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1 Introduction

1.1 Confirmation bias

Extensive evidence shows that individual human behaviour deviates from rationality [7, 8, 39,
40, 80, 81, 83, 84], also specifically in traders and investors [2, 21, 37, 45, 62, 75, 85]. However,
mainstream economic theory generally assumes economic actors to be rational [29, 44, 57, 58, 68,
71, 78]. Modelling-wise, the rationality assumption at the cognitive level is convenient, but what
are its macroscopic consequences on price? In other words, considering that financial markets
aggregate the biased decisions of traders, does the impact of these biased decisions accumulate
or cancel out? In this paper, we address this bias aggregation problem [5].

Among all human biases, we focus on confirmation bias, which in plain words is the tendency
to see only what you already want to see. More formally, it is often defined as a systematic error
in belief updating with respect to Bayesian learning [19], but its concept spans over a variety of
definitions and nuances [42]. This bias has been extensively documented by psychologists for its
pervasiveness in human cognition and social dynamics [18, 25, 28, 35, 50, 61]. Strong evidence
of confirmation bias has been gathered in both information acquisition and information use
[38]. It is robust to experience and resilient to economics incentives; while incentives manage
to encourage Bayesian belief formation, they cannot quench confirmation bias [12]. Further
studies, however, find confirmation bias to be less predominant than claimed [26].

Confirmation bias has also been detected specifically in finance: investors preferentially read
information supporting their investment decision rather than opposing information [13]. More
broadly, commercial investment platforms claim that sticking to the same strategy despite loss
is one of the strongest biases in trading. Nevertheless, in finance, confirmation bias has been
understudied in comparison to other key cognitive biases, such as the anchoring effect and
overconfidence [16].

In our study, we examine how confirmation bias influences market behaviour and individual
strategy preferences. Our approach is computational. We simulate stock markets by multi-agent
reinforcement learning, where agents learn to forecast the market, trade and price their orders.
While the literature already includes studies on multi-agent reinforcement learning models [53–
55] and on the impact of confirmation bias [69] in financial markets, we contribute by adding a
key missing element: the employment of cognitive models grounded in experimental evidence.
The main novelty of the current study is the model adopted for agents’ cognition. We leverage
experimentally-validated computational models that capture confirmation bias in behavioural
experiments, starting from explicit learning mechanisms based on neural evidence. In the next
two sections, we introduce and motivate our modelling choices.
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1.2 Reinforcement Learning

If we depart from the ideal rationality assumption to study human cognition, we need to opt for a
cognitive theory. The debate on the most appropriate one is complex and unsolved [74]. However,
financial markets represent an arena where traders’ behaviour is clearly goal-driven. They pursue
profit, and more generally they aim to learn how the market behaves [23, 41, 43, 51, 60]. Out of
the vast scientific literature available, we focus on one prevalent theory: reinforcement learning
(RL). In plain words, RL consist in learning which action to take, in a given context, by trial-
and-error, when pursuing a goal. An RL agent aims to reinforce actions leading to rewards, and
discard actions leading to punishments. In other words, the sensitivity to reward and punishment
guides the development of the agent’s preferences and the adaptation of its behavioural strategy.

RL is grounded in influential empirical evidence from psychology and neurophysiology. Its
learning processes have been documented in animal and human behaviour [77, 82], as well
as in the dopaminergic neurons in basal ganglia within the human brain [73]. With respect to
finance, investors increase their 401(k) savings rate (i.e. a retirement savings plan in the USA) if
they personally experience high average and/or low variance return, in line with a reinforcement
learning explanation [15]. A further example is that investors increase their participation to IPO
auctions when experiencing high returns (however, this may not be the case for institutional
investors) [14]. Evidence also encompasses laboratory experiments. In restless bandit-tasks,1

subjects are Bayesian learners only if nudged into paying attention about payoff shifts, otherwise
their behaviour is better explained by RL [67]. With respect to the neurophysiological evidence,
the activity of key brain areas associated to reinforcement learning (e.g. ventral striatum) has
been linked to trading behaviour [31].

Modelling-wise, both behavioural and neurophysiological aspects of RL can be captured by
models building upon a simple delta rule, the Rescorla–Wagner model [70]. In our study, we
focus on Q-learning [20, 79].

