kernel matrix Φ. The loss functions of Equations (20) and (24) are
decomposed as D loss functions such that for all i,

Li(θ, E) :=
Nc∑
n=1

D∑
j=1

εijn (θ)
2, (25)

and

Lω
i,n(θ, E) :=

D∑
j=1

ωij
n (θ) εijn (θ)

2. (26)

The detailed training pipeline is described in Algorithm 1.

2.4 The practitioner’s corner
The aim of this section is to give a practical advice regarding training and potential questions that arise
during the implementation step.
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Algorithm 1 Training procedure of the moment-based neural Hawkes
1. Compute statistics over the time and mark domains that will be used for input normalization.
2. For i = 1 to D:

(a) Represent the solution of the i-th characterization equation of Theorem 1 by a DGM neural
network uiθ and initialize its weights θ with a Glorot scheme.

(b) Set the number of epochs E, the size N c of the training set E , the batch size B such that
N c = 0 [B], a decreasing sequence of learning rates (γe)e≥1 and a random sampling scheme,
e.g. the procedure described above. We use γe = γ0100

− e
E .

(c) For e = 1 to E:
i. Sample a training set E = {(tn, xn), 1 ≤ n ≤ N c}} and a validation set Ē .
ii. Apply a standardization and log-scaling to the data points.
iii. Over the elements of E : compute the equation residuals (εijn (θ))1≤j≤D and the temporal

weights (ωij
n (θ))1≤j≤D.

iv. For s = 1 to Nc

B :
- Using Equation (26), update the weights via a mini-batch gradient descent

θ ← θ − γe
1

B

sB∑
n=(s−1)B+1

∇θLω
i,n(θ). (27)

v. Using Equation (25), compute the unweighted validation loss Li(θ, Ē).
(d) Outputs: An estimate θi of the optimal weights for the i-th model and a list of validation

losses over the epochs.
3. Outputs: D models (uiθi)1≤i≤D, the i-th model representing the i-th row of the kernel matrix.

On the non-dimensionalization of the problem. In order to standardize the time and mark inputs
of the neural network, we recommend the following transformations.

- Time: Apply a logarithmic transformation t 7→ logp t, with p = 10 for example. This allows the
network to better infer kernels that have large fluctuations over small time windows. In practice,
as this is commonly observed in financial microstructure when studying the order flow at short
time scales, we advise the practitioners to use this scaling by default. Furthermore, our numerical
experiments have shown significant improvements by using this transformation.

- Mark: A good standardization methodology for the marks should depend on the data generating
process. By default, we applied a z-score transformation x 7→ x−m

σ where m and σ are respectively
the empirical average and empirical standard deviation computed over a sample of the training
data.

On the activation functions of the DGM layer. We recommend using ReLU activation functions in
place of hyperbolic tangent in order to improve the approximation quality. We found that discontinuous
kernels are much better reproduced with this configuration.

On the estimation of the integral. The integral component of Equation (29) is numerically esti-
mated with time quadratures. Although a large number of quadratures — larger than 1000 — may
provide slightly better results, we did find that 500 quadratures were amply sufficient to obtain a good
performance. One should keep in mind that the training procedure becomes costly if this number is too
large as D2M integrals need to be computed at each evaluation of the loss. In the numerical experiments,
we use a quadrature scheme with a logarithmic grid.

On the choice of the loss function. As pointed out in Wang et al. (2022a), the L∞-norm can be
chosen instead of the L2-norm in the training process as it may lead to more accurate solutions. We
explored this idea and finally chose to stick to the original norm as the validation results presented in the
next section did not improve with this change.

On the estimation of the second order statistics. A correct choice of the time grid over which
the statistics G are estimated is crucial. As the number of observations increases, we can expect to get a
more precise estimation and thus we can set a finer mesh. As the choice of the sample-grid may be highly
problem-dependent, we will use a grid that is well suited for our scope of application. To this extent,
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we shall use a scheme inspired by the work of Bacry et al. (2016) and Rambaldi et al. (2017) for the
estimation of kernels with short time horizon. It consists in a linear scheme for very short times up to an
intermediate step h, and then a logarithmic scheme from h to the time horizon T . This allows to account
for the structure of high-frequency data as explained by the authors. We thus use the following rule. We
set h < T , the number of points in the linear part nlin and the number of points in the logarithmic part
nlog and estimate the statistics on the following grid[

tmin, tmin +
1

nlin
(h− tmin), tmin +

2

nlin
(h− tmin), . . . , h, h

(
T

h

) 1
nlog

, h

(
T

h

) 2
nlog

, . . . , T

]
. (28)

On the continuity of the kernel at time T−. Since the kernel matrix is defined for t ≤ T , we may
impose a continuity condition u(T, x) = 0, for all x ∈ X depending on the practical application. In the
PINN literature, this boundary constraint is simply introduced to the training by adding an additional
error term to the quadratic loss. A regularization weight ωc is then applied to this loss term.