In short, we choose RL because of its features and its suitability for our purposes. It is
computationally explicit, guided by reward sensitivity, goal-oriented, offering a mechanistic ex-
planation of learning and decision-making, and it accommodates traders’ adaptation to market
conditions.

1.3 Confirmation bias in Reinforcement Learning

RL is also able to capture fundamental distortions in information processing [3, 49, 64, 65].
Among the models available, in this study, we leverage the RELATIVE ASYMMETRIC RL
model. We chose this model because it won model comparison in explaining human learning
and decision-making in RL tasks from behavioural economics experiments [32, 47]. As the
name suggests, this model is based on two modules: RELATIVE and ASYMMETRIC. Here,
we focus on the latter, which is based on the gap between expected and observed outcome of an
action, i.e. the surprise experienced by agent (Fig. 1b). From the RL perspective, rationality
is defined as treating equally positive and negative surprises. On the contrary, confirmation
bias can be thought of as welcoming positive surprises, while neglecting negative surprises, from
chosen actions (and vice versa for unchosen actions). This asymmetry is embodied by the
ASYMMETRIC module. Its formal definition of confirmation bias will be provided in Methods.

1.4 Multi-Agent Reinforcement Learning

We address the bias aggregation problem computationally. We simulate a stock market that
is fully driven by the decisions of a large number of heterogeneous traders who can learn and
adapt their own strategies. Inspired by previous work [11, 30, 36, 46, 53, 56], we develop a
stock market simulator in the form of a multi-agent reinforcement learning (MARL) model.

1Behavioural economics tasks where contingencies (i.e. underlying rewards associated to one option) change.
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Figure 1: Comparison of cognition models between mainstream economics and Q-
learning in RL.
In the economic theory panel, E denotes subjective expected utility, from subjective utilities
weighted by known probabilities of all possible outcomes of that given action. Economic theory
may also employ Bayesian learning as a form of inductivism linking subjective probabilities and
rationality [17, 24, 34]. In the right panel, we sketch Q-learning as model-free RL, i.e. learning by
trial-and-error. The decision rule can be, for instance, argmax, ϵ-greedy, softmax. With respect
to learning, for the sake of simplicity, the diagram depicts only the update for the chosen action,
but unchosen actions can also be updated, if their outcome is observed (or estimated). Figure
adapted from [48].

Since the main model of reference is a MARL called SYMBA (SYstème Multiagent Boursier
Artificiel) [52–55], for practical purposes, we refer to our MARL as pSYMBA, to reflect the
psychological foundations of the model. Among numerous differences, the main novelty with
respect to SYMBA lies in the design of agents’ cognition:

1. as explained in the previous section, pSYMBA agents employ human RL models that have
been developed and validated on behavioural economics experiments to capture human
biases in learning and decision-making [32, 47, 49, 66];

2. given the paramount importance of expectations in economics [23, 41, 43, 51, 60], decision-
making in pSYMBA agents is structured hierarchically upon the forecasting strategy, the
upstream decision to form market behaviour predictions that guide and feed into all the
downstream decisions (trading and pricing).

2 Methods

We structure our methods section top-down, in two parts: first, the architecture of the financial
market simulator (section 2.1), then the cognitive model of individual agents (section 2.2).

2.1 Financial market simulator architecture

2.1.1 Simulation-wide parameters

We simulate I = 104 agents trading a finite number of shares of a single asset. Prices in the
market emerge from the aggregate actions of the agents. Simulations last T = 6500 time steps,
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however, for our main analysis, we discard the first Ttrain = 4000 time steps, where agents are
still learning how to trade. We extract the price return statistics of interest from the equivalent
of 10 years worth of trading (2500 time steps), assuming Ty = 252 business days in a year.

Figure 2: Diagram of information processing during a timestep in pSYMBA.
The market is represented as a function producing the stock market price Pt by processing two
sources information: exogenous information ft (the news) and endogenous information (the last
price Pt−1) from the feedback loop. Stock price results from the interaction of agents’ decisions.
Decision-making involves forecasting, trading and pricing, for each agent, independently. Their
individual trading orders are collected in a central order book, which sets the price through a
Walrasian auction. Finally, agents learn from the price outcome.

2.1.2 Exogenous information

We inject exogenous information f into the model to simulate the news from the outside world,
which represent the underlying true fundamental value of the asset [4, 56, 63]. We generate a
multiplicative stochastic process by geometric Brownian motion (GBM) in the discrete form:

log ft − log ft−1 = ϕt, (1)

where ϕt is characterised by an annual mean µY = rfree + rpremium (i.e. the desired risk-free and
risk-premium assets’ annual growth rates), and volatility σY = 0.1 (Tab. 1).

2.1.3 Price formation

Individual trading orders are sent to a central order book. pSYMBA assigns a timestamp to
each order, adding a random delay sampled uniformly U(0, 1) within the current time step. The
central order book sorts bid orders in descending fashion, and ask orders ascending fashion,
according to their price, while giving priority to the earlier timestamps in case of equal price.
After collecting the trading orders on the central order book, stock price is formed through a
Walrasian auction [22]. The auction follows the rules from [27], as described in [72], to determine
the price Pt. Once the price is set, the central order book clears trading orders, also considering
timestamp priority. Orders may be filled only partially. Trading orders are cleared with a broker
fee b = 0.1%.
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Name Value Purpose

I 10000 Number of agents
S 200 Number of testing simulations per learning condition
Ttest 2500 Time steps for analysis

rfree 1% Annual risk-free rate on available margin (interests are awarded daily)
rpremium 4% Annual premium rate, i.e. growth rate in addition to rfree,

characterising the typical (mean) growth rate of the exogenous
information f , the true fundamental value

σY 0.1 Annual volatility of exogenous information f (true fundamental value)
injected into the model

b 0.1% Broker fees
tick 0.01 The minimum (upward or downward) amount the stock price can

move; currency is arbitrary

Table 1: Summary table of model architecture parameters.
We partition the table in three sections to distinguish: overall input parameters, exogenous
information parameters, and market-related parameters.

2.2 Agents’ cognition model

2.2.1 Reinforcement learning and confirmation bias

We model agents’ cognition by leveraging the RELATIVE ASYMMETRIC RL model. We
choose it for empirical reasons: its superior ability in model comparison to explain human
behaviour in behavioural economics RL tasks [32, 47, 49, 66].

Agents operate through three Q-learning algorithms based on the RELATIVE ASYMMET-
RIC model: the forecasting algorithm F to forecast the stock price, the trading algorithm T
to trade, and the pricing algorithm P to price trading orders. In the forecasting algorithm, at
each time step, each agent can choose either fundamentalism (section 2.2.3) or trend-following
(section 2.2.4). In trading, the action menu is: ask, hold or bid; if the agent own no shares, its
possible actions are open or wait. In pricing, the action menu includes four types of limit orders,
plus market order.

In each algorithm, agents learn the value of each action a in state s according to a simple delta
rule ∆Q(s, a) = α δ, where α is the learning rate, while δ = Rt −Qt(s, a) is the prediction error
between the observed outcome Rt and the expected action outcome Qt(s, a). Rt is the reward
or punishment obtained from a given action, defined by algorithm-specific reward functions (not
shown).

In the forecasting and in the pricing algorithm, agents adopt a different learning rate de-
pending on the prediction error sign and on whether the action was or not the one chosen by
the agent. Formally, for the chosen action c, the Q update is

∆Q(s, ac) =

{
α+ δc, if δc > 0

α− δc, if δc < 0.
(2)

The agent employs α+ when the taken action results in a better-than-expected outcome,
while α− is used when the taken action results in worse-than-expected outcomes. In a mirrored
fashion, for an unchosen action u, the Q update is

∆Q(s, au) =

{
α+ δu, if δu < 0

α− δu, if δu > 0.
(3)

The agent employs α− when the unchosen action results in a better-than-expected outcome,
while α+ is used when the unchosen action results in worse-than-expected outcomes. The
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learning rate asymmetry defines the learning bias: α+ > α− implements confirmation bias,
while α+ < α− corresponds to the opposite condition, disconfirmatory bias, which emphasises
mistakes, i.e. disconfirmatory information. When the two learning rates are equal, we are back
to the basic model with a single learning rate, where all information is treated equally.

Figure 3: Distributions of confirmatory and disconfirmatory learning rates α+ and
α− in the agent population, depending on learning condition.
a) Confirmation bias (B+); b) balanced bias (B0); c) disconfirmatory bias (B−); d) rationality
(B00).

The trading algorithm is based on expected profits (rather than realised profits), to decide
the most appropriate trading action given the current forecast. This algorithm does not include
any bias, as we are not interested in biasing the coupling between price forecast and trading
decision.