On kernels with different orders of magnitude. Approximation issues may arise when the values
taken by each kernel component of the matrix explore very different orders of magnitude. In this case,
the kernels with high values will be correctly estimated but the relative error made over the other kernels
might be high. This inference problem is similar to the causality issue that was studied in Wang et al.
(2022b) in the sense that the neural network averages the errors made over the statistics G. Thus,
statistics that take high values will overshadow the ones taking small values. An idea to mitigate this
problem is to use a weighted version of the loss function defined in Equation (29). To this extent, we
propose the following weighted loss function

Lω(u,G, E) :=
Nc∑
n=1

∑
1≤i,j≤D

ζij(xn)ω
ij
n (θ)εijn (θ)

2, (29)

with

ζij(x) :=

(∫
(0,T )

∣∣Gij(t, x)
∣∣ dt)−1

∑
1≤i′,j′≤D

(∫
(0,T )

∣∣∣Gi′j′(t, x)
∣∣∣dt)−1

, 1 ≤ i, j ≤ D. (30)

This weighting procedure puts more weight to kernels that exhibit smaller absolute second-order statistics
G with respect to other kernels. Obviously, this technique becomes irrelevant if all the components of
the kernel matrix Φ take similar values.

On the training time. As the Wiener-Hopf approach, our non-parametric method has the benefit of
having a computation time that is independent from the number of observations. In fact, the number of
observations influences the computation time of second order statistics but not the training time itself.
This strongly contrasts with common likelihood approaches.

3 Numerical validation
In this section we present several numerical experiments conducted over a wide range of simulated data.
We show that the moment-based non-parametric neural Hawkes estimation method detailed in Section
2 provides accurate kernel estimates in various configurations of dimensions, kernel types and mark
distributions. We measure the rate of convergence of the method with respect to the sample size and
provide some elements regarding the robustness of the method with respect to hyperparameters.

3.1 Numerical validation for various shapes of kernels
We set up four numerical experiments. In each experiment, we simulate a sequence of timestamps
generated by a multidimensional linear Hawkes process with kernel configurations that may appear in
financial applications, e.g., with slowly decreasing tails and inhibition patterns. For each simulated event,
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a mark ξ is independently generated from a discrete uniform law taking values in X = {1, . . . ,M} where
M is specified for each experiment.

More precisely, we use in all experiments a multiplicative kernel matrix Φ with components satisfying

ϕij(t, x) := φij(t)f ij(x), 1 ≤ i, j ≤ D, t ∈ (0,+∞), x ∈ X . (31)

Each experiment tests a specific form of aggregated time kernels φij , namely exponentially decreasing
kernels, slowly-decreasing kernels, kernels with latencies and kernels with inhibition.

As for marks, aggregated mark kernels can be either a constant mark kernel

f0(x) = 1, (32)

or a linear mark kernel
f1(x) =

2

M + 1
x, (33)

or a quadratic mark kernel

f2(x) =
6

(M + 1)(2M + 1)
x2. (34)

In each case E (f(X)) = 1. We train a neural network following Algorithm 1 with the set of hyperparam-
eters displayed in Table 1 and we estimate the kernel over the truncated time domain (0, T ).

Table 1: Hyperparameters configuration in the numerical experiment

Neurons DGM depth Learning rate Quadratures Batch size Training size Validation size Epochs

64 1 10−3 250 8 1024 128 1000

Exponentially decreasing kernel. Exponentially decreasing functions are amongst the most popular
kernels found in the literature. The Markov property that results from such a specification provides
mathematical tractability and a greatly reduced computation cost when simulating. The non-parametric
estimation of these kernels from simulated data constitutes the first step of our validation procedure.

We set D = 4, M = 10 and simulate 107 events of a linear marked Hawkes process with kernel functions

ϕij(t, x) := αije
−βijtf ij(x), 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X . (35)

The parameters of the time component and the mark kernels are given in Table 2. The second order
statistics are estimated using the grid of Equation (28) with parameters h = 0.1, nlin = 10, nlog = 50.
The baseline intensity is µ = [0.5, 0.25, 0.75, 0.15]′.