2.2.2 Cognitive traits

In addition to the RL learning rates, each agent’s cognitive traits are shaped by six agent-
specific parameters. Here, we focus on two: investment time horizon τ , or patience, and true
fundamental value co-integration speed κ, or simply news sensitivity (Tab. 2). Each of these
parameters is sampled independently, for each agent.

Name Symbol Purpose Range

Patience τ Number of time steps in the future or back in the past
the agent looks at to perform key computations,
especially for forecasting and profit expectations; τ also
determines the average market-interaction frequency of
a trader.

[Tw, Ty]

News
sensitivity

κ Speed at which the agent updates its estimate about
the exogenous information on the asset; implemented as
co-integration speed of an assumed true fundamental
value signal (section 2.1.2) that can only be known
partially by the agents

[5 · 10−4, 0.01]

Table 2: Two key agent-specific cognitive traits: their symbol, purpose, and value
range.
Both parameters are sampled uniformly. Tw = 5 and Ty = 252 indicate, respectively, the number
of business days in a week and in a year.
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2.2.3 Fundamentalism

Agents have only partial knowledge of the true fundamental value of the asset. They obtain
their own estimate by co-integration [59], according to their news sensitivity parameter κi:

∼
f i,t =

∼
f i,t−1 + κi(ft −

∼
f i,t−1). (4)

In other words, κ is a measure of the agent’s speed in catching the true fundamental value
ft, which changes constantly. We set κmin = 0.0005 to allow for minimal opinion dynamics.

2.2.4 Trend-following

We represent chartism by a trend-following estimate from the latest price dynamics. For its
chartist forecast, the agent adds a linear projection to the last available price Pt−1:

Hi,t = Pt−1 +mτiτi (5)

More specifically, the agent i considers the last τi past prices {Pt−τi , ..., Pt−1}, employing the
time indexes k = {−τi + 1, ..., 0}, it centers the last available price Pt−1 at the origin and fits a
linear model ∆P̂ (k) = mτ k, forcing the intercept to 0.

2.3 Statistical analysis

In the following sections, we address the central question of this thesis: whether the market
amplifies or mitigates the impact of individual biases. We first explain our statistical analysis,
to then run three main analyses.

2.3.1 Statistical tests

We now conduct statistical tests to assess the differences between conditions: confirmation bias
B+, balanced bias B0, disconfirmatory bias B−, rationality B00, and zero-intelligence Z. We
label the first four as learning conditions, the latter as no-learning condition.

We run simulations by setting specific a random seed for each instance of pSYMBA. Ran-
dom seeds differ between training phases and between any testing phase, but they are set to be
identical across conditions (including no-learning, i.e. zero-intelligence agents). In other words,
exogenous information signals are identical across conditions, and agents are twins, they are
characterised by the very same parameters except for the learning rates, which are the indepen-
dent variables that we want to manipulate. This framework allows us to compare simulations
as repeated measures.

We first run a Friedman test, where the null hypothesis is defined as no significant difference
between conditions (reported in Tab. 3). We employ a Friedman test rather than a one-way
ANOVA because data distributions are not normally distributed. In all Friedman tests, N = 200,
which is the number of simulations.

If we can reject the null hypothesis (p < 0.05), we run a series of Wilcoxon signed-rank
tests as post-hoc tests. Again, they replace paired t-tests because data points are not normally
distributed. In our Wilcoxon tests, we compare the reference condition to one other condition,
as listed in Tab. 3. Each of these tests is a location test, it evaluates if the distribution of the
differences between two conditions is symmetric with respect to zero; it does not evaluate if
the two distributions differ in shape. We correct p-values by Bonferroni correction, multiplying
the p-values obtained from the Wilcoxon tests by the number of pairwise comparisons for the
variable of interest (i.e. the number of conditions that we contrast to the reference condition).
Since this type of correction is conservative, it increases the probability of false negatives in the
post-hoc phase. We will be more confident about detected differences, but less confident about
a lack of statistical difference at this stage.

We set all significance thresholds to 0.05.
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Analysis Test Comparisons Null Hypothesis H0

Model validation

Test
non-Gaussianity of
price returns w.r.t.
to Gaussian news

f vs. Z M(Z − f) = 0
f vs. B+ M(B+ − f) = 0
f vs. B0 M(B0 − f) = 0
f vs. B00 M(B00 − f) = 0
f vs. B− M(B− − f) = 0

Bias aggregation
problem

Test changes in
price return
properties between
learning conditions

B00 vs. B+ M(B+ −B00) = 0
B00 vs. B0 M(B0 −B00) = 0
B00 vs. B− M(B− −B00) = 0

Table 3: Summary of statistical analyses.
We apply the above framework to test for differences between conditions in each dependent
variable of interest (volatility, skewness, kurtosis). In the last column, M stands for median
of the differences between conditions: confirmation bias B+, balanced bias B0, disconfirmatory
bias B−, rationality B00, zero-intelligence Z, and the exogenous information f (i.e. the true
fundamental value).

2.3.2 Average forecasting strategy choice

We study price dynamics in relation to the dynamics of average forecasting strategy choice ψF ,t,
averaged across traders (or simply average strategy choice), i.e. the fraction of the total number
of agents I choosing fundamentalism (aF = 1) at a given time step t:

ψF ,t =
1

I

∑
i

aF ,i,t. (6)

We derive ψF ,t as the mean RL action in the forecasting algorithm F , averaged across agents I,
for each time step t.

2.3.3 Forecasting strategy preference

We define an agent’s forecasting strategy preference as the fraction of times that an agent i
chooses fundamentalism (aF = 1):

ϕF ,i =
1

Ttest

∑
t

aF ,i,t. (7)

Values leaning towards zero indicate a preference for trend-following, while values leaning to-
wards one indicate a preference for fundamentalism. We compute this value for each agent, for
each testing phase, per learning condition. We then interpolate these values linearly to produce
a heatmap of agents’ forecasting preferences as a function of τ and κ, for each learning condition
(Fig. 5).

8



3 Emergent properties

Before addressing the central question of this study about the impact of confirmation bias
on stock price formation, we analyse the model. The model produces the desired emergent
properties across levels. At macroscopic level, it produces stylised facts of price returns; at
mesoscopic level, it links agents’ forecasting strategy choices to alternating regimes of market
efficiency and speculative bubbles; at the microscopic level, agents become either fundamentalists
or chartists, in line with their own patience and news sensitivity. We present these findings in
the following sections.

3.1 Macroscopic analysis: empirical validation

Trading fundamentally alters the properties of the injected information f (section 2.1.2), giving
rise to stylised facts. Price returns from simulations exhibit two key non-Gaussian properties
that typically characterise financial markets: negative skewness and excess kurtosis (Tab. 4-5).

Moreover, the (log) variance of price returns also increases, with respect to news (the changes
in exogenous information). Although a larger variance is expected when summing two stochastic
processes (i.e. the true fundamental value f and agents’ choice sampling from softmax decision
rule), the size of the additional volatility clearly denotes excess volatility [76]. Price return
volatility is 14 to 35 times greater than the volatility of the true fundamental value for learning
conditions, and 4.4 times for the zero-intelligence condition, in line with foundational empirical
literature [76] reporting an excess volatility factor of 5 to 13 times.

Variable χ2(5) p

log σ2 758.768571 9.60× 10−162

Skew 171.265714 3.92× 10−35

Kurt 462.714286 8.88× 10−98

Table 4: Friedman test comparing exogenous information and price returns from
zero-intelligence condition and learning conditions.
A priori comparison to address question 1 in Tab. 3. All Friedman tests are statistically
significant, allowing us to run post-hoc comparisons between individual conditions (Tab. 5).
P-values are not corrected.
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B+ B0 B− B00 Z