Table 2: Exponentially decreasing kernel — Parameter configuration of the simulation

(a) α

αij 1 2 3 4

1 1.5 1 2 0.75
2 1 2 2 1
3 1 1 2 1.5
4 2 1 2 0.5

(b) β

βij 1 2 3 4

1 8 5 10 8
2 5 15 8 5
3 8 10 8 8
4 5 5 8 4

(c) f

f ij 1 2 3 4

1 f1 f2 f1 f1
2 f1 f2 f2 f0
3 f0 f0 f2 f0
4 f2 f1 f2 f1

The fits of aggregated time kernels and mark kernels are displayed in Figure 1 and 2. We observe a great
fit for both components and the model is able to reproduce the various mark kernel functions even when
f ≡ 1.
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Figure 1: Exponentially decreasing kernel — Comparison of the predicted and exact aggregated time
kernel matrix (φij)1≤i,j≤D defined in Equation (6).
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Figure 2: Exponentially decreasing kernel — Comparison of the predicted and exact aggregated mark
kernel matrix (f ij)1≤i,j≤D defined in Equation (7).
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Figure 3: Slowly decreasing kernel — Comparison of the predicted and exact aggregated kernel matrices
defined in Equations (6) and (7).

Slowly decreasing kernel. Slowly decreasing kernels are often observed on high-frequency financial
data after applying non-parametric estimation methods for Hawkes processes — see Bacry et al. (2012),
Bacry et al. (2016), Fosset et al. (2022). Identifying the rates of decrease over time of self-excitation and
cross-excitation components gives a better understanding of the market microstructure and the memory
of order flow.

We set D = 2, M = 5 and simulate 2.106 events of a linear marked Hawkes process with kernel functions

ϕij(t, x) := αij(γij + t)−βijf ij(x), 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X . (36)

with f ij(x) = f2(x). The parameters of the time component are given in Table 3. The second order
statistics are estimated using the grid of Equation (28) with parameters h = 10−3, nlin = 25, nlog = 75.
The baseline intensity is µ = [0.05, 0.05]′.

Table 3: Slowly decreasing kernel — Parameter configuration of the simulation

(a) α

αij 1 2

1 0.01 0.006
2 0.005 0.012

(b) β

βij 1 2

1 1.05 1.25
2 1.3 1.025

(c) γ

γij 1 2

1 0.0005 0.00075
2 0.001 0.0006

The fits of aggregated time kernels and mark kernels are displayed in Figure 3. The model reproduces
the power law over 5 decades and fits the mark component as well.

Delayed exponentially decreasing kernel. In practice, trading algorithms are exposed to transmis-
sion delays and latency. This phenomenon passes through to the formation of lagged kernels — see for
example Carreira (2021).

We set D = 2, M = 5 and simulate 2.106 events of a linear marked Hawkes process with kernel functions

ϕij(t, x) := αije
−βij(t−ℓij)f ij(x)1{t≥ℓij}, 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X . (37)

13



0.0

0.5

1.0

ϕ
11

(t
)

0.0

0.1

0.2

0.3

ϕ
12

(t
)

0 1
0.0

0.2

0.4

0.6

ϕ
21

(t
)

t
0 1

0.0

0.5

1.0
ϕ

22
(t

)

t

True Predicted

(a) Time kernel (φij)1≤i,j≤D

0

1

2

f
11

(x
)

0

1

2

f
12

(x
)

1 5
0

1

2

f
21

(x
)

x
1 5

0

1

2

f
22

(x
)

x

True Predicted

(b) Mark kernel (f ij)1≤i,j≤D

Figure 4: Delayed exponentially decreasing kernel — Comparison of the predicted and exact aggregated
kernel matrices defined in Equations (6) and (7).

with f ij(x) = f2(x).

The parameters of the time component are given in Table 4. The second order statistics are estimated
using the grid of Equation (28) with parameters h = 0.1, nlin = 10, nlog = 50. The baseline intensity is
µ = [0.05, 0.05]′.

Table 4: Delayed exponentially decreasing kernel — Parameter configuration of the simulation

(a) α

αij 1 2

1 1.25 0.35
2 0.6 1.15

(b) β

βij 1 2

1 5 8
2 8 10

(c) ℓ

ℓij 1 2

1 0.1 0.2
2 0.25 0.4

The fits of aggregated time kernels and mark kernels are displayed in Figure 4. All different 4 latencies
are correctly captured by the model and the mark kernels are correctly estimated as well.

Kernel with inhibition. Inhibition effects have been documented several times in the market mi-
crostructure literature - see for example Rambaldi et al. (2017), Lu and Abergel (2018). In this experi-
ment, we combine both latency and inhibition effects in one single kernel.

We set D = 2, M = 5 and simulate 2.106 events of a linear marked Hawkes process with kernel functions

ϕij(t, x) :=
(
αije

−βijt 1{t<ℓij} + αije
−βij(t−ℓij) 1{t≥ℓij}

)
f ij(x), 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X

(38)
with f ij(x) = f2(x) and we set the instantaneous self/cross-impact elements αij and αij such that

sign(αij) = −sign(αij). (39)

The parameters of the time component are given in Table 5. The second order statistics are estimated
using the grid of Equation (28) with parameters h = 0.1, nlin = 25, nlog = 75. The baseline intensity is
µ = [3, 2.5]′.
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Table 5: Kernel with inhibition — Parameter configuration of the simulation

(a) α

αij 1 2

1 1 -0.25
2 -0.2 1.2

(b) β

βij 1 2

1 3 3
2 2 2

(c) α

αij 1 2

1 -0.3 1.5
2 1 -0.25

(d) β

βij 1 2

1 2 5
2 3 10

(e) ℓ

ℓij 1 2

1 0.25 0.5
2 0.15 0.6
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Figure 5: Kernel with inhibition — Comparison of the predicted and exact aggregated kernel matrices
defined in Equations (6) and (7).

The fits of aggregated time kernels and mark kernels are displayed in Figure 5. Note that the model is
able to correctly capture the inhibition effects together with the latencies.

3.2 Convergence rate with respect to the number of observations
We measure the rate of decay of the estimation error of the moment-based non-parametric neural Hawkes
method for smooth kernels with respect to the number of observations. We setD = 2, M = 2 and simulate
a linear marked Hawkes process with exponential and power-law kernels. In the exponential case, kernels
are given by

ϕij(t, x) := αije
−βijtf1(x), 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X , (40)

and numerical values of the parameters are given in Appendix in Table 8. In the power-law case, kernels
are given by

ϕij(t, x) := αij(γij + t)−βijf1(x), 1 ≤ i, j ≤ D, t ∈ [0,+∞), x ∈ X , (41)

and numerical values of the parameters are given in Appendix in Table 9. For each case, we simulate a
sample of N events and apply the moment-based non-parametric neural Hawkes estimation method. We
then compute for the estimated kernels ϕ̂i,jN a root mean squared error (using a regular subdivision of
[0, T ] of size K):

∆2(N) :=

√√√√ 1

DM(K + 1)

D∑
i,j=1

M∑
m=1

K∑
k=0

(
ϕ̂i,jN

(
kT

K
,m

)
− ϕi,j

(
kT

K
,m

))2

. (42)
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Figure 6: Robustness experiment — Decays of the normalized errors as functions of the number of events
N for both power and exponential experiments. We observe a decay rate ∼ N−0.5 over the 4 decades.

For ease of comparison, we also define a normalized version ∆2(N) of this error by

∆2(N) :=
∆2(N)

supi,j,m ∥ϕij(·,m)∥∞
. (43)

Similarly, we define a L∞-error

∆∞(N) := sup
i,j,m,k

∣∣∣ϕ̂i,jN (kT/K,m)− ϕi,j(kT/K,m)
∣∣∣ , (44)

and its corresponding normalized error

∆∞(N) :=
∆∞(N)

supi,j,m ∥ϕij(·,m)∥∞
. (45)

Figure 6 plots the normalized errors ∆2 and ∆∞ with respect to the number of events N for both
kernels. We empirically observe a decay rate ∼ N−0.5 over several decades. Note that these results are
obtained with the standard configuration of Table 1 without any fine tuning. Interestingly, it was shown
in Bacry and Muzy (2016) that the theoretical rate — empirically validated in the same paper — of the
Wiener-Hopf method is rather ∼ N−0.33.

3.3 Robustness with respect to the choice of hyperparameters
We now test the robustness of the moment-based neural Hawkes estimation method with respect to
the choice of various hyperparameters. We simulate the linear marked Hawkes process with power-law
kernels defined at Equation (40) and Table 9 with N = 2.106 events and apply our estimation method
with varying number of DGM cells (first experiment), varying number of neurons in the DGM cell
(second experiment), varying size of the training set (third experiment) and varying batch size (fourth
experiment).