log σ2
2.65

p = 7.18× 10−34

W = 0

3.23

p = 7.18× 10−34

W = 0

3.58

p = 7.18× 10−34

W = 0

3.32

p = 7.18× 10−34

W = 0

1.48

p = 7.18× 10−34

W = 0

Skew

−1.45

p = 2.99× 10−22

W = 1966

−1.11

p = 1.43× 10−13

W = 3818

−0.47

p = 1.97× 10−7

W = 5548

−0.76

p = 1.76× 10−8

W = 5210

−1.19

p = 9.65× 10−15

W = 3538

Kurt

33.36

p = 7.18× 10−34

W = 0

30.13

p = 7.18× 10−34

W = 0

15.64

p = 7.18× 10−34

W = 0

24.43

p = 7.18× 10−34

W = 0

32.63

p = 7.18× 10−34

W = 0

Table 5: Impact of trading on news: price returns display stylised facts (excess
volatility, negative skewness, and excess kurtosis).
Post-hoc tests contrast each model condition (learning conditions and zero-intelligence) against
the exogenous information (Tab. 3). Columns represent confirmation bias (B+), balanced
bias (B0), disconfirmatory bias (B−), rationality (B00), and zero-intelligence (Z). Rows rep-
resent dependent variables of interest: volatility, skewness and kurtsis of price returns. The
reference condition is the exogenous information (f), a geometric random walk (section 2.1.2).
Each box shows the results from a pairwise Wilcoxon signed-rank test between the column
condition and the exogenous information. The top value is the median difference between the
two conditions, subtracting the reference condition f from the column condition. p-values are
Bonferroni-corrected by the number of pairwise comparisons (here 5). The bottom value reports
the test statistics. Friedman tests are statistically significant for all variables (Tab. 4).
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3.2 Mesoscopic analysis: theoretical validation

The simulated market alternates between two regimes: efficient market and speculative bubbles
(Fig. 4). These two market regimes arise from the two forecasting strategies available to the
agents: respectively, fundamentalism and trend-following (sections 2.2.3 and 2.2.4). The former
pushes the price close to the true fundamental value, while the latter amplifies price trends.
Individual forecasting strategy choices manage to shape price formation collectively, bottom-
up, because of their upstream role in the hierarchical decision-making structure of the agents
(section 2.2.1): agents fuel the market with trading orders that embody information about their
individual expectations (i.e. forecasts) about market behaviour. Once enough traders find it
more accurate to employ a given forecasting strategy, their decisions create avalanche effects at
the macroscopic level, which push more traders to adapt their strategy to the new market regime.
However, the market does not converge to a permanently dominant regime. The environment is
constantly evolving, with no safe strategy, in line with seminal work in agent-based modelling
[1, 9–11].

The emergence of speculative bubbles is not new in agent-based models of financial markets,
but pSYMBA achieves this result by leaving full individual freedom of choice to the agents. For
instance, in [33], these dynamics require agents to be biased towards trend-following strategies,
rather than contrarian ones (i.e. P ≥ 0, in their notation). In contrast, in pSYMBA, bubble
formation does not require so. Agents are free to choose their own strategy.2 Moreover, there
is no mechanism pushing the agents towards fundamentalism when bubbles arise. In pSYMBA,
bubbles do not burst because of a sudden intervention of fundamentalism, but most likely because
enough agents stop playing the “greater fool theory” [6], either because the price is too high for
them to issue trading orders or because they choose not to buy anymore.

2To clarify, in pSYMBA, biases (if activated) are learning biases (e.g. confirmation bias B+, balanced bias
B0, disconfirmatory bias B−, Fig. 3): they do not directly apply to strategy preferences, they rather affect how
agents learn from the performance of their strategies.
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Figure 4: Stock price dynamics: trend-following fuels speculative bubbles.
Stock price during the testing phase, across learning conditions (Fig. 3): a) confirmation bias
(B+), b) balanced bias (B0); c) disconfirmatory bias (B−); d) rationality (B00); e) no learning,
i.e. zero-intelligence (Z). Price colour represents average strategy choice ψF ,t (eq. 6), i.e. the
fraction of agents choosing fundamentalism at a given time step. True fundamental value is
shown in dark grey. Mean fundamental value growth is 4.46%/year.
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3.3 Microscopic analysis: emergence of strategy preferences aligned with
cognitive traits

The model also shows microscopic properties matching trader profiles as expected heuristically:
long-term fundamentalists and short-term chartists. We observe that agents develop strategy
preferences in line with their individual cognitive traits: more patient and more informed agents
become fundamentalists, while more impatient or less informed agents resort to following market
trends (Fig. 5). This strategy polarisation is especially enhanced under the confirmation bias
condition (Fig. 5a).
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Figure 5: Interpolated forecasting strategy preference ϕ̄F ,i across learning condi-
tions: news sensitivity κ and patience τ polarise preferences.
a) confirmation bias (B+), b) balanced bias (B0); c) disconfirmatory bias (B−); d) rational-
ity (B00); d) zero-intelligence (Z). Learning conditions are described in Methods (Fig. 3).
Heatmaps of ϕ̄F : forecasting strategy preferences ϕF ,i (i.e. the fraction of times that the agent
chose fundamentalism over the duration of a testing phase, eq. 7) linearly interpolated across
a full dataset of 200 simulations per learning condition. We compute ϕF ,i for each agent i, for
each testing phase. τ and κ are normalised on the lower and upper bounds of their parameter
distributions (Tab. 2).