Figures 7 and 8 plot for each experiment the errors ∆2 and the validation losses L of the trained model for
the power law case. Additional material regarding the errors ∆∞ is displayed in appendix and exhibits
similar shapes as ∆2 — see Figure 12. The aforementioned losses are the average of the validation losses
of the two models (ϕ̂1j)1≤j≤2 and (ϕ̂2j)1≤j≤2, i.e. L = 1

2 (L1 + L2), across the epochs. We observe that
neither the number of cells nor the number of units seem to have a significant impact on the quality
of the model. Tuning the number of layers or the number of units does not necessary lead to a solid
improvement of the overall performance, but a number of neurons in the range of [50, 100] seems a good
choice hence justifying our general hyperparameter configuration. Concerning the training set we can
formulate a similar conclusion and set a good value in [1000, 2000]. By observing losses decays, we can
expect that smaller values of the training set should be coupled with a larger number of epochs to ensure
that the model explores and enough number of collocation points. Thus, the first three experiments do
not suggest a high sensitivity of the model to these hyperparameters. Finally, we observe that large
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Figure 7: Robustness experiment — Error ∆2 as a function of the hyperparameters in the four experi-
ments.

values of batch size lowers the learning speed. This result contrasts with the findings of Sankaran et al.
(2022) and may be specific to our problem as the authors explored the case of PDEs and not IEs. We
also found that a very small batch size, i.e. in the range [1,8], generally improves the performance. All
in all, it is very satisfying to observe that the moment-based neural Hawkes estimation method appears
robust with respect to the choice of hyperparameters.

100 101 102 103

Number of DGM layers

100

101

L

1

2

4

(a) Number of DGM cells

100 101 102 103

Number of units

100

101

L

8

16

32

64

128

256

(b) Number of neurons

100 101 102 103

N c

100

101

L
128

256

512

1024

2048

4096

8192

16384

(c) Size of the training set

100 101 102 103

B

100

101

L

1

2

4

8

16

32

64

128

256

(d) Batch size

Figure 8: Robustness experiment — Validation loss as a function of the number of epochs over the four
experiments.

4 Application to high-frequency cryptocurrency data

4.1 Data
In this section we apply our estimation method to cryptocurrency trade data provided by SUN ZU Lab.
The dataset is composed of trades executed between December 1st, 2023 and December 30th, 2023 on
Coinbase for 15 cryptocurrency pairs. With every trade is given a timestamp that corresponds to the
time at which the matching engine of the market processed the transaction. Timestamps are given with
microsecond precision. For each pair, trades that share the same timestamp are aggregated and identified
as one single event that was initiated either as a market order or as a marketable limit order. No feed
handler disconnection was reported during the time period, ensuring a coherent estimation of the first
and second order statistics. Descriptive statistics are displayed in Table 6.

4.2 The impact of volume on the arrival rate
To illustrate the stability of our moment-based neural Hawkes estimation method in the presence of a
marked kernel, we analyze the influence of the traded size on the trade arrival rate. Note that a similar
analysis was made in Rambaldi et al. (2017) on traditional financial markets using the Wiener-Hopf
estimation method. We focus on the BTC-USD pair, set D = 1 and M = 15 and the mark random
variable ξ encodes the volume of each trade. The hyperparameter configuration we use is the generic
one of Table 1, we set T = 1 s and estimate the second order statistics with h = 5.10−4 = 500 µs,
nlin = 50 and nlog = 100. The discretization of the mark domain and the associated probability mass
function p of ξ are displayed in Table 7. The adopted binning scheme uses a logarithmic grid from 100
USD to 100, 000 USD. The analysis differs from the one of Rambaldi et al. (2017) as we focus on the
shape of the aggregated mark kernel f and the asset classes, and hence the market microstructures, are
different. However, our results are consistent in the sense that the shape of the kernel depends on the
traded volume.
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Table 6: Descriptive statistics of the dataset over the 1 month period.

Pair Number of events Λi (events.s−1) Traded volume (millions USD)

BTC-USD 5,196,281 2.00 15,803.85
ETH-USD 3,579,423 1.38 8,058.49
SOL-USD 2,734,306 1.05 5,655.90
ICP-USD 569,019 0.22 464.61
SEI-USD 730,907 0.28 567.25

AVAX-USD 1,668,967 0.64 2,654,.66
XRP-USD 1,190,267 0.46 1,091.47
LINK-USD 1,237,588 0.48 1,275.48
XLM-USD 580,121 0.22 288.27
ADA-USD 1,436,622 0.55 1,031.34

MATIC-USD 896,950 0.35 753.90
DOT-USD 810,835 0.31 415.30
AAVE-USD 658,330 0.25 290.75
DOGE-USD 1,195,724 0.46 1,174.46
LTC-USD 967,231 0.37 405.78

Table 7: The impact of volume - Discretization of the mark domain and probability mass function of ξ.

m Volume interval (USD) p(m)

1 (0 - 100] 0.46
2 (100 - 170] 0.046
3 (170 - 290] 0.053
4 (290 - 490] 0.046
5 (490 - 840] 0.043
6 (840 - 1,425] 0.053
7 (1,425 - 2,425] 0.051
8 (2,425 - 4,125] 0.057
9 (4,125 - 7,000] 0.078
10 (7,000 - 12,000] 0.055
11 (12,000 - 20,300] 0.028
12 (20,300 - 34,500] 0.015
13 (34,500 - 58,750] 0.008
14 (58,750 - 100,000] 0.003
15 (100,000 - +∞] 0.002

Figure 9 shows the kernels (ϕ(.,m))m∈X and the aggregated mark kernel f computed using Equation (7).
We observe that the aggregated kernel is a concave non-decreasing function of the volume and reaches
a plateau for sizes that are larger than 50,000 USD. The monotony of the function is expected as the
larger the size, the greater the amount of information interpreted by the market. A possible explanation
of the concavity of the function and its plateau is that the agents consider there is less and less additional
information when the size increases and once it reaches a specific value, i.e. here 50,000 USD, larger sizes
do not bring any additional information.

This finding provides insights to practitioners regarding the choice of parametric kernels in order flow
models. Concerning the kernel functions (ϕ(., x))x∈X they exhibit different latency peaks depending on
the traded volume. We see that they all globally share three latency peaks at around 10 µs, 4 to 5 ms
and a smaller one near 10 ms. However, for large values of x, we observe two another peaks: one near 70
µs and one near 200 µs.

4.3 Cryptocurrency spillover: a causality analysis of transactions
We analyze the causality relationships between arrival times of transactions amongst the 15 cryptocur-
rency pairs of Table 6. To this extent, we proceed to a moment-based non-parametric neural Hawkes
estimation in D = 15 dimensions and set M = 1. The hyperparameter configuration we use is the generic
one of Table 1, we set T = 1 s and estimate the second order statistics with h = 5.10−4 = 500 µs,
nlin = 50 and nlog = 100. The kernel ϕij characterizes the impact of the arrival of a transaction in the
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Figure 9: The impact of volume — Time kernels as functions of time and aggregated mark kernel f as a
function of the traded volume (USD). The mark kernel seems to reach a plateau for x > 50, 000.
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Figure 10: Cryptocurrency spillover — Endogeneity ratios and diagonal of the kernel matrix. Note the
near-critical power law above 3 milliseconds with exponent close to 1.

j-th pair on the intensity of the arrival rate of transactions in the i-th pair.

The endogeneity matrix (∥ϕij∥)1≤i,j≤D and the diagonal components (ϕii)1≤i≤D of the kernel are dis-
played in Figure 10. The endogeneity ratio R of the system is 0.80. We observe that Bitcoin (BTC) and
Ethereum (ETH) are not the most endogeneous components of the system as other less traded coins show
a much larger endogeneity ratio for their self-excitation component, e.g., AAVE, DOGE, SOL or LINK.
Furthermore, as observed for the BTC-USD pair in the previous analysis, the kernels exhibit mainly three
peaks at around 10 µs, 2 to 5 ms and a smaller one at 10 ms. The self-excitation component of ADA
shows a significant peak at 100 ms which may be due to some properties that are specific to this coin.
We recover the near-critical power law behavior ∼ t−γ with γ ≃ 1 of the kernel for t > 3 ms, consistent
with the microstructure literature — e.g. see Bacry et al. (2012); Fosset et al. (2022). We provide the
entire estimated kernel in Figure 13 in appendix. Notice that the results highlight the stability of the
method as no fine tuning was made for this experiment.