13



4 Results

The bias aggregation problem: the impact of confirmation bias

Here, we address the central question of this study: is the aggregated impact of individual
confirmation biases accumulating or cancelling out at macroscopic level? When we bias learning
in the agents, we find two distinctive effects of confirmation bias: it shrinks market volatility
(Fig. 6a), but it exacerbates negative skewness (Fig. 6b). In other words, if agents tend to
neglect their bad decisions and stick to their choices, the market becomes more predictable (Fig.
6a), but the relative risk of large price drops increases (Fig. 6b).
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Figure 6: Impact of confirmation bias on volatility and skewness of price returns
from simulations.
a) Log-variance of price returns; b) Skewness of price returns. Price returns are defined as
rt = logPt+1 − logPt. Learning conditions are defined in Fig. 3. *p < 10−5 in post-hoc tests
(Tab. 7).

We obtain these results from our statistical analysis (section 2.3.1 and Tab. 3). We first run
a priori comparison between all learning conditions (Tab. 6), and then post-hoc tests (Tab. 7)
contrasting the rationality condition against each biased learning condition.

Variable χ2(3) p

log σ2 93.414 4.05× 10−20

Skew 45.282 8.06× 10−10

Kurt 48.342 1.80× 10−10

Table 6: Friedman test statistics for a priori comparison between all learning con-
ditions.
Dependent variables are log-variance, skewness and kurtosis. Friedman tests are statistically
significant for all variables of interest. P-values are not corrected.
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B+ B0 B−

log σ2
−0.74

p = 1.52× 10−6

W = 5933

−0.09

p = 0.60
W = 9000

0.21

p = 0.17
W = 8492

Skew

−1.02

p = 1.85× 10−6

W = 5964

−0.29

p = 0.31
W = 8716

0.06

p = 1.00
W = 9791

Kurt

4.21

p = 1.00
W = 9443

1.11

p = 1.00
W = 9884

−5.96

p = 0.05
W = 8102

Table 7: Impact of learning biases on price returns, with respect to rationality.
Post-hoc tests contrast all biased learning conditions to the rationality condition as reference
condition (Tab. 3). Columns represent the biased learning conditions: confirmation bias (B+),
balanced bias (B0), and disconfirmatory bias (B−), as in Fig. 3. Rows represent dependent
variables, i.e. statistical properties of price returns. Each box shows the results from a pairwise
Wilcoxon signed-rank test between the column condition and the rationality condition. The top
value is the median difference between the two conditions, subtracting the reference condition
B00 from the column condition. p-values are Bonferroni-corrected by the number of pairwise
comparisons (here 3). The bottom value reports the test statistics. Friedman tests are statisti-
cally significant for all variables (Tab. 6).

5 Conclusion

This study investigates a bias aggregation problem in financial markets, asking whether the
collective impact of individual biases on stock price properties cancels out or accumulates. As
cognitive bias, we focused on confirmation bias, for its pervasiveness in human cognition and
in traders. We address our question with a novel approach, by integrating experimentally-
validated behavioural economics models into multi-agent reinforcement learning, to simulate a
large number of agents that autonomously drive stock price formation.

The contribution of this study is two-fold. Firstly, it highlights the potential of integrat-
ing experimentally-validated cognitive models into financial market simulations. The model is
capable of producing emergent properties across levels: from stylised facts of price returns at
the macroscopic level, to speculative bubbles at the mesoscopic level, to individual strategy
preferences aligned with cognitive traits at the microscopic level. Secondly, this study reveals
that individual biases, such as confirmation bias, can shape stock prices. In other words, from a
modelling perspective, we collect evidence that the underlying assumptions on traders’ cognition
do affect macroscopic results.

By combining cognitive science, machine learning and computational finance, this study
contributes to the development of the emerging field of computational cognitive finance. Future
work could explore other cognitive biases and extend this framework to incorporate more complex
forecasting strategies.
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