If one denotes by N i←j the counting process of events of type i that are caused by the arrival of events
of type j, we have from Bacry et al. (2015)

E
(
dN i←j

t

)
= Λj∥ϕij∥dt. (46)

Therefore the ratio of the arrival rate of events of type i with a direct ancestor of type j to the overall
arrival rate of events of type i is a measure of the causal relationship from j to i. We thus define the
spillover ratio

Sij :=
Λj

Λi
∥ϕij∥1{i̸=j}, 1 ≤ i, j ≤ D. (47)
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Questions that naturally arise when analyzing the microstructure of a highly correlated multi-asset frame-
work are the following. Which asset does lead the others? In other words, which asset causes the others?
Which asset does not? Can we sort the assets according to their causal strength amongst the selected
trading universe? Is the traded volume a good indicator of such property?

To answer these questions and gain insights about the direction of causal relationships, we propose to
look at two aggregated versions of the spillover ratio of Equation (47). The first measure is what we call
the leader ratio

Lj :=
Λj∑
i ̸=j Λ

i

∑
i ̸=j

∥ϕij∥, 1 ≤ j ≤ D. (48)

This measure is the ratio of the arrival rate of all the events — except those of type j — with a direct
ancestor of type j to the overall arrival rate of all the events that are not of type j. The larger the
ratio, the greater the causal strength of type j over the trading universe. In other words, a large ratio Lj

indicates that a large proportion of the observed events that are not of type j is directly caused by an
event of type j, suggesting that the j-th pair leads the other pairs. On the contrary, a small ratio Lj → 0
indicates that very few events that are not of type j are directly caused by an event of type j, suggesting
that the j-th pair does not lead the other pairs. The second measure we define is the receiver ratio

Ri :=

∑
j ̸=i Λ

j∥ϕij∥
Λi

, 1 ≤ i ≤ D. (49)

It is the ratio of the arrival rate of the events of type i that are directly caused by events of other types
than i to the overall arrival rate of events of type i. When Ri → 1, the causal strength of other types
of events over events of type i is large. Hence, a large ratio Ri indicates that a large proportion of the
observed events of type i is directly caused by an event of another type, suggesting that the i-th pair is a
receiver amongst the pairs. On the contrary, a small ratio Ri → 0 indicates that very few events of type
i are directly caused by an event of another type, suggesting that the i-th pair is not a receiver.

Usually, practitioners refer to the participation rate of the assets to gain insights about possible leader/lager
relationships. For example, it is well-known — e.g. see Jia et al. (2023) — that the most traded cryp-
tocurrencies, i.e. Bitcoin and Ethereum, lead the overall market. But the question can be trickier for
less traded coins such as Cardano (ADA) and Ripple (XRP). We define the participation rate

νj :=
V j∑D
i=1 V

i
, (50)

where V j is the traded volume of pair j and we compare the ranking with respect to this measure with
the ranking with respect to the aggregated spillover ratio.

The results are displayed in Figure 11. First of all we clearly see discrepancies between the endogeneity
ratio matrix of Figure 10 and the spillover ratio matrix which is due to the inherent differences in market
activity amongst the coins. We observe a strong causality from BTC and ETH to other coins as expected.
There is a strong bi-directional causality between BTC and ETH which is consistent with the conclusions
of recent empirical studies — see for example Kumar and Anandarao (2019); Moratis (2021). Some of
the least traded coins such as ICP, SEI and AAVE are strongly self-exciting but exhibit weak mutual
excitation with other coins. Interestingly, we notice a bi-directional causality relationship between XRP
and XLM, the strongest direction being from XRP to XLM. This finding gives credit to the widespread
hypothesis that Ripple and Stellar (XLM) are two highly correlated cryptocurrencies1. In fact, the ideas
behind these protocols are similar and the causal relationship between both prices is still a debate in
the decentralized finance community. Furthermore, we observe that the top three leaders are BTC, ETH
and XRP and the top three receivers are XLM, XRP and LINK. It shows that XRP is both a strong
transmitter and a strong receiver which is consistent with the studies of Kim et al. (2021); Moratis (2021).
Comparing the ratios with the participation rates, we see that high market activity does not necessarily
mean high shock transmission. For example, the traded volume on AVAX is much greater than the one
on XRP on this time period but XRP shows a significantly higher leader ratio. We also observe that
least traded coins are not necessarily strong receivers, e.g. ICP. Finally, it is noteworthy that we trained
several models with different hyperparameters configurations and all the results were mostly identical.

1Although we did not find any empirical analysis of the XRP/XLM relationship in the academic literature, we refer the
reader to a blog discussion https://u.today/intriguing-xrp-and-stellar-xlm-correlation-deciphered-heres-expla
nation (Accessed on Jan. 9th, 2024).
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Figure 11: Cryptocurrency spillover — Spillover ratios, ranking of the leader, receiver measures and
participation rates amongst the 15 cryptocurrency pairs.

5 Conclusion
In this paper we proposed a new non-parametric estimation method for linear multivariate Hawkes
processes that relies on two main tools:

- The second order statistics characterization theorem of multivariate linear Hawkes processes origi-
nally proven in Bacry and Muzy (2016);

- The physics-informed neural networks that are able to solve non-linear PDEs in high dimension,
provided that they are properly trained – see Wang et al. (2023).

The Fredhlom equation that links second order statistics to the kernel function is solved using a neural
network that is trained using the latest advances in PINNs literature. The benefits of our approach is
threefold.

- The application of the Wiener-Hopf method requires the inversion of a matrix that can be arbitrarily
large in high dimension, leading to potential computation issues and approximation errors. The
neural network model is able to work around this problem as it is well suited to high dimension
inference;

- The performance of the model can be evaluated by tracking the estimated second order statistics
at any point, allowing us to evaluate its ability to fit the data;

- Once the model is trained, it is able to compute the value of the kernel at any given point. This
contrasts with the Wiener-Hopf method for which the computation of the kernel between two
quadrature points is done either by linear interpolation or by inversion of the characterization
equation.

We provided a general hyperparameter configuration that can be used to fit a first non-parametric model
before further tuning, as it showed robust performance across the numerical experiments. The model
shows a great performance on simulated data with general kernels. We explored the influence of some
hyperparameters on the final performance and found the model to be essentially sensitive to the batch
size, the learning rate and the number of hidden layers. In general, a small batch size, a learning rate of
0.001 and 1 to 3 DGM cells provide very satisfactory results.

As an example of practical applications we conducted a non-parametric estimation of the kernel matrix
of transactions on a centralized exchange in two settings. The first one is univariate marked Hawkes
estimated on BTC-USD trades, mapping the traded volume to the mark process. The second one is a
multivariate Hawkes estimated on a universe of 15 cryptocurrency pairs. We analyzed the shape of the
mark component of the kernel and found it appears to behave as a concave function of the volume. We
introduced a spillover measure and leader/receiver ratios that can be used for identifying the directions
of the causal relationships of shocks amongst a correlated asset universe. The estimated metrics indicate
that the traded volume is not necessarily representative of the leader-lager relationships. The use of our
method can provide insights about the causality structure of large complex systems. In a forthcoming
paper we will aim at applying this framework to high frequency cryptocurrency data and extract stylized
facts about the role of marks in order flow dynamics or the spillover and lead-lag relationships in (very)
large dimension.
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Appendix
This appendix provides additional figures and tables that do not appear in the main text in order to
enhance readability. Tables 8 and 9 give additional parameters used in Section 3. Figure 12 displays
L∞ errors of the robustness tests of Section 3. Finally, Figure 13 displays the full 15-dimensional kernel
estimated in the empirical analysis of Section 4.

Table 8: A 2-variate exponentially decreasing kernel

(a) α

αij 1 2

1 1 0.25
2 0.5 0.75

(b) β

βij 1 2

1 2 1
2 1 1.5
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Table 9: A 2-variate power-law decreasing kernel

(a) α

αij 1 2

1 0.012 0.008
2 0.004 0.005

(b) β

βij 1 2

1 1.3 1.3
2 1.3 1.3

(c) γ

γij 1 2

1 0.0005 0.0005
2 0.0005 0.0005

1 2 3 4
Number of DGM layers

4.0

4.2

4.4

4.6

4.8

∆
∞

(a) Number of DGM cells

101 102

Number of units

4
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∆
∞

(b) Number of neurons

102 103 104

N c
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∞

(c) Size of the training set
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∞

(d) Batch size

Figure 12: Robustness experiment — Error ∆∞ as a function of the hyperparameters in the four experi-
ments.
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Figure 13: Cryptocurrency spillover — Moment-based neural Hawkes kernel (ϕij)1≤i,j≤D as a function of
time for a universe of 15 cryptocurrencies using trade data on Coinbase from 2023/12/01 to 2023/12/30.
Note the scale of the y-axis might change from one kernel to another as they do not necessary share the
same orders of magnitude. We chose to remove the ticks of the y-axis for illustration purposes.
